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THE INFLUENCE OF LOUDSPEAKER PERFORMANCE IN 
LOUDSPEAKER EQUALIZATION USING WIENER 

APPROACH 

Tudor M. CULDA1, Victor POPA2, Constantin COJOCARIU3, Dumitru 
STANOMIR4, Cristian NEGRESCU5 

Egalizarea răspunsului audio a unui difuzor va implica o soluţie de inversare 
de semnal audio. Metoda LMS optimală poate îndeplini această sarcină oferind un 
parametru de control al compromisului dintre viteza versus performanţa de 
egalizare. În această lucrare s-a investigat performanţa filtrelor de egalizare pentru 
diferite răspunsuri de difuzoare simulate cu scopul de a observa, dacă există, o 
corelaţie între eroarea de filtrare, ordinul filtrului şi caracteristicile spectrale ale 
răspunsului difuzorului. 

Equalizing a loudspeaker response will involve an audio signal inversion 
solution. Optimal LMS method can provide this task and offer a compromise 
parameter regarding equalization speed versus performance. In this paper it was 
investigated the performance of the equalization filters for different simulated 
loudspeaker responses for observing, if exists, a correlation between filter error, 
filter length and spectral characteristics of the loudspeaker response 
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1. Introduction 

The equalization of an audio replaying chain is very important if there is a 
desire for true reproduction of the audio signals or if measurements in an acoustic 
environment are established. Analyzing the audio chain, it is observed that the 
electro-acoustic transducers are the main components who are responsible for the 
largest linear distortions but as well as non-linear distortions source. They will 
require a special attention in our equalization approach. These distortions can be 
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observed looking into the frequency domain by the deviation from a flat spectral 
magnitude and from a linear phase. When referring to time domain, the distortions 
can be quantified by the difference between the impulse response of the 
loudspeaker and a Dirac delta function.  

Using digital filters in equalization offers some important advantages. 
Digital signal processing has an ever-increasing role to play in audio systems. 
Practically the majority of the replaying audio systems will contain in their chain 
a DSP unit. Designing digital filters allows us to a smoother control of the filters 
parameters that will lead to a more specific correction of the measured distortions. 
The equalization of the audio systems can be done by a prefiltering of the stored 
digital signal, or during audio playback but also after, by postfiltering, if the 
situation allows. Different filter lengths can be used and adapting them will not 
require a hardware modification. Practically, for equalization we need to solve a 
problem of audio signal inversion, also known as impulse response deconvolution. 
If we denote the loudspeaker impulse response with ( )nh , then the equalization 
filter described by its impulse response ( )nw  will have to satisfy the following: 

( ) ( ) ( )knnwnh −=∗ δ  (1) 
, where “k” is a necessary delay without which, the correction filter will be 

non-causal.  
For designing the correction filters, an often used technique is the LMS 

(Least Mean Squares) one offering a FIR (Finite Impulse Response) filter solution 
[1-3][4-8]. FIR filters are more easily to implement and optimize using less effort 
than for example IIR structures. It is simpler to generate a correction filter with an 
arbitrary magnitude and phase functions when using FIR structures. The solutions 
are more robust. As disadvantages, we mention that for high quality equalization, 
filters with larger orders are needed but the length of the filters is subject to a 
practical limitation due to the computation power necessary for a real time 
implementation. Nevertheless, we need to mention that in the last decades the 
digital computation power has known a spectacular grow. Even two decades ago 
it was possible to implement real time FIR equalization filters with orders of 200 
[2] [4] with the conclusions that considerable improvements in equalization were 
achieved and for loudspeaker equalization, as we can see from our results, the 
range for the optimum filter lengths are around this value. Indeed in order to 
compensate for the impulse response of an acoustic systems described by a 
relative long impulse response with considerable non minimum phase 
components, very long correction filters must be used [3], but in our case the 
common loudspeaker responses are predominantly minimum phase. 
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2. Investigation Goal 

In this paper it is proposed the investigation of loudspeaker equalization 
using FIR filters designed by a Wiener optimization method that would generate a 
LMS solution. We want to evaluate the dependence between the optimal filter 
length and an accepted (prescribed) error of the equalization process. This 
evaluation should be connected with the technical data of the loudspeaker.  

Visual inspection of the graphically represented data is an appropriate 
indication of the systems performance and it is used by more than one authors 
[3][8]. Of course, ultimately, the best indicator will result from listening tests. The 
authors who used visual inspection of performances, usually observed the 
equalization error in time domain or frequency domain in dependency with the 
length of the correction filters. They estimate an appropriate length for 
equalization. A question to which the present study is trying to give an answer is:” 
Are these lengths generalizable for any loudspeaker regardless of their frequency 
performance or can we expect some variations.” Usually in the mentioned papers, 
the error functions were represented only for an individual case. Using the same 
criteria for evaluating the equalization error, we observe the behavior of the 
optimal filters length when different loudspeakers with different performances are 
analyzed. This is useful information because one can apply directly an optimal 
filter correction length only by knowing the loudspeaker performance without 
having to measure the correction error for different lengths of filters in order to 
find the appropriate one, operation that can be time consuming. 

3. Wiener filter theory  

For inverting mixed phase type signals, an approximate of the inversion 
must be considered because of the non-causality problem denoted by the direct 
inversion of a signal and also the infinite length of the inverted signal. 

Optimal filtering in the sense of LMS will represent a good solution. 
Consider the block diagram in figure 1 built around a linear discrete-time filter. 
For a thorough study of this theory, the reader can consult [9]. 

The filter’s input consists of the loudspeaker response ( )nh  and the filter is 
itself characterized by the impulse response ( )nw . The filter produces an output 
( )ny  and this output is use to provide an estimate of a desired response denoted 

by ( )kn −δ . The estimation is accompanied by an error with characteristics of its 
own. 
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Fig. 1. Block diagram representing optimal filtering problem 

 
In particular the estimation error e(n) is defined as the difference between 

the desired response and the filter output y(n). To optimize the filter design we 
choose to minimize the mean square value of the estimation value. We thus define 
the cost function: 

])([)]()([ 2* neEneneEJ ==  (2) 
, where E denotes the statistical expectation operator. 

We need to mention that the optimal Wiener filter is phisically realizable if 
the input and desired signals are the effect of a stationary random process. If we 
take a short glance at the loudspeaker response we can conclude that it will not be 
stationary on short term, but we can consider the overall loudspeaker response as 
the output of a stationary process. 

The problem therefore is to determine the conditions for which J attains its 
minimum value. It can be shown that this problem of optimization comes down to 
solving the Wiener-Hopf Equations. If R is an M by M autocorrelation matrix of 
the tap inputs: 

)]()([ nnE HhhR =  (3) 

, where TMnhhhn )]1(),....,1(),0([)( +−=h   
, and p denotes the M by 1 cross correlation vector between the tap inputs 

of the filter and the desired response ( ) ( )knnd −= δ : 

)]()([ * nnE dhp =  (4) 
, then we can write the Wiener Hopf equations in their compact form: 

pRw 0 =  (5) 
Leading to  

pRw0
1−=  (6) 

, if R is nonsingular. 
Basically we will obtain an optimal filter )(now  of order M which 

estimates in LMS sense the desired signal 
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T
oMoo wwwn ],....,,[)( 110 −=ow  (7) 

This will be the inverse approximate of the initial signal h(n), which will 
be in our case the loudspeaker impulse response if we impose as the desired signal 
the Dirac delta function ( )nδ . As mentioned above, we need to impose a delay in 
the desired signal otherwise the filter would need to be non-causal. It was 
observed that the equalization error was setting to a minimum for a wide range of 
delays. This was reported also in the previous work [1] [2] [3] [6]. Basically, if we 
plot the error according to the delay we can observe broad minima. For this range, 
the error is almost constant. The range of delays for this minima is not constant 
with the increase of filters length, in fact is getting larger (see Figure 2). This has 
a sense in a way, practically if we have a short delay, the output of the filter would 
have to be an impulse without the arrival to the filter of the main energy of the 
loudspeaker response signal, and if the delay is to long, the filter would have to 
output a impulse signal after a while from the moment in which the entire 
loudspeaker response had passed the filter. In both situations the filter is not 
optimized for the loudspeaker response, but as the filter’s length is increasing, the 
time support of the filter will increase as well, making the limits for the delays 
larger. 

One other problem is that the magnitude of the loudspeaker response is 
very low at low frequencies (0-100Hz) and at high frequency near the Nyquist 
frequency. Inverting all the response will cause a strong amplification for these 
spectral components which is not desired. For this we use a frequency dependent 
regularization factor in our cost function [7] that will introduce a new term in our 
optimization algorithm. As shown in [7], we can keep a good equalization for a 
desired frequency band and ignore in our equalization process the remaining 
spectral components. We will not deepen this theory, for more details see [7]. This 
process will change equation 6 Into equation: 

( ) pRRw0
1−+= Bβ  (8) 

, where RB is the autocorrelation matrix of a band stop filter and β is a 
weighting parameter that will influence how much effort will make the filter to 
minimize the error introduced by the new term. For example, by choosing a band 
stop range of 120 Hz-16 kHz and β=99 we will assure that the remaining 
frequency band from the spectrum will not count in the equalization process. 
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Fig. 2. Time domain equalization error calculated for different equalization filter lengths (L) for 

the particular Yamaha NS-40M loudspeaker response 

4. Performance evaluation criteria  

If our goal is to transform the loudspeaker response into a perfect impulse 
with the equivalent to a flat spectrum for the frequency domain, some evaluation 
for the performance of the inversion must be considered. The natural criteria will 
refer to time domain and consists of the error energy after filtering defined in 
equation 2. More authors [2][3][8] judged their optimal filters lengths after this 
criteria.  

Also in frequency domain a standard deviation of the magnitude is 
commonly used: 

( )( )( )∑
−

=
−⋅=

1

0

2
10log201 M

i
Yi EY

M
ωσω  (9) 

Where ( )( )∑
−

=
⋅=

1

0
10log201 M

i
iY Y

M
E ω  (10) 

5. Experiment strategy 

Because there is a lot of measurements needed for the purpose of 
evaluating the dependence for the performance regarding filters lengths, 
simulation software was developed under a Matlab platform. First of all we 
validated, by comparing for an individual case, our equalization calculations with 
a real measurement after a prefiltering equalization. The results can be viewed in 
Figure 3. As can be seen, very close results are obtained. 

Next, three different loudspeaker responses were measured for the purpose 
of simulating and comparing the equalization performance. These loudspeakers 
are characterized by different spectral proprieties as can be observed in figure 4. If 
different optimal filters lengths are observed for each loudspeaker, then applying a 
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controlled zero phase spectral distortion for one loudspeaker response, we record 
the behavior of the optimal equalization filter lengths for different distorsion 
cases. This distortion consists in band stops having as parameters the frequency 
band and the attenuation. Usually, this is the case in real situations; spectral falls 
are more common then high amplification for loudspeakers responses. We 
considered some limits for the distortions, so the attenuation will not exceed 20-
30 dB and the stopband will not be narrower than 200 Hz. Above this limits we 
consider that the equalization is not proper because it will output high resonances 
or high amplifications, things that are very sensible to human hearing. Also the 
high dynamic range will limit the playback through a bad signal to noise ratio.  

Conclusions of the recorded data are followed. When establishing an error 
versus filter’s lengths plot, for a loudspeaker response, the error was calculated for 
every equalization filter with lengths belonging to a discrete set that covers with 
decreasing resolution a range of lengths between 0 and 1024. Observing the 
plotted data, we can notice that the error is not improving significantly for high 
lengths, so we decide the optimal filter length as the length that will output an 
energy error or a spectral deviation larger with 10% then the mean values 
recorded for lengths larger then 700. For each filter length situation, a step by step 
search for the optimum delay was calculated as well, so for every length the error 
would be the minimum possible. 
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Fig. 3. Simulation versus real measurement after equalizing an M-audio BX8a loudspeaker 

response with a N=200 order filter 

6. Results 

Three loudspeakers responses were equalized for the purpose of 
comparing filter lengths. These were Yamaha NS-40M M-audio BX8a and a 
custom made loudspeaker using Mtx RTC 502 drivers. As can be seen from figure 
4 and Table 1, the optimal filter lengths differ by a larger amount from one case to 
other. Next we took the Yamaha’s response and applied some zero phase 
distortions. Also for each case simulated we recorded the standard deviation of the 
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spectral magnitude of loudspeaker response. Results can be seen tables 1-7. 
Figure 5 presents how the distortions were applied. 

 
Fig. 4. a) magnitudes of three real loudspeaker responses b) their corresponding equalization error 

in dependence of filter’s length 

 
Fig. 5. Applying distortion on Yamaha NS-40M loudspeaker response 

 
Table 1 

Optimal equalization filter lengths (OEFL) calculated for three different 
loudspeakers 

Loudspeaker type Spectral magnitude 
standard deviation [dB] 

Optimal filter length 
Based on time error 

Yamaha NS-40M 1.9 67 
M-Audio BX8a 3.7 68 

Custom 6.8 235 
 

Table 2 
OEFL calculated for controlled distortions on 2 kHz÷2.4 kHz band for Yamaha’s 

response 
Attenuation [dB] 0 3 6 9 15 30 

Spectral magnitude 
standard deviation [dB] 1.9 2.1 2.6 3.3 4.7 0 

Optimal filter length 
Based on time error 67 65 66 68 78 0 
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Table 3 
OEFL calculated for controlled distortions with constant attenuation of 20dB for 

Yamaha’s response 
Band stop [kHz] 2-2.2 2-2.5 2-3 2-4 2-6 2-8 

Spectral magnitude 
standard deviation [dB] 2.7 3.6 4.8 6.3 7.6 8.3 

Optimal filter length 
Based on time error 75 80 79 68 67 65 

 
Table 4 

OEFL calculated for controlled distortions with constant two band stops attenuation 
of 15dB each for Yamaha’s response 

Band stop [kHz] 2-2.2 /  
10-10.2 

2-2.5 / 
10-10.5 

2-3 / 
10-11 

2-4/ 
10-12 

2-5 / 
10-13 

Spectral magnitude 
standard deviation [dB] 2.6 3.6 4.7 5.9 6.7 

Optimal filter length 
Based on time error 97 133 109 103 98 

 
Table 5 

OEFL calculated for controlled distortions with constant two band stops attenuation 
of 30dB each for Yamaha’s response 

Band stop [kHz] 2-2.2 /  
10-10.2 

2-2.5 / 
10-10.5 

2-3 / 
10-11 

2-4/ 
10-12 

2-5 / 
10-13 

Optimal filter length 
Based on time error 109 279 163 103 93 

 
Table 6 

OEFL calculated for controlled distortions with constant three band stops 
attenuation of 15dB each for Yamaha’s response 

Band stop [kHz] 
2-2.2 /  
6-6.2 / 
10-10.2 

2-2.5 / 
6-6.5 / 
10-10.5 

2-3 / 
6-7 / 
10-11 

2-4/ 
6-8 / 
10-12 

Optimal filter length 
Based on time error 106 156 122 108 

7. Conclusions 

Starting from the difference on optimal equalization filter length for three 
real situations of loudspeaker responses, correlation of this parameter with the 
spectral magnitude proprieties of the loudspeakers were investigated by 
simulations. Based on these results we can state that the global spectral cues like 
standard deviation or maximum dynamic range are not correlated with the optimal 
filter length.  

Analyzing the spectral falls from the response, we can observe that if the 
falls are narrower, in every situation listed, the optimal length is increasing, with 



228      Tudor Culda, Victor Popa, Constantin Cojocariu, Dumitru Stanomir, Cristian Negrescu 

exceptions for spectral minima thinner than 500 Hz where it seems that the 
optimal length has a decrease. Probably small bands like this don’t have a 
noticeable influence on global errors.  

The attenuation of the falls are also correlated with the filters lengths, a 
higher attenuation involves a necessary of more filter coefficients. 

Also with the number of falls in the spectral magnitude rising, the optimal 
filters length is increasing. When the spectral minima is wide, the attenuation 
doesn’t have a noticeable influence, but as the fall is becoming thinner, the 
attenuation has a major role (see table 2, 4 and 5). This is the biggest perceivable 
difference noticed. 

Analyzing the frequency criteria, the same trend was noticed for all 
statements. With all these distortions, the optimal length is less than 300 which is 
more than enough for today’s computation speed for real time implementation. 
Practically, if the loudspeaker response doesn’t have a big dynamic range (no 
more than 30 dB) for our band of interest, a 300 length filter can do an optimal 
equalization. 

After grouping all the results, the major conclusion is that for normal 
loudspeakers with a magnitude dynamic range under 30 dB, a 300 order LMS 
filter will do the job in almost every case. Different correlation were noticed and 
discussed. 
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