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NON-LINEAR BEHAVIORS OF AIRY TYPE ON SCALES
SPACE FROM A FRACTAL PERSPECTIVE

Mihail FRASILA', Maria-Alexandra PAUN?3, Catalin DUMITRAS?,
Tudor-Cristian PETRESCU?, Vladimir-Alexandru PAUNS, Viorel-Puiu PAUN"#8, Maricel
AGOP??

Several non-linear behaviors in scales space, in the framework of Scale
Relativity Theory, are highlighted. All these are possible through the employment of
fractal-type Airy functions, which allow a revaluation of the wave/corpuscle duality,
from the perspective of a fractal paradigm. In such a context, it is possible to
distinguish the prevalence of either the corpuscle character, or of the wave character,
in any experiment which implies microparticles.

Keywords: fractal object, scales space, Schrodinger representation, hydrodynamic
representation, Airy function

1. Introduction

Regular models used to describe physical system dynamics are functional:

1) models developed on spaces with integer dimension -
differentiable models (for example Classical Mechanics, Quantum
Mechanics, etc.) [1-3];

i) models developed on spaces with non—integer dimensions, which
are explicitly written through fractional derivatives [4, 5] — non-
differentiable models (for example fractal models).
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Expanding on both types of models, new developments have been made.
These are based on Scale Relativity Theory, either in the monofractal dynamics as
in the case of Nottale [6] in fractal dimension D=2, or in the multifractal dynamics
as in the case of the Fractal Theory of Motion [7-17].

Regardless of the type of model in discussion, the fundamental hypothesis
is the following: supposing that any physical system was assimilated both
structurally and functionally to a fractal object, said dynamics can be described
through motions of any physical system entity, dependent on the chosen scale
resolution, on continuous and non — differentiable curves (fractal curves).

All these considerations imply that, in the description of any physical
system dynamics, instead of “working” with a single variable (regardless of its
nature, i.e., velocity, density, etc.) described by a strict non — differentiable
function, it is possible to “work” only with approximations of this mathematical
function, obtained by averaging them on different scale resolutions. As a
consequence, any variable purposed to describe any physical system dynamics will
perform as the limit of a family of mathematical functions, this being non —
differentiable for null scale resolutions and differentiable otherwise [6-8]. To put it
differently, from a mathematical point of view, these variables could be explained
through fractal functions, i.e. functions dependent not only on spatial and temporal
coordinates, but also on the scale resolution.

All of the above specify the fact that any description of the physical system
dynamics requires simultaneous dynamics descriptions, in the framework of the
Scale Relativity Theory, on two manifolds: one on the usual space and the other
one on the scales space. Thus, the fundamental assumption of the present proposed
model is the one that the dynamics of any entity of the physical system will be
described by continuous but non — differentiable motion curves (fractal motion
curves), but only on the scale space, as the “classic” usual space models being
commonly employed and generally well-known.

2. Mathematical Model

2.1 “Holographic implementations” of physical system dynamics on
the scales space. A short reminder

Let it be considered a fractal function F (x) where x € [a, b]. With the help
of this function, it is possible to describe any physical system dynamics. In such a
context, let the sequences of values for x be:
Xq = X0, X1 = Xg + & e, X = Xo + ke, ..., Xy = X9 + 1€ = X (1)

This sequence will correspond to F(x, €) as the broken line that connects
the points:
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F(xg), .., F(xg), ..., F(x) 2

The so-called broken line can be defined as an e-scale approximation of
F(x),i.e F(x,¢).

In the same context, let another scale be considered with its &-scale
approximation of F(x, £). Since F(x) is a fractal function, it is self-similar almost
everywhere, thus it can be translated into a property of holography (every part
reflects the whole and vice versa) [6, 18-20]. To put it differently, the topic of
“holographic implementations” of the physical system dynamics in the scale space
becomes operational too. Let it be noted that the same result can be obtained if €
and € are sufficiently small. Now, comparing the two approximations (& and €), an
infinitesimal increase/decrease de of & corresponds to an infinitesimal
increase/decrease d¢ of €. Consequently:

de dé&

e 3)

In this approach, the scale transition from € + de to de must be invariant. It
results,

' =¢e+de=¢e+edu 4)
Introducing (4) for the fractal function F (x, €), it results that:
F(x,&") = F(x, e + edu) (5)
From here, in a first approximation,
JoF
Flre) =F(ue) +5-(e' —¢) (6)
which implies:
oF
F(x,&") =F(x,¢) +$£du (7
Let it be observed that for an arbitrary, but fixed &, there will be:
€
aln(g—o) _0(lne —1Ingy) _1 (8)
de de e
As such, (6) can be written as:
, OF (x, €)
F(x,£)=F(x,£)+—gdu 9)
oln(£)
0

In the end,
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0
F(x,&') = 1+——~du F(x,¢) (10)
d1n (%)
so that the operator:
—~ 0
o (d) (1)
nig

acts as a dilation/contraction operator, depending on the given process [21]. Thus,
the invariance of equations that describe any physical system dynamics in the scales
space is explicitly expressed, irrespective if one of these equations is changed if the
operator is applied, while specifying that the intrinsic variation of the resolution is
In(e/¢p).

As a conclusion, in the scales space, any physical system dynamics can be
described by means of two fundamental variables: first being logarithms of
resolutions and the second one, the scale time.

Considering all of the above, since the scale space is now generalized to a
non-differentiable and fractal geometry, the various elements of the new description
also can be used [6]:

1) Infinity of trajectories, leading to the introduction of a scale
velocity field V = V(In L(7), ), where L is the non-differential
space scale coordinate, and 7 is the time scale coordinate;

i1) Decomposition of the derivative of the fractal space scale
coordinate in terms of a “classical part” and a “fractal part”,
described by a stochastic variable as in the case of the usual space
such that

(dé2) = 2D,dr (12)

In (12), Ds is a constant coefficient assimilated to fractal-
nonfractal transition in the scales space and &, is the fractal part of
the differential spatial coordinate in the scales space;

i) Introduction of the two-valuedness of this derivative because of
the symmetry breaking of the reflection invariance under the
exchange dr < —dr, leading to construct a complex scale
velocity V based on this two-valuedness;

v) Construction of a new total covariant derivative with respect to the
T which can be written

o _ 0 92
=—+V

d
<4 ¢ _ip L 13
ot Vamz P amo? (13)
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V) Introduction of a wave function as a re-expression of the action,
which is now complex
Y.(InL) = exp(iS,/2D;) (14)

In (14), W, represents the state function in the scale space, and S,
is the action in the scales space;

vi) Transformation and integration of the free Newtonian scale-
dynamics equation

d*InL
=0 15
= (15)
under the form of a Schrédinger type equation now acting on scale
variables:
%Y, ¥,
0z 22y ip, g (16)

@mo)? TP e

2.2 Solutions of one-dimensional Schriodinger equations of fractal
type in scales space

The solution of the one-dimensional Schrodinger equation of fractal type in
the compact form, in the scales space, (i.e. a generalisation of (16) for an arbitrary
fractal dimension)

120, 0% W (xg, ts) + ips0p W(xs, ts) = 0, (17)
can be written in the form

W(xs, ts) = \/it—sexp (i X ),

4usts

L (18)

s = Dg[(dD)]”F , x3=1InL, ts =1
and is defined, of course, up to an arbitrary multiplicative constant. In the above
relations, and also in the following ones, the indexation with “s” defines the
variables and parameters of dynamics in the scales space, dt is the scale resolution
and Dy is the fractal dimension.

As such, the general solution of equation (17) can be written as a linear
superposition of the form:

1 T s Js 2
Wl t) = 7= | uten [l(xw—f)] dys (19)
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Now, if u(ys) is an Airy function of fractal type, then W(x;, t,) retains this
property, in the sense that its amplitude is an Airy function of fractal type. Indeed,
in this case there will be:

17 E
u(ys) = Ai(ys) = % f exp li (% + ws)’s)l dws (20)

in such a way as the state function (29) will be written in the form:

Wlr ) = — T {-[—“’3+
Xsyls) = expii WsYs
. [t 3
us_oo (21)

ys) l}
dy.dw
4#5 YS S

If, at first, the integration will be carried out after y;, up to a multiplicative
constant, the results is:

w?
LIJ(xS) S) Py f exp[ < 3 + wa u5t5w3>l dws (22)
The final result is obtained based on a special relation developed in [21] and
itis:
; 24 2 2 5 2
W(x,, ts) = [Ai(ksxs — vi2ts?)]exp |ivgts | ksxs — 3V ts (23)
with
Vs = kszus (24)
In these conditions, if W is chosen in the form:
W(xs, ts) = Alxs, ts)exp [id(xs, t,)] (25)

where A(x,, t;) is an amplitude and ®(xg, t,) is a phase, by identifying in (23) the
amplitude and the phase, there will be:

A(xg, tg) = Ai(kgxs — viitg?), (26)

BCxe t) = viti (ks xs—gvszt ?) 27)

Taking into account the asymptotic behavior of the function Ai(z) in its
general form:
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1 2
iz zg Ytexp (—5253/2), Zg = +00
Ai(z5)~4 ] (28)
g (P 32 L T
stz sin (S22 4 D),z oo
the state (25) with (26), (27) function in the asymptotic limit ¥ — ¥, becomes:
2 3
( _§(ksxs - Vsztsz)i
27_[—1/2 (ksxs - Vsztsz)_1/4exp . 2
+ivgts (ksxs — §v52t52)
W~ | ) s (29)
1 [glksxs _Vsztszlz +Z
—77 lksxs = V2t 2|74 sin 5 :
\ T exp [ivsts (ksxs — §v52t52)]

3. Results and Discussion

In Figure 1 it is represented the 3D and contour plot representation of the
wave function as defined through (25). It can be observed that the wave function
can be influenced by a wide series of factors, including time. For relative low values
of the control parameters (¢, v, k) the function follows closely the Airy type
representation which is dominant in the (25). When the system evolved at longer
moment of time, we observe a self-modulation of the system and a change in
frequency as both time and spatial coordinate are varied. The modulation appears
on the temporal axis and defines a complex behavior on the spatial coordinate.

This means that, by simply selecting the appropriate scale (defined by:
z,t,v,k), one can better investigate particular dynamics of the system. The self-
modulation is better seen when the properties of the wave are modified (through k)
where it is possible to see that for k= 6, v =3 and ¢ =1, the wave-function defined
wave like structure in the scales space coordinate while in time it complicates
features with multiple oscillation frequencies. This means that by tailoring the
resolution scale at which a system is investigated it is possible to transition from a
time or space modulated structure which characterizes particular phenomena.
Further understanding of the space-time modulation of the wave function could
become important when investigating transient phenomena like laser produced
plasma, or complex fluid flows where often the there are reports of temporal
analysis for a fixed spatial volume or spatial analysis for a fixed moment of time
[22-25].
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Fig. 1. 3D and contour plot representation of the wave function given through (25)

By substituting (25) in (17), by means of direct calculation, the following

relation is checked:
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i0p W + pg0, 0¥
. 0,04A
= —|0¢,@ + us(0;,0)" — s " (30)

i
+o [0, A + 2u50, (A29% )]

Now, the “specific constraints” necessary for W to be a solution of the non-
stationary differential equation (30) will be reducible to the differential equations:

' a,salsA
ats¢ + ﬂs(als¢a S¢) = Us A

0p A% + 2us(A%0,4) =0

€19

The first of these equations is the Hamilton — Jacobi equation of fractal type,
while the second equation is the continuity equation of fractal type. From here, the
correspondence with the hydrodynamic model of fractal type pertaining to Scale
Relativity [6-8], becomes evident based on the substitutions:

Vyo = psdse, p = A2 (32)
where VDiS is the differential component of the velocity field and p is the density of
states. The conservation law of fractal type of the specific momentum can be found:

Oe Ve + Vysd, Vs = —0%Q (33)
and respectively, the conservation law of the density of states of fractal type:
de,p + 0%(pV,°) = 0 (34)
The specific potential of fractal type:

,0,0%\[p

Q=—U"—F=— (35)

N7

through the induced specific force of fractal type:

becomes a measure of the fractal degree pertaining to the motion curves. In such a
motion, the “specific constraints” (31) are also checked in detail, with a specific
potential of a fractal type:

Q(xS) tS) = MSVS(kaS - VSZtSZ) (37)

fls=-0%Q = —Mszais( (36)
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suppressing, in the Scale Relativity sense, dynamics with a constant force of fractal
type.

As such, the non-stationary Schrédinger equation of fractal type in the
scales space, in its “universal” instance given through (17), can lead to a wide range
of interpretation. The “fractal object”/particle is in a uniformly accelerated motion
of a fractal type (see both the argument of the Airy function of fractal type, as well
as the expression of the specific potential of fractal type). This, evidently, holds
with the condition of accepting the functionality of the de Broglie theory of fractal
type, linked to “wave phenomena named fractal object”. The generation of
probability densities is given by the square of the Airy function of fractal type. As
this cannot be integrated on the entire real straight line, the state/wave package of
fractal type can have a center which is achievable in the sense of de Broglie theory
of fractal type. Then, the state/wave package of fractal type represents an ensemble
of fractal objects/particles which all have a uniform rectilinear motion, but each
with a different velocity, and the argument of the Airy function of fractal type
represents a caustic in the dynamics space (the envelope of the ensemble of
geodesics which represents the corresponding trajectories). Such an interpretation
is linked with the nature of the invention of the Airy function: the behavior of light
in the proximity of caustics. The functionality of an equivalence principle of fractal
type, which implies the fact that the Airy state/wave package of fractal type will not
scatter, because it represents a fractal object/particle in an enclosure analogous to
Einstein’s Elevator, the uniform field of gravitational forces being thus suppressed.

4. Conclusions

The conclusions of the present paper are the following:

1) A short round-up of the main results of the Scale Relativity Theory
on the scales space was presented. In such a context, it was shown
that the dynamics of any physical system can be described through
a fractal-type Schrodinger equation, i.e. a Schrodinger equation in
space-time scale coordinates, at various fractal degrees;

i1) For the one-dimensional case of a fractal-type Schrodinger
equation in the space scale, an Airy solution of fractal type was
obtained;

111) A link between the fractal-type Schrodinger model and fractal-

type hydrodynamic model was established. In such a context, the
existence of the Airy solution of fractal-type for a fractal-type
Schrédinger equation, allowed the explaining of the scalar
potential of fractal type;

iv) Several interpretations of the obtained results were given, in terms
of the presented solution, which highlights the non-linear
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behaviors of the wave/corpuscle duality. In such a conjecture, it is
possible to distinguish the prevalence of either the corpuscle
character, or of the wave character, in any experiment which
implies microparticles.
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