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COMPUTING TOPOLOGICAL INDICES OF 2-DIMENSIONAL
SILICON-CARBONS

Muhammad NAEEM*!, Muhammad Kamran SIDDIQUI?, Shahid QAISAR?,
Muhammad IMRAN? Muhammad Reza FARAHANI*

The applications of graph theory in chemistry and in the study of
molecule structures are important, and lately, it has increased exponentially.
Molecular graphs have points (vertices) representing atoms (regardless of
type) and lines (edges) that represents chemical bonds (regardless of type)
between atoms. In this article, we study the molecular graph of (2D) silicon-
carbon SigCs-I111 and SiCs-I11. Moreover, we have computed and gave
close formulas of degree based additive topological indices mainly first and
second Zagreb index, general Randié, atom bond connectivity index(ABC),
geometric arithmetic index(GA), fourth atom bond connectivity and fifth
GAindex of SioC3-I11 and SiC3-111.

Keywords: Topological Indices, (2D) silicon-carbon SisCs-I11 and SiCs-
111, ABC, GAindex, General Randié¢ index, ABCy, GAs.
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1. Introduction

A chemical structure can be represented by using graph theory, where
vertices denotes atoms and edges denotes chemical bonds. Molecular descrip-
tors play a significant role in mathematical chemistry especially in QSPR/QSAR
investigations. Among them, special place is reserved for so-called topo-
logical descriptors or topological indices. A topological index is the value
of a specific mathematical function which indicates some useful information
about molecular structure. A benchmark data sets, [5], can be found at
www.moleculardescriptors.eu. This data set contains 16 physicochemical prop-
erties of octanes: boiling point (BP), melting point (MP), heat capacity at
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V' constant (C'V ), heat capacity at P constant (CP), Entropy (.5), density
(DENS), enthalpy of vaporization (HV AP), standard enthalpy of vaporization
(DHV AP), enthalpy of formation (HFORM ), standard enthalpy of formation
(DHFORM ), motor octane number (MON), molar refraction (MR), acentric
factor (AcenF ac), total surface area (TSA), octanolwater partition coefficient
(LogP), and molar volume (MV ). This data contains and compare ABC, GA
index, General Randi¢ index, ABCY, GG As. Researchers have found topological
index to be powerful and useful tool in the description of molecular structure.
Some applications related to topological indices of molecular graphs are given
in [2,7,8,9, 10, 11, 13, 17, 18, 20, 26, 27, 28, 29].

Each structural formulas that incorporate covalent bonded compounds or atoms
are diagrams. Thusly they are called molecular graphs or, basic diagrams or
its better to state constitutional graphs. In chemistry, graph theory gives the
premise to definition, numeration, systematization of the issue close by, it gives
the way toward organizing laws or standards as per a framework or arranging,
terminology, it gives the association between the compounds or atoms, and PC
programming. The significance graph theory for science stands fundamentally
from the presence of isomerism, which is supported by chemical graph theory.
Silicon is a semiconductor material that has many extra edges over other same
type of materials: like, It’s cost is very low, it is nontoxic, in reality its avail-
ability is unlimited, many years of experience in its purification, production
and device manufacturing. Its being utilized almost in all the latest electronic
based devices. One of the most stable structures of two-dimensional (2D)
silicon-carbon single layer compounds having different stoichiometric composi-
tions were concluded in [22] that was based on the particle-swarm optimization
represented by (PSO) technique combined with density functional theory op-
timization. Sheets of graphene were successfully isolated in 2004,[23, 24] and
since then this hexagon(honeycomb) structured 2D material has motivated and
energized research interests chiefly because of the extraordinary electronic, op-
tical properties, and mechanical. Also particularly, the uniquely existing elec-
tronic properties of graphene attract consideration to this 2D material as a
probable candidate for utilization in better and minor electronic devices. To
date, lots of devotion and endeavors has given to open a bandgap in silicene
sheets. The 2D siliconcarbon (Si—C') single layers can be scene as configurable
(or tunable) materials between the pure 2D carbon singlelayer-graphene and
the pure 2D silicon singlelayer-silicene. Lots of attempts have been conducted
trying anticipating the most stable structures of the SiC' sheet for more details
read this [31, 32].

We consider 2D Si — C' compounds with two different types of SiC struc-
ture based on low-energy metastable structures for each Si. The types are
Si9C3-1 and Si2Cs-11 that denotes the lowest-energy and the second lowest
energy structure respectively. More details about the edge and vertex sets
about these molecules graphs are in the next section. We have computed the
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ABC, GAindex, General Randié¢ index, ABCYy, GAs of SisC3-1 and Si,C3-11
molecule graphs.

Consider a chemical graph G = (V, E) with V' the vertex set and E the edge
set of G. The degree (or valency) of vertex p is the number of edges incident
with p and is represented by d,. There are some types of topological indices
namely eccentric based, degree based and distance based indices etc. In this
article, we dealt with degree based topological indices.

One of the earliest degree dependent index was deduced by Milan Randié [25]
in 1975, characterized as:

1
R@= 2, o
pe€B(G) V TP

In 1988, Bollobds et al. [3] and Amic et al. [1] proposed the general Randié
index independently. For more details about Randi¢ index, its properties and
important results [4, 19, 21]. The general Randi¢ index, characterized as:

Ro(G) = Z (dpdy)” (1)
Pe€E(G)

Among degree dependent topological indices, ABC index of vital importance
and introduced by Estrada et al. [6] and characterized as:

ABO(G Z d+d—2 )

pg€E(G

The GAindex GA of a graph G is introduced by Vukicevié et al. [30] and is
defined as
dpdq

dy+d,

GAG) = Y (3)

PgEE(G)
One of the important degree dependent topological index is the first Zagreb
index. It was introduced in 1972 by [16]. Later on, second Zagreb index is

introduced by [15]. Both first and second Zagreb index is formulated as

M (G) = Z (dp + dq)' (4)

pg€E(G)

My (G) = Z (dpdy). (5)
Pe€E(G)

A well known topological index fourth version of ABC ABCy of a graph G is
introduced by Ghorbhani et al. [12] and is defined as

Sp+ S, — 2
apoc) - 3 \[Brh )
peeE(G)
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heI’e Sp - quEE(G) dq, Sq - ZPQEE(G) dp.
Another very famous topological descriptor fifth version of GAindex GAj; of a
graph G is introduced by Graovoc et al [14] and characterized as:

2./5,8,
GAs(G) = > X1
PeeE(G) 5o+ 5

(7)

2. Silicon Carbide SiyCs5-111[n,m] 2D structure

In this section, additive topological indices mainly ABC, GA index,
fourth ABC ABCY, fifth GAindex GAjs, general Randié¢ index, first and sec-
ond Zagreb index of SiyCs-111[n, m| are computed. Moreover, close formulas
are derived which are helpful for the study analysis of properties of molecular
structures of SiyCs-111[n,m].

The 2D molecular graph of Silicon Carbide SisC3-111[n,m] is given in
Fig.1, for more details see [22]. To describe its molecular graph we have used
the settings in this way: we define n as the number of connected unit cells
in a row(chain) and by m we represents the number of connected rows each
with n number of cell. In Fig.2 we gave a demonstration how the cells connect
in a row(chain) and how one row connects to another row. We will denote
this molecular graph by SioCs-I11[n,m]. Thus the number of vertices in this
graph is 10mn and the number of edges are 15mn — 2n — 3m.

In SiyC3 — I1I[m,n], for n,m > 1, we have divided the vertices in three

@ ®)

FIGURE 1. 2D structure of Sio,Cs —I11[n,m|, (a) chemical unit
cell of SiyCs — I11[n,m], (b) SiyCs — I11[5,4]. Carbon atom C
are brown and Silicon atom S% are blue.

sets based on the degree of vertices. The set of vertices degree 1 is denoted
by Vi and it has 2 elements. The set V5 represents the vertices with degree
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LI,

(a)

(b)

FIGURE 2. 2D structure of SiyCs-111[n,m|,(a) Si2Cs-I[5,1],
One row with n = 5 and m = 1, red lines(edges) show the
connection between the unit cell in a chain(b) Si,Cs-111[5,2],
two rows are being connecting. Green lines(edges) connects the
upper and lower rows(chains).

2 and it has 4n + 3m — 1 elements. Similarly, the set of vertices degree 3 is
denoted by V3 and it has 10mn —4n —3m — 1 elements. To find the topological
indices we will partition the edges of SiyCs-111[n,m]|. The edges of SiyCs-
I11[n,m] are divided into four sets based on the degree of end vertices, say
E,, Ey, B3 and Ey. The set E; contains 2 edges pg, where d, = 1, d, = 3.
The set Ey contains 2m + 2 edges pq, where d, = 2 and d, = 2. The set Ej3
contains 8n +8m — 12 edges pq, where d, = 2 and d, = 3. The set Fj contains
15mn — 10n — 13m + 8 edges pq, where d, = d, = 3. The Table 1 shows this
edge partition of SioCs-I11[n,m] for m,n > 1. The Randié¢ index R,(G) of

TABLE 1. Degree based partition of edges of SioCs-I11[n,m] ,
of end vertices of each edge

(d,, d,) Frequency

1,3 2

(2,2)  2m+2

(2,3) 8n+8m—12

(3, 3)  15mn—10n —13m +8

SiyCs-111[n, m] are computed below.
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Theorem 2.1. Consider the graph G = SisCs-I111[n, m] be the graph of Silicon
Carbide, then its general Randié¢ indices are;

135mn — 61m — 42n + 14, if a =1,
Smn m 2n 1 . _
Ra<G): T+1_8+?+1_87 ZfOé——l,
45mn — 35m + v/6(8n + 8m — 12) — 30n + 2v/3 + 28. if a =3,
5mn—w%—m7m+%+w+%§ if a=—1.

Proof. Let G be the graph of SisC3-I11[n,m] . The above result can be proved
by using Table 1 and equation (1), so the general Randié¢ index for o = 1.

RG) = Y (dxd)
PgeE(G)
Ri(G) = (2)(1x3)+ (2m+2)(2 x2) + (8n +8m — 12)(2 x 3)

+ (15mn —10n — 13m + 8)(3 x 3)
Ri(G) = 135mn —61m —42n + 14

For a = —1, the formula of Randi¢ index takes the following form.
RA(0) —
—1 -
e (dp x dy)
R4(G) = (2 ! 2 2 ! 8 8 12 !
_1()—()1—X3+(m+) + (8m + 8n — )2><3

X 2
1

2
+ (15mn —10n — 13m + 8)(3 . 3)

Smn Tm  2n 1
R,(G) = 042 20, —
(@) 5 T8 T 9 T8

For oo = %, the formula of Randi¢ index takes the following form.

R% (G) = Z \/ (dp % dg)
PgcE(G)
Ri(G) = 2)(VIx3)+(2m+2)(v2x2)+ (8n+8m —12)(vV2 x 3)

+ (15mn —10n — 13m + 8)(v/3 x 3)
45mn — 35m + V6(8n + 8m — 12) — 30n + 2v/3 + 28.

oy
B
Il
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For a = —%, the formula of Randi¢ index takes the following form.

1
R_1(G) = ——
A= 2 VA

R.(G) = (2)(\/117?))+(2m+2)(\/%>+(8n+8m_12)< 21>< 3)
+ (15mn — 10n — 13m+8)<ﬁ)
R,%(G) = 5mn — 107” _ me X % n V6(8n +68m— 12) N 2\3/§

The ABC of SiyCs-111[n, m| is computed in the following Theorem.

Theorem 2.2. Consider the graph G = SiyCs-111[n,m| of Silicon Carbide
with m,n > 1, then its ABC index is equal to
26m  20n  (15m + 15m +2v/3 — 18)v/2 16
-+ + =
3 3 3 3
Proof. Let G be the graph of SiyCs-111[n, m] with m,n > 1. Then by using
from Table 1 and the equation (2), the ABC index is computed as.

ABC(G) = 10mn —

dy +dg —2
AB =
C(G) Z ol
PeEE(G
/1+3—2 /2+2—2 243 —2

3+3—2

1 —10n -1 .

+ (15mn — 10n — 13m + 8) IVE

After some easy calculations, we get:

26m 200 (15m+15n+2V3—18)vZ 1
ABC(G) = 10mn — 2m— g”+<5m+ 5n+3\/§ 8)‘[+§6

O

A close formula of GA index GA of SiyCs-111[n, m] is computed in the follow-
ing Theorem.

Theorem 2.3. Consider the graph G = SiyCs-111[n, m|, for m,n > 1, then
its GA index is equal to

9V/6(8n + 8m — 12
V6B +8m—12) m . o

GA(G) = 15mn—10n —11m + B
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Proof. Let G be the graph of Silicon Carbide SisC3-I11[n,m] . The by using
Table 1 and the equation (3) the GA index is computed as below:

2\/d,d
GAG) = ¥ pdq
pe€E(G) »t g
2V/3 2V/4 21/6
A = 2)( —= om +2)( —— —12)( ——
GA(G) ()(3+1>+(m+ )(2+2)+(8n+8m )<2+3)
21/9
1 —10n —1 =
+ (15mn — 10n 3m+8)(3+3)
2 —12
GA(G) = 15mn —10n — 11m + \/6<8"+158m )+¢§+10

0

In the next Theorem, we compute first and second Zagreb index of SiyCs-
I11[n,m].

Theorem 2.4. Consider the graph G = SiyCs-111[n, m|, for m,n > 1, then
its first and second Zagreb indices are equal to

M,(G) = 90mn — 30m — 20n + 4

My(G) = 135mn — 61m — 42n + 14.

Proof. Let G be the graph of SisC3-111[n, m|. Then by using Table 1 and the
equations (4), (5) the first Zagreb indices are computed as below:

> (dy+dy).

PgeE(G)
Mi(G) = (2)A+3)+(2m+2)(2+2)+ (8n+8m —12)(2+ 3)
+ (15mn —10n — 13m + 8)(3 + 3)
M,(G) = 90mn — 30m — 20n + 4

Mi(G)

From Theorem 2.1 the second Zagreb index is computed below:

My(G) = > (dydy) = Ri(G) = 135mn — 61m — 42n + 14
Pe€E(G)

U

The Table 2 shows the edge partition based on the degree sum of end vertices
of each edge of the chemical graph Si,Cs-111[n,m| for n,m > 2. We have
computed ABCY, G A5 index by using Table 2. A close formula of ABC} index
of SiyCs-I11[n,m] is computed in the following Theorem.
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FicUrE 3. Comparison of indices, general Randi¢ index for a €
{1,-1,1/2,-1/2}, ABC index, GA index and first Zagreb index
of 2D structure of G = SiC3-111[n, m|. The colors red, green,
gold, blue , gray, cyan and orange represents R;(G), R_1(G)
Ri(G), R_1(G), ABC(G), GA(G), and Mi(G), respectively.
We can see that in the given domain R;(G) is more dominating
and all the indices behave differently.

TABLE 2. Edge partition of SiyCs-III[n,m], m > 2, n > 2
based on degree sum of end vertices of each edge.

(Sp, Sy) Frequency

(3,5 2

4, 5) 4

(5,5  2m

(5, 6) 2

(5, 7))  4m —2

(6, 7)  Sn+4m— 14

(7, 9)  dn+4m—8

(9, 9)  15mn—14n —17m + 16

Theorem 2.5. Consider the graph G = SisCs-I111[n, m] with n,m > 2, then
its ABCY index is equal to

20mn  56n  68m  4v/2m /30  14(4m — 2
ABCAG) = -SR-S SR YR (7 )
V2(dn+4m —8) 64 2y/10 235 N V462(8n + 4m — 14)

3 +9+5+5 42
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Proof. Let G be the graph of Silicon Carbide of type SisCs-111[n,m| . The
ABC} is computed by using Table 2 and equation (6) as below:

ABCY(G) = Z S+S

pgeE(G

+ 4m—2\/m 8n+4m—14\/m
6x7

+ (15mn — 14n — 17m + 16)\/%4_ (2)\/W

+ (4n+4m—8)\/¥

After an easy calculation, we get:

20mn  56n  68m  4v2m /30 \/ﬂ(4m—2)

ABC4(G):3—9—9+5+5+ -
V2(4n +4m —8) 64 210  2v/35  /462(8n + 4m — 14)
3 Tyttt 42

0

The G A5 index of SiyCs-111[n, m] is computed in the following Theorem.

Theorem 2.6. Consider the graph G = SiC3-I[n, m| with n,m > 2, then its
G As index is equal to

GA5(G) = 15mn — 14n — 15m + \/%(4(73” —2) X 2\/5(871 ;—34m —14)

3V/7(dn + dm — 8 5 165 430
\[(”gm )+16—|—\/2_+ $/_+ \1/1_

Proof. Let G be the graph of SiyCs-111[n,m]. Then by using Table 2 and
equation (7) the GAs index is computed as below:

GAs(G) = > 2V 5%

pgeE(G) Sp + Sq
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23 x5 24 x5 25 x5 25 x 6
GAs() = Qg+ W + O 55 O
2/6 x 7 2y/7%x9
Am — 12220 gy 4 — g) 2R
+ (8n+4m ) 657 + (4n + 4m — 8) T
2,/ 2/
b (15mn — 14n — 17m 4+ 16) 2220 | gy — )2V X T
949 547

After an easy calculation, we get:

V35(4m —2)  2/42(8n 4 4m — 14)

GA5(G) = 1bmn — 14n — 15m + G + 3
3V7(4 dm — 8 15 16v/5  4v/30
Vil tdm =8) 1, V15 1605 4V50

30000+

20000+

10000

FIGURE 4. Comparison of ABC,(G) index and GA5(G) index
of G equivalent to 2D structure of SioC3-111[n, m]. The colors
blue, green represents ABC, and G As respectively. We can see
that both are behaving differently.

3. Silicon Carbide SiC5-11[n, m] 2D structure

In this section, additive topological indices mainly ABC' index, GA in-
dex, ABC} index, G As5 index, general Randi¢ index, first and second Zagreb
indices of SiC3-111[n, m| are computed. Moreover, close formulas are derived
which are helpful for the study analysis of properties of molecular structures
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of SiCs-111[n, m|.

The 2D molecular graph of Silicon Carbide SiC3-11 is given in Fig.5,
for more details see [22]. To describe its molecular graph we have used the
settings in this way: we define n as the number of connected unit cells in a
row(chain) and by m we represents the number of connected rows each with
n number of cell. In Fig.6 we gave a demonstration how the cells connect in
a row(chain) and how one row connects to another row. We will denote this
molecular graph by SiC3-111[n, m|. Thus the number of vertices in this graph
is 8mn and the number of edges are 12mn — 3n — 2m.

.

FIGURE 5. 2D structure of SiCs-II1[n,m], (a) chemical unit
cell of SiCs-111[n,m], (b) SiCs-11I[5,5]. Carbon atom C' are

brown and Silicon atom S% are blue

s

FIGURE 6. 2D structure of SiCs-II1[n,m],(a) SiCs-111[5,1],
One row with n =5 and m = 1. Red lines show the connection
between the unit cells(b) SiCs-I111[5,2], two rows are connect-
ing. Green lines(edges) connects the upper and lower rows.

In SiC3-111[n,m], for n,m > 1, we have divided the vertices in three sets
based on the degree of vertices. The set of vertices having degree 1 is denoted
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by Vi and it has 3 elements. The set V5 represents the vertices with degree 2
and it has 4m + 6n — 6 elements. Similarly, the set of vertices having degree
3 is denoted by V3 and it has 8mn — 4m — 6n + 3 elements. To find the
topological indices we will partition the edges of SiCs-111[n, m]. The edges of
SiCs-111[n, m] are divided into five sets based on the degree of end vertices, say
FE,, s, FE3, E, and Es. The set ) contains 2 edges pg, where d, = 1, d, = 2.
The set Ey contains only one edge pg, where d, = 1 and d, = 3. The set
Es contains 3n + 2m — 3 edges pq, where d, = 2 and d, = 2. The set £}
contains 6m + 4m — 8 edges pq, where d, = 2, d, = 3. The set E5 contains
12mn — 12n — 8m + 8 edges pq, where d, = 3, d, = 3. The Table 3 shows the
edge partition of SiCs-111[n, m| with n,m > 1.

TABLE 3. Degree based partition of edges of SiCs-111[n,m] ,
of end vertices of each edge.

(dy, d,) Frequency

1, 2) 2

(1,3 1

(2,2) 3n+2m-—3

(2,3) 6n+4m—38

3,3) 12mn—12n—8m+38

The ABC index of SiC3-111[n,m] in the next Theorem is computed below.

Theorem 3.1. Consider the graph G = SiCs-111[n,m| of Silicon Carbide
with n,m > 1, then its ABC index is equal to

16m  v/2(3n 4 2m — 3)
+

3 2

2(6n +4m —8) 16 6

V2(6n + 4m )+§+\/§+\/_

5 i

ABC(G) = 8mn —8n —

Proof. Let G be the graph of Silicon Carbide of type SiCs-11I[n,m|. Then
from the edge partition of SiC3-111[n,m] based on degrees of end vertices of
each edge with their frequencies which is given in Table 3, and equation (2)
the ABC index is computed as:

dy, +d; —2

ABC(G) = ) rd

pgeE(G)
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142 —2 1+3-2 2+2-2
243-—-2 3+3—-2
+ (6n—|—4m—8)\/j2LT3+(12mn—12n—8m+8) —Z:TB
V2

1 2 2m —
ABC(G) = 8mn—8n— (;m+ (3n+2 m=3)

2(6n + 4m —8) 16 6
\/_(n+2m )+§+\/§+§.

O

The Randié¢ index R, (G) of silicon carbide SiC3-111[n,m| is computed below.

Theorem 3.2. Consider the graph G = SiCs-I11[n, m] be the graph of Silicon
Carbide, then its general Randi¢ index is equal to

108mn — 60n — 40m + 19, ifa=1
dmn 5n 5m 11 . _
RG)={ 8 TR T if a=—1
36mn — 30n — 20m + 18 + V6(6n + 4m — 8) + 22+ V3 ifa =1
4mn—%—%+%+w+\/§+%§ ifa:—%

Proof. Let G be the graph of SiC3-I11[n,m] . The above result can be proved
by using Table 3 and equation (1) the general Randi¢ indices are computed as:
For a = 1.

Ri(G) = Z (dp X dq)

pg€E(G)

Ri(G) = (2)(1x2)+ (1)1 x3)+ (Bn+2m —3)(2x 2) + (6n + 4m — 8)(2 x 3)

+ (12mn — 12n — 8m + 8)(3 x 3)
Ri(G) = 108mn — 60n — 40m + 19

For a = —1, the formula of Randi¢ index takes the following form.
R\(G) e
—1 -
e (dp x dy)

@ = (1i2) ' (1>1<2) +(3"+2m_3)(ﬁ) +(6n+4m_8)(2><3

1
12 —12n -8 8)| ——=
+ (12mn n —8m + )<3><3)

dmn  dSn  bm 11
R4(G) = —/— 4+ =424 —
(@) 5 "1 T3

1

)
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For a = %, the formula of Randi¢ index takes the following form.

Ri(G) = 3 y[ld, xdy)

pgeE(G)

Ri(G) = 2)(VIx2)+ 1) (V1 x3)+(3n+2m —3)(vV2x 2)
+ (12mn —8m — 12n + 8)(v/3 x 3) + (6n + 4m — 8)(v/2 x 3)
Ri(G) = 36mn —30n—20m+ 18+ V6(6n +4m — 8) +2v2+ V3,
For o = —%, the formula of Randi¢ index takes the following form.

1
R_1(G) = ——
_E( ) pqezE%G) V (dp X dl])

RL(G) = (2)(\/%>+(1)<\/1173)+(3n+2m 3(

1
+ (6n+4m—8)(\/m)+(12mn—8m—12n+ ( )
5) 5} 7 6(6 4m — 8
RAG) = dmn— 2 I T VOCniin 8 5 V8

O

A close formula of GA index of SiCs-I11[n,m| is computed in the following
Theorem.

Theorem 3.3. Consider the graph G = SiCs-111[n,m|, for n,m > 1, then
its GA index is equal to

GAG) = 12mn—9n—6m+5+2\/6(6n—'5_4m_8)—|—4\3/§+ (\2/§

Proof. Let G be the graph of Silicon Carbide SiC3-I11[n,m] . Then by using
Table 3 and equation (3) the GA index is computed as below:

cac) - 3 2./d,d,

d, +d,

Pg€E(G)

o) - 2) - 0(25) -0 (2

+ (12mn—8m—12n—|—8)(ﬁ)+(6n+4m 8) i)

3+3 243
2v/6(6n +4m —8) 4v2 3
GA(G) = 12mn—9n—6m + 5+ \/_(ng mn )+ \3/_+§
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In the next Theorem, we have computed first and second Zagreb indices of
SiCs-111[n,m].

Theorem 3.4. Consider the graph G = SiCs-111[n, m|, for n,m > 1, then
its first and second Zagreb indices are equal to

Mi(G) = T72mn —30n — 20m + 6
My(G) = 108mn — 60n — 40m + 19.

Proof. Let G be the graph of SiCs-I11[n,m]. Now, by using Table 3 and
equation (4), (5) the first Zagreb index is computed as:

M(G) = > (dy+dy).
pa€E(G)
Mi(G) = 2)1+2)+(1)(1+3)+Bn+2m—3)(2+2)+ (6n+4m — 8)(2+ 3)

+ (12mn —8m — 12n+8)(3 + 3)
M(G) = T72mn —30n —20m + 6

By using Theorem 3.2 the second Zagreb index is computed below:

My(G) = > (dydy) = Ri(G) = 108mn — 60n — 40m + 19
PIEE(G)

O

The Table 4 shows the edge partition based on the degree sum of end vertices
of each edge of the chemical graph SiCs-I11[n,m] for n,m > 2. We have
computed ABC); and G Aj index by using Table 4.

A close formula of fourth bond connectivity index ABCy of SiCs-111[n,m] is
computed in the following Theorem.

Theorem 3.5. Consider the graph G = SiCs-111[n, m| with n,m > 2, then
its fourth ABC index is equal to

1 1 V35(2n —1)  2v/2(n + 2m —
ABC(G) = 1o g, J0m  VEEn_1) | 220 2m

VI110(2m +2n —5)  V462(2n —2)  V2(2n+m — 2)

+ + +
20 42 3
V30(4n +2m —7) V6 3T V30 17
o4 Y4 ZvY 4 VYEE

* 12 V2 2 7 10 2
N V14(2m + 2n — 4) N V1d(m —2)

7 8
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F1GURE 7. Comparison of indices, general Randi¢ index for o €
{1,-1,1/2,—-1/2}, ABC index, GA index and first Zagreb index
of 2D structure of G = SiC3-111[n,m]. The colors red, green,
gold, blue , gray, cyan and orange represents Ry(G), R_1(G)
R%(G), R_%(G), ABC(G), GA(G), and M;(G), respectively.
We can see that in the given domain R;(G) is more dominating
and all the indices behave differently.

TABLE 4. Edge partition of SiCs-IIln,m|], m > 2, n > 2
based on degree sum of end vertices of each edge.

Y

(Sp, S,) Frequency
(2,4 2

3,8 1

(4,49 1

(4,5 2n—1

(5, 5) n+2m-—3
4,7 2

(5, 6) 1

(5,7 2m+2n—4
(5, 8) 2m+2n-5
6,7 2n-—2
6,8 1

(7,9  2n+m—2
8,8 m—2

(8, 9) 4dn+2m—T
(9, 9)  12mn—18n — 12m + 18
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Proof. Let G be the graph of Silicon Carbide of type SiCs-I111[n, m], n,m > 2
. The fourth ABC is computed by using Table 4 in the following calculations:

S, + S, — 2

p~q

pg€E(Q)

2+4-2 3+8—2 4+4-2
ABCy(G) = (2) TV + (1) T + (1) i

515_2 A17-2 516_2
o — 3)y) S (2)4) S (1) 22
+ (et 2m =3 [ O I
5+ 72 5r8_2
om +2n —4)y L L L (m 42— 5) [
(@m 4 2n = D f =5+ Gm 420 =5 [

+
6182 7192 S+8-2
DIy Ay gy _g9) /2o
T Oy gxg t@Am=2 =g+ =2y 5y
8S+9-_2 0+9—2
dn+2m — 7)) = 4 (12mn — 18n — 12m + 18)y | ———=
+ (An+2m—7) 550 + (12mn — 18n m + 18) 959
1+5-2 6472
om— 1)) 22y (an - 2)y LT
T =Dy S -2y 5

After an easy calculation, we get:

1 1 V35(2n —1)  2v/2(n+ 2m —
ABCy(G) = 6?”—&w—zn+ %%g )4 JWHgm 3)
V110(2m +2n —5)  V462(2n —2)  V2(2n+m — 2)
- - +
20 42 3
V30(4n + 2m — 7) V6 3T V30 17
o4 X -4 7Y 4 YTy T
+ 5 V24 >ttt
V14©2m +2n —4)  V14(m — 2)
* 7 * 8

The GAj index of SiCs-111[n,m] is computed in the following Theorem.
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Theorem 3.6. Consider the graph G = SiCs-111[n, m| with n,m > 2, then
its GAs index is equal to

44/5(2n — 1 12v/2(4n + 2m —
GA5(G) = 1%m%+¥£§él——z—1ﬁz—9m+- VF(?; m =)
44/102m +2n —5)  2/42(2n —2)  3V7(2n+m — 2)
+ +
13 13 18
8\/7+ \/_ 4/3 4+\/_5(2m+2n—4)
11 11 17 6
4Vf' 46
311

Proof. Let G be the graph of SiCs-111[n,m]. The above result can be proved
by using Table 4 and equation (7) as below:

GG = 3 2./5,5,

pgeE(G) Sp+Sq
22 x 4 24/3 X 8 24/4 x 4
GAslG) = By Wi T O
24 x 7 25 X 6 25 X 7
N IVEX L A2 XD L 9m 4+ 2n — 4
@t F@m )
26 X 7 26 % 3 27X 0
M — 2 1 2 _9
=2 = +()6+8 +@ntm—2)—
2./ 92,/
b o(nt2m -2 L o — 180 — 12m 4 18) Y229
819 919
24/5 X 5 2v/4 X 5
om — 3222 oy 1
+ (n+42m—3) E T E +(2n —1) 1T E

2v/5 X 8 24/8 x 8
+(m—2)2X222
d+8 8+8
After an easy calculation, we get:

+ (2m+2n—5)

44/5(2n — 1 12v/2(4n + 2m —
GA5;(G) = 12mn+ % —17n — 9m + v nl_; m=7)
4/10(2m +2n —5)  2v/42(2n —2)  3VT(2n+m — 2)
+ + +
13 13 18
VT 230 43 V35(2m + 2n — 4)
14
* 11*_11 LS TAR 6

3+11
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F1GURE 8. Comparison of ABC4(G) index and GA5(G) index
of G equivalent to 2D structure of SiCs-I11[n, m]. The colors
blue, green represents ABC, and G As respectively. We can see
that both are behaving differently.

4. Conclusion

We have studied and computed additive degree based topological in-
dices mainly first and second Zagreb index, ABC' index, GA G A index, fourth
atom bond connectivity ABCy index, GAj; index and general Randi¢ index of
two types of 2D Silicon Carbide, namely SioCs-111[n, m| and SiCs-111[n, m]
chemical graphs for m-rows.

The graphical comparisons of topological indices of SiyC3-111[n, m| and
SiC3-I11[n,m] are given in Fig.3, Fig.4, Fig.7 and Fig.8 for certain values
of m,n. By varying the value of n,m the topological indices behaves dif-
ferently. The comparison of indices as computed above mainly first Zagreb
index, ABC index, GA index, ABC} index, GAs index, and general Randié
index forae € {1,—1,1/2,—1/2} are depicted in Fig.3, Fig.4, Fig.7 and Fig.8.
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