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NON-LINEAR BEHAVIORS OF AIRY TYPE ON SCALES 
SPACE FROM A FRACTAL PERSPECTIVE 

Mihail FRASILA1, Maria-Alexandra PAUN2,3, Catalin DUMITRAS4,  
Tudor-Cristian PETRESCU5, Vladimir-Alexandru PAUN6, Viorel-Puiu PAUN7,8, Maricel 

AGOP8,9 

Several non-linear behaviors in scales space, in the framework of Scale 
Relativity Theory, are highlighted. All these are possible through the employment of 
fractal-type Airy functions, which allow a revaluation of the wave/corpuscle duality, 
from the perspective of a fractal paradigm. In such a context, it is possible to 
distinguish the prevalence of either the corpuscle character, or of the wave character, 
in any experiment which implies microparticles.  

 
Keywords: fractal object, scales space, Schrödinger representation, hydrodynamic 

representation, Airy function 

1. Introduction 

Regular models used to describe physical system dynamics are functional:  
i) models developed on spaces with integer dimension – 

differentiable models (for example Classical Mechanics, Quantum 
Mechanics, etc.) [1-3];  

ii) models developed on spaces with non–integer dimensions, which 
are explicitly written through fractional derivatives [4, 5] – non-
differentiable models (for example fractal models).  
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Expanding on both types of models, new developments have been made. 
These are based on Scale Relativity Theory, either in the monofractal dynamics as 
in the case of Nottale [6] in fractal dimension Df=2, or in the multifractal dynamics 
as in the case of the Fractal Theory of Motion [7-17]. 

Regardless of the type of model in discussion, the fundamental hypothesis 
is the following: supposing that any physical system was assimilated both 
structurally and functionally to a fractal object, said dynamics can be described 
through motions of any physical system entity, dependent on the chosen scale 
resolution, on continuous and non – differentiable curves (fractal curves).  

All these considerations imply that, in the description of any physical 
system dynamics, instead of “working” with a single variable (regardless of its 
nature, i.e., velocity, density, etc.) described by a strict non – differentiable 
function, it is possible to “work” only with approximations of this mathematical 
function, obtained by averaging them on different scale resolutions. As a 
consequence, any variable purposed to describe any physical system dynamics will 
perform as the limit of a family of mathematical functions, this being non – 
differentiable for null scale resolutions and differentiable otherwise [6-8]. To put it 
differently, from a mathematical point of view, these variables could be explained 
through fractal functions, i.e. functions dependent not only on spatial and temporal 
coordinates, but also on the scale resolution.  

All of the above specify the fact that any description of the physical system 
dynamics requires simultaneous dynamics descriptions, in the framework of the 
Scale Relativity Theory, on two manifolds: one on the usual space and the other 
one on the scales space. Thus, the fundamental assumption of the present proposed 
model is the one that the dynamics of any entity of the physical system will be 
described by continuous but non – differentiable motion curves (fractal motion 
curves), but only on the scale space, as the “classic” usual space models being 
commonly employed and generally well-known. 

2. Mathematical Model 

2.1 “Holographic implementations” of physical system dynamics on 
the scales space. A short reminder 

 
Let it be considered a fractal function 𝐹𝐹(𝑥𝑥) where 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. With the help 

of this function, it is possible to describe any physical system dynamics. In such a 
context, let the sequences of values for 𝑥𝑥 be: 

𝑥𝑥𝑎𝑎 = 𝑥𝑥0, 𝑥𝑥1 = 𝑥𝑥0 + 𝜀𝜀, … , 𝑥𝑥𝑘𝑘 = 𝑥𝑥0 + 𝑘𝑘𝑘𝑘, … , 𝑥𝑥𝑛𝑛 = 𝑥𝑥0 + 𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑏𝑏 (1) 

This sequence will correspond to 𝐹𝐹(𝑥𝑥, 𝜀𝜀) as the broken line that connects 
the points: 
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𝐹𝐹(𝑥𝑥0), … ,𝐹𝐹(𝑥𝑥𝑘𝑘), … ,𝐹𝐹(𝑥𝑥𝑛𝑛) (2) 

The so-called broken line can be defined as an 𝜀𝜀-scale approximation of 
𝐹𝐹(𝑥𝑥), i.e 𝐹𝐹(𝑥𝑥, 𝜀𝜀). 

In the same context, let another scale be considered with its 𝜀𝜀-̅scale 
approximation of 𝐹𝐹(𝑥𝑥, 𝜀𝜀)̅. Since 𝐹𝐹(𝑥𝑥) is a fractal function, it is self-similar almost 
everywhere, thus it can be translated into a property of holography (every part 
reflects the whole and vice versa) [6, 18-20]. To put it differently, the topic of 
“holographic implementations” of the physical system dynamics in the scale space 
becomes operational too. Let it be noted that the same result can be obtained if 𝜀𝜀 
and 𝜀𝜀 ̅are sufficiently small. Now, comparing the two approximations (𝜀𝜀 and 𝜀𝜀)̅, an 
infinitesimal increase/decrease 𝑑𝑑𝑑𝑑 of 𝜀𝜀 corresponds to an infinitesimal 
increase/decrease 𝑑𝑑𝜀𝜀 ̅of 𝜀𝜀.̅ Consequently: 

𝑑𝑑𝑑𝑑
𝜀𝜀

=
𝑑𝑑𝜀𝜀̅
𝜀𝜀 ̅

= 𝑑𝑑𝑑𝑑 (3) 

In this approach, the scale transition from 𝜀𝜀 + 𝑑𝑑𝑑𝑑 to 𝑑𝑑𝑑𝑑 must be invariant. It 
results, 

𝜀𝜀′ = 𝜀𝜀 + 𝑑𝑑𝑑𝑑 = 𝜀𝜀 + 𝜀𝜀𝜀𝜀𝜀𝜀 (4) 

Introducing (4) for the fractal function 𝐹𝐹(𝑥𝑥, 𝜀𝜀), it results that: 

𝐹𝐹(𝑥𝑥, 𝜀𝜀′) = 𝐹𝐹(𝑥𝑥, 𝜀𝜀 + 𝜀𝜀𝜀𝜀𝜀𝜀) (5) 

From here, in a first approximation, 

𝐹𝐹(𝑥𝑥, 𝜀𝜀′) = 𝐹𝐹(𝑥𝑥, 𝜀𝜀) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜀𝜀′ − 𝜀𝜀) (6) 

which implies: 

𝐹𝐹(𝑥𝑥, 𝜀𝜀′) = 𝐹𝐹(𝑥𝑥, 𝜀𝜀) +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜀𝜀𝜀𝜀𝜀𝜀 (7) 

Let it be observed that for an arbitrary, but fixed 𝜀𝜀0, there will be: 

𝜕𝜕 ln � 𝜀𝜀𝜀𝜀0
�

𝜕𝜕𝜕𝜕
=
𝜕𝜕(ln 𝜀𝜀 − ln 𝜀𝜀0)

𝜕𝜕𝜕𝜕
=

1
𝜀𝜀

 (8) 

As such, (6) can be written as: 

𝐹𝐹(𝑥𝑥, 𝜀𝜀′) = 𝐹𝐹(𝑥𝑥, 𝜀𝜀) +
𝜕𝜕𝜕𝜕(𝑥𝑥, 𝜀𝜀)

𝜕𝜕 ln � 𝜀𝜀𝜀𝜀0
�
𝑑𝑑𝑑𝑑 (9) 

In the end, 
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𝐹𝐹(𝑥𝑥, 𝜀𝜀′) = �1 +
𝜕𝜕

𝜕𝜕 ln � 𝜀𝜀𝜀𝜀0
�
𝑑𝑑𝑑𝑑�𝐹𝐹(𝑥𝑥, 𝜀𝜀) (10) 

so that the operator: 

𝐷𝐷� =
𝜕𝜕

𝜕𝜕 ln � 𝜀𝜀𝜀𝜀0
�
 (11) 

acts as a dilation/contraction operator, depending on the given process [21]. Thus, 
the invariance of equations that describe any physical system dynamics in the scales 
space is explicitly expressed, irrespective if one of these equations is changed if the 
operator is applied, while specifying that the intrinsic variation of the resolution is 
ln(𝜀𝜀/𝜀𝜀0). 

As a conclusion, in the scales space, any physical system dynamics can be 
described by means of two fundamental variables: first being logarithms of 
resolutions and the second one, the scale time. 

Considering all of the above, since the scale space is now generalized to a 
non-differentiable and fractal geometry, the various elements of the new description 
also can be used [6]: 

i) Infinity of trajectories, leading to the introduction of a scale 
velocity field 𝕍𝕍 = 𝕍𝕍(lnℒ(𝜏𝜏), 𝜏𝜏), where ℒ is the non-differential 
space scale coordinate, and 𝜏𝜏 is the time scale coordinate; 

ii) Decomposition of the derivative of the fractal space scale 
coordinate in terms of a “classical part” and a “fractal part”, 
described by a stochastic variable as in the case of the usual space 
such that   

〈𝑑𝑑𝜉𝜉𝑠𝑠2〉 = 2𝒟𝒟𝑠𝑠𝑑𝑑𝑑𝑑 (12) 

In (12), 𝒟𝒟𝑠𝑠 is a constant coefficient assimilated to fractal-
nonfractal transition in the scales space and 𝜉𝜉𝑠𝑠 is the fractal part of 
the differential spatial coordinate in the scales space; 

iii) Introduction of the two-valuedness of this derivative because of 
the symmetry breaking of the reflection invariance under the 
exchange 𝑑𝑑𝑑𝑑 ↔ −𝑑𝑑𝑑𝑑, leading to construct a complex scale 
velocity 𝕍𝕍� based on this two-valuedness; 

iv) Construction of a new total covariant derivative with respect to the 
𝜏𝜏 which can be written  

𝑑̂𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕
𝜕𝜕𝜏𝜏

+ 𝕍𝕍�
𝜕𝜕

𝜕𝜕 lnℒ
− 𝑖𝑖𝒟𝒟𝑠𝑠

𝜕𝜕2

(𝜕𝜕 lnℒ)2 (13) 
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v) Introduction of a wave function as a re-expression of the action, 
which is now complex  

Ψ𝑠𝑠(lnℒ) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖𝑆𝑆𝑠𝑠/2𝒟𝒟𝑠𝑠) (14) 

In (14), Ψ𝑠𝑠 represents the state function in the scale space, and 𝑆𝑆𝑠𝑠 
is the action in the scales space; 

vi) Transformation and integration of the free Newtonian scale-
dynamics equation  

𝑑𝑑2 lnℒ
𝑑𝑑𝑑𝑑2

= 0 (15) 

under the form of a Schrödinger type equation now acting on scale 
variables: 

𝒟𝒟𝑠𝑠
2 𝜕𝜕2Ψ𝑠𝑠

(𝜕𝜕 lnℒ)2 + 𝑖𝑖𝒟𝒟𝑠𝑠
𝜕𝜕Ψ𝑠𝑠
𝜕𝜕𝜕𝜕

= 0 (16) 

 
2.2 Solutions of one-dimensional Schrödinger equations of fractal 

type in scales space 

The solution of the one-dimensional Schrödinger equation of fractal type in 
the compact form, in the scales space, (i.e. a generalisation of (16) for an arbitrary 
fractal dimension) 

𝜇𝜇𝑠𝑠2𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕
𝑙𝑙𝑠𝑠Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) + 𝑖𝑖𝜇𝜇𝑠𝑠𝜕𝜕𝑡𝑡𝑠𝑠Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 0, (17) 

can be written in the form 
Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 1

�𝑡𝑡𝑠𝑠
exp �𝑖𝑖 𝑥𝑥𝑠𝑠2

4𝜇𝜇𝑠𝑠𝑡𝑡𝑠𝑠
�,      

      𝜇𝜇𝑠𝑠 = 𝒟𝒟𝑠𝑠[(𝑑𝑑𝑑𝑑)]
2
𝐷𝐷𝑓𝑓
−1

,     𝑥𝑥𝑠𝑠 = lnℒ ,        𝑡𝑡𝑠𝑠 = 𝜏𝜏 
(18) 

and is defined, of course, up to an arbitrary multiplicative constant. In the above 
relations, and also in the following ones, the indexation with “s” defines the 
variables and parameters of dynamics in the scales space, 𝑑𝑑𝑑𝑑 is the scale resolution 
and 𝐷𝐷𝑓𝑓 is the fractal dimension. 

As such, the general solution of equation (17) can be written as a linear 
superposition of the form: 

Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) =
1
�𝑡𝑡𝑠𝑠

� 𝑢𝑢(𝑦𝑦𝑠𝑠)𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖
(𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑠𝑠)2

4𝜇𝜇𝑠𝑠𝑡𝑡𝑠𝑠
� 𝑑𝑑𝑦𝑦𝑠𝑠

+∞

−∞

 (19) 
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Now, if 𝑢𝑢(𝑦𝑦𝑠𝑠) is an Airy function of fractal type, then Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) retains this 
property, in the sense that its amplitude is an Airy function of fractal type. Indeed, 
in this case there will be:  

𝑢𝑢(𝑦𝑦𝑠𝑠) ≡ 𝐴𝐴𝐴𝐴(𝑦𝑦𝑠𝑠) =
1

2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖 �

𝜔𝜔𝑠𝑠3

3
+ 𝜔𝜔𝑠𝑠𝑦𝑦𝑠𝑠�� 𝑑𝑑𝜔𝜔𝑠𝑠

+∞

−∞

 (20) 

in such a way as the state function (29) will be written in the form: 

Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) =
1

2𝜋𝜋�𝑡𝑡𝑢𝑢,𝑠𝑠
� 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖 �

𝜔𝜔𝑠𝑠3

3
+ 𝜔𝜔𝑠𝑠𝑦𝑦𝑠𝑠

+∞

−∞

+
(𝑥𝑥𝑠𝑠 − 𝑦𝑦𝑠𝑠)2

4𝜇𝜇𝑠𝑠𝑡𝑡𝑠𝑠
�� 𝑑𝑑𝑦𝑦𝑠𝑠𝑑𝑑𝜔𝜔𝑠𝑠 

(21) 

If, at first, the integration will be carried out after 𝑦𝑦𝑠𝑠, up to a multiplicative 
constant, the results is: 

Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) =
1

2𝜋𝜋
� 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖 �

𝜔𝜔𝑠𝑠3

3
+ 𝜔𝜔𝑥𝑥𝑠𝑠 − 𝜇𝜇𝑠𝑠𝑡𝑡𝑠𝑠𝜔𝜔𝑠𝑠2�� 𝑑𝑑𝜔𝜔𝑠𝑠

+∞

−∞

 (22) 

The final result is obtained based on a special relation developed in [21] and 
it is: 

Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = [𝐴𝐴𝐴𝐴(𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2)]𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠 �𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 −
2
3
𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2�� (23) 

with 

𝜈𝜈𝑠𝑠 = 𝑘𝑘𝑠𝑠
2𝜇𝜇𝑠𝑠 (24) 

In these conditions, if  Ψ is chosen in the form: 

Ψ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 𝐴𝐴(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠)exp [𝑖𝑖𝑖𝑖(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠)] (25) 

where 𝐴𝐴(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) is an amplitude and Φ(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) is a phase, by identifying in (23) the 
amplitude and the phase, there will be: 

𝐴𝐴(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 𝐴𝐴𝐴𝐴(𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2),   (26) 

 

𝜙𝜙(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠 �𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 −
2
3
𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2� (27) 

Taking into account the asymptotic behavior of the function 𝐴𝐴𝐴𝐴(𝑧𝑧) in its 
general form: 
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𝐴𝐴𝐴𝐴(𝑧𝑧𝑠𝑠)~�

1
2𝜋𝜋1/2 𝑧𝑧𝑠𝑠

−1/4𝑒𝑒𝑒𝑒𝑒𝑒 �−
2
3
𝑧𝑧𝑠𝑠3/2� ,                        𝑧𝑧𝑠𝑠 → +∞

 
1

𝜋𝜋1/2 |𝑧𝑧𝑠𝑠|−1/4 sin �
2
3

|𝑧𝑧𝑠𝑠|3/2 +
𝜋𝜋
4
� ,                 𝑧𝑧𝑠𝑠 → −∞

 (28) 

the state (25) with (26), (27) function in the asymptotic limit Ψ → Ψ𝐴𝐴 becomes: 

Ψ𝐴𝐴~

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 1

2𝜋𝜋1/2 (𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2)−1/4𝑒𝑒𝑒𝑒𝑒𝑒 �
−

2
3

(𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2)
3
2

+𝑖𝑖𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠 �𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 −
2
3
𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2�

�         

1
𝜋𝜋1/2 |𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2|−1/4 sin

�
2
3

|𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2|
3
2 +

𝜋𝜋
4
�

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖𝜈𝜈𝑠𝑠𝑡𝑡𝑠𝑠 �𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 −
2
3
𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2��

 (29) 

3. Results and Discussion 

In Figure 1 it is represented the 3D and contour plot representation of the 
wave function as defined through (25). It can be observed that the wave function 
can be influenced by a wide series of factors, including time. For relative low values 
of the control parameters (t, v, k) the function follows closely the Airy type 
representation which is dominant in the (25). When the system evolved at longer 
moment of time, we observe a self-modulation of the system and a change in 
frequency as both time and spatial coordinate are varied.  The modulation appears 
on the temporal axis and defines a complex behavior on the spatial coordinate. 

This means that, by simply selecting the appropriate scale (defined by: 
z,t,v,k), one can better investigate particular dynamics of the system. The self-
modulation is better seen when the properties of the wave are modified (through k) 
where it is possible to see that for k = 6, v = 3 and t =1, the wave-function defined 
wave like structure in the scales space coordinate while in time it complicates 
features with multiple oscillation frequencies. This means that by tailoring the 
resolution scale at which a system is investigated it is possible to transition from a 
time or space modulated structure which characterizes particular phenomena. 
Further understanding of the space-time modulation of the wave function could 
become important when investigating transient phenomena like laser produced 
plasma, or complex fluid flows where often the there are reports of temporal 
analysis for a fixed spatial volume or spatial analysis for a fixed moment of time 
[22-25].  
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Fig. 1. 3D and contour plot representation of the wave function given through (25) 
 
By substituting (25) in (17), by means of direct calculation, the following 

relation is checked: 
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𝑖𝑖𝜕𝜕𝑡𝑡𝑠𝑠Ψ + 𝜇𝜇𝑠𝑠𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕
𝑙𝑙𝑠𝑠Ψ

= − �𝜕𝜕𝑡𝑡𝑠𝑠𝜙𝜙 + 𝜇𝜇𝑠𝑠(𝜕𝜕𝑙𝑙𝑠𝑠𝜙𝜙)2 − 𝜇𝜇𝑠𝑠
𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕

𝑙𝑙𝑠𝑠A
𝐴𝐴

�

+
𝑖𝑖

2𝐴𝐴2
�𝜕𝜕𝑡𝑡𝑠𝑠𝐴𝐴

2 + 2𝜇𝜇𝑠𝑠𝜕𝜕𝑙𝑙𝑠𝑠(𝐴𝐴
2𝜕𝜕𝑙𝑙𝑠𝑠𝜙𝜙)� 

(30) 

Now, the “specific constraints” necessary for Ψ to be a solution of the non-
stationary differential equation (30) will be reducible to the differential equations: 

𝜕𝜕𝑡𝑡𝑠𝑠𝜙𝜙 + 𝜇𝜇𝑠𝑠�𝜕𝜕𝑙𝑙𝑠𝑠𝜙𝜙𝜕𝜕
𝑙𝑙𝑠𝑠𝜙𝜙� = 𝜇𝜇𝑠𝑠

𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕
𝑙𝑙𝑠𝑠𝐴𝐴
𝐴𝐴

 

𝜕𝜕𝑡𝑡𝑠𝑠𝐴𝐴
2 + 2𝜇𝜇𝑠𝑠�𝐴𝐴2𝜕𝜕𝑙𝑙𝑠𝑠𝜙𝜙� = 0 

(31) 

The first of these equations is the Hamilton – Jacobi equation of fractal type, 
while the second equation is the continuity equation of fractal type. From here, the 
correspondence with the hydrodynamic model of fractal type pertaining to Scale 
Relativity [6-8], becomes evident based on the substitutions: 

𝑉𝑉𝐷𝐷
𝑖𝑖𝑠𝑠 = 𝜇𝜇𝑠𝑠𝜕𝜕𝑖𝑖𝑠𝑠𝜙𝜙,   𝜌𝜌 = 𝐴𝐴2 (32) 

where 𝑉𝑉𝐷𝐷
𝑖𝑖𝑠𝑠 is the differential component of the velocity field and 𝜌𝜌 is the density of 

states. The conservation law of fractal type of the specific momentum can be found:   

𝜕𝜕𝑡𝑡𝑠𝑠𝑉𝑉𝐷𝐷
𝑖𝑖𝑠𝑠 + 𝑉𝑉𝐷𝐷

𝑙𝑙𝑠𝑠𝜕𝜕𝑙𝑙𝑠𝑠𝑉𝑉𝐷𝐷
𝑖𝑖𝑠𝑠 = −𝜕𝜕𝑖𝑖𝑠𝑠𝑄𝑄 (33) 

and respectively, the conservation law of the density of states of fractal type:  

𝜕𝜕𝑡𝑡𝑠𝑠𝜌𝜌 + 𝜕𝜕𝑙𝑙𝑠𝑠�𝜌𝜌𝑉𝑉𝐷𝐷
𝑙𝑙𝑠𝑠� = 0 (34) 

The specific potential of fractal type: 

𝑄𝑄 = −𝜇𝜇𝑠𝑠2
𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕

𝑙𝑙𝑠𝑠�𝜌𝜌

�𝜌𝜌
 (35) 

through the induced specific force of fractal type: 

𝑓𝑓𝑖𝑖𝑠𝑠 = −𝜕𝜕𝑖𝑖𝑠𝑠𝑄𝑄 = −𝜇𝜇𝑠𝑠2𝜕𝜕𝑖𝑖𝑠𝑠 �
𝜕𝜕𝑙𝑙𝑠𝑠𝜕𝜕

𝑙𝑙𝑠𝑠�𝜌𝜌

�𝜌𝜌
� (36) 

becomes a measure of the fractal degree pertaining to the motion curves. In such a 
motion, the “specific constraints” (31) are also checked in detail, with a specific 
potential of a fractal type:  

𝑄𝑄(𝑥𝑥𝑠𝑠, 𝑡𝑡𝑠𝑠) = 𝜇𝜇𝑠𝑠𝜈𝜈𝑠𝑠(𝑘𝑘𝑠𝑠𝑥𝑥𝑠𝑠 − 𝜈𝜈𝑠𝑠2𝑡𝑡𝑠𝑠2) (37) 
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suppressing, in the Scale Relativity sense, dynamics with a constant force of fractal 
type. 

As such, the non-stationary Schrödinger equation of fractal type in the 
scales space, in its “universal” instance given through (17), can lead to a wide range 
of interpretation. The “fractal object”/particle is in a uniformly accelerated motion 
of a fractal type (see both the argument of the Airy function of fractal type, as well 
as the expression of the specific potential of fractal type). This, evidently, holds 
with the condition of accepting the functionality of the de Broglie theory of fractal 
type, linked to “wave phenomena named fractal object”. The generation of 
probability densities is given by the square of the Airy function of fractal type. As 
this cannot be integrated on the entire real straight line, the state/wave package of 
fractal type can have a center which is achievable in the sense of de Broglie theory 
of fractal type. Then, the state/wave package of fractal type represents an ensemble 
of fractal objects/particles which all have a uniform rectilinear motion, but each 
with a different velocity, and the argument of the Airy function of fractal type 
represents a caustic in the dynamics space (the envelope of the ensemble of 
geodesics which represents the corresponding trajectories). Such an interpretation 
is linked with the nature of the invention of the Airy function: the behavior of light 
in the proximity of caustics. The functionality of an equivalence principle of fractal 
type, which implies the fact that the Airy state/wave package of fractal type will not 
scatter, because it represents a fractal object/particle in an enclosure analogous to 
Einstein’s Elevator, the uniform field of gravitational forces being thus suppressed. 

4. Conclusions 

The conclusions of the present paper are the following: 
i) A short round-up of the main results of the Scale Relativity Theory 

on the scales space was presented. In such a context, it was shown 
that the dynamics of any physical system can be described through 
a fractal-type Schrödinger equation, i.e. a Schrödinger equation in 
space-time scale coordinates, at various fractal degrees; 

ii) For the one-dimensional case of a fractal-type Schrödinger 
equation in the space scale, an Airy solution of fractal type was 
obtained;  

iii) A link between the fractal-type Schrödinger model and fractal-
type hydrodynamic model was established. In such a context, the 
existence of the Airy solution of fractal-type for a fractal-type 
Schrödinger equation, allowed the explaining of the scalar 
potential of fractal type;  

iv) Several interpretations of the obtained results were given, in terms 
of the presented solution, which highlights the non-linear 
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behaviors of the wave/corpuscle duality. In such a conjecture, it is 
possible to distinguish the prevalence of either the corpuscle 
character, or of the wave character, in any experiment which 
implies microparticles.  
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