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THE INFLUENCE OF LOUDSPEAKER PERFORMANCE IN
LOUDSPEAKER EQUALIZATION USING WIENER
APPROACH

Tudor M. CULDA', Victor POPA?, Constantin COJOCARIU?, Dumitru
STANOMIR", Cristian NEGRESCU®

Egalizarea raspunsului audio a unui difuzor va implica o solutie de inversare
de semnal audio. Metoda LMS optimala poate indeplini aceastd sarcina oferind un
parametru de control al compromisului dintre viteza versus performanta de
egalizare. In aceasti lucrare s-a investigat performanta filtrelor de egalizare pentru
diferite rdaspunsuri de difuzoare simulate cu scopul de a observa, dacd existd, o
corelatie intre eroarea de filtrare, ordinul filtrului si caracteristicile spectrale ale
raspunsului difuzorului.

Equalizing a loudspeaker response will involve an audio signal inversion
solution. Optimal LMS method can provide this task and offer a compromise
parameter regarding equalization speed versus performance. In this paper it was
investigated the performance of the equalization filters for different simulated
loudspeaker responses for observing, if exists, a correlation between filter error,
filter length and spectral characteristics of the loudspeaker response
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1. Introduction

The equalization of an audio replaying chain is very important if there is a
desire for true reproduction of the audio signals or if measurements in an acoustic
environment are established. Analyzing the audio chain, it is observed that the
electro-acoustic transducers are the main components who are responsible for the
largest linear distortions but as well as non-linear distortions source. They will
require a special attention in our equalization approach. These distortions can be
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observed looking into the frequency domain by the deviation from a flat spectral
magnitude and from a linear phase. When referring to time domain, the distortions
can be quantified by the difference between the impulse response of the
loudspeaker and a Dirac delta function.

Using digital filters in equalization offers some important advantages.
Digital signal processing has an ever-increasing role to play in audio systems.
Practically the majority of the replaying audio systems will contain in their chain
a DSP unit. Designing digital filters allows us to a smoother control of the filters
parameters that will lead to a more specific correction of the measured distortions.
The equalization of the audio systems can be done by a prefiltering of the stored
digital signal, or during audio playback but also after, by postfiltering, if the
situation allows. Different filter lengths can be used and adapting them will not
require a hardware modification. Practically, for equalization we need to solve a
problem of audio signal inversion, also known as impulse response deconvolution.
If we denote the loudspeaker impulse response with h(n), then the equalization

filter described by its impulse response w(n) will have to satisfy the following:

(n) wl(n) = 5(n k) (M
, where “k” is a necessary delay without which, the correction filter will be
non-causal.
For designing the correction filters, an often used technique is the LMS
(Least Mean Squares) one offering a FIR (Finite Impulse Response) filter solution
[1-3][4-8]. FIR filters are more easily to implement and optimize using less effort
than for example [IR structures. It is simpler to generate a correction filter with an
arbitrary magnitude and phase functions when using FIR structures. The solutions
are more robust. As disadvantages, we mention that for high quality equalization,
filters with larger orders are needed but the length of the filters is subject to a
practical limitation due to the computation power necessary for a real time
implementation. Nevertheless, we need to mention that in the last decades the
digital computation power has known a spectacular grow. Even two decades ago
it was possible to implement real time FIR equalization filters with orders of 200
[2] [4] with the conclusions that considerable improvements in equalization were
achieved and for loudspeaker equalization, as we can see from our results, the
range for the optimum filter lengths are around this value. Indeed in order to
compensate for the impulse response of an acoustic systems described by a
relative long impulse response with considerable non minimum phase
components, very long correction filters must be used [3], but in our case the
common loudspeaker responses are predominantly minimum phase.
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2. Investigation Goal

In this paper it is proposed the investigation of loudspeaker equalization
using FIR filters designed by a Wiener optimization method that would generate a
LMS solution. We want to evaluate the dependence between the optimal filter
length and an accepted (prescribed) error of the equalization process. This
evaluation should be connected with the technical data of the loudspeaker.

Visual inspection of the graphically represented data is an appropriate
indication of the systems performance and it is used by more than one authors
[3][8]. Of course, ultimately, the best indicator will result from listening tests. The
authors who used visual inspection of performances, usually observed the
equalization error in time domain or frequency domain in dependency with the
length of the correction filters. They estimate an appropriate length for
equalization. A question to which the present study is trying to give an answer is:”
Are these lengths generalizable for any loudspeaker regardless of their frequency
performance or can we expect some variations.” Usually in the mentioned papers,
the error functions were represented only for an individual case. Using the same
criteria for evaluating the equalization error, we observe the behavior of the
optimal filters length when different loudspeakers with different performances are
analyzed. This is useful information because one can apply directly an optimal
filter correction length only by knowing the loudspeaker performance without
having to measure the correction error for different lengths of filters in order to
find the appropriate one, operation that can be time consuming.

3. Wiener filter theory

For inverting mixed phase type signals, an approximate of the inversion
must be considered because of the non-causality problem denoted by the direct
inversion of a signal and also the infinite length of the inverted signal.

Optimal filtering in the sense of LMS will represent a good solution.
Consider the block diagram in figure 1 built around a linear discrete-time filter.
For a thorough study of this theory, the reader can consult [9].

The filter’s input consists of the loudspeaker response /() and the filter is

itself characterized by the impulse response w(n) The filter produces an output
y(n) and this output is use to provide an estimate of a desired response denoted
by 8(n—k). The estimation is accompanied by an error with characteristics of its
own.
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Desired signal

;lnput Linear Output o(n-k)
) discrete-time
Filter
w(n) Estimation error

e(n)
Fig. 1. Block diagram representing optimal filtering problem

In particular the estimation error e(n) is defined as the difference between
the desired response and the filter output y(n). To optimize the filter design we
choose to minimize the mean square value of the estimation value. We thus define
the cost function:

*

J = Ele(me” (m)] = Elle(n)’] @
, where E denotes the statistical expectation operator.

We need to mention that the optimal Wiener filter is phisically realizable if
the input and desired signals are the effect of a stationary random process. If we
take a short glance at the loudspeaker response we can conclude that it will not be
stationary on short term, but we can consider the overall loudspeaker response as
the output of a stationary process.

The problem therefore is to determine the conditions for which J attains its
minimum value. It can be shown that this problem of optimization comes down to
solving the Wiener-Hopf Equations. If R is an M by M autocorrelation matrix of
the tap inputs:

R = Elh(mh" (n)] (3)

, where h(n) =[h(0),h(1),.....,~A(n—M + 1)]T

, and p denotes the M by 1 cross correlation vector between the tap inputs
of the filter and the desired response d(n)=5(n—k):

%
p=E[h(n)d (n)] 4
, then we can write the Wiener Hopf equations in their compact form:

Rw, =p (3)
Leading to

-1
Wq = R 'p (6)

, if R is nonsingular.
Basically we will obtain an optimal filter wg(n) of order M which

estimates in LMS sense the desired signal
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Wo(n) :[W007W017“"9W0M—1]T (7)
This will be the inverse approximate of the initial signal 4(n), which will
be in our case the loudspeaker impulse response if we impose as the desired signal
the Dirac delta function 5(r). As mentioned above, we need to impose a delay in

the desired signal otherwise the filter would need to be non-causal. It was
observed that the equalization error was setting to a minimum for a wide range of
delays. This was reported also in the previous work [1] [2] [3] [6]. Basically, if we
plot the error according to the delay we can observe broad minima. For this range,
the error is almost constant. The range of delays for this minima is not constant
with the increase of filters length, in fact is getting larger (see Figure 2). This has
a sense in a way, practically if we have a short delay, the output of the filter would
have to be an impulse without the arrival to the filter of the main energy of the
loudspeaker response signal, and if the delay is to long, the filter would have to
output a impulse signal after a while from the moment in which the entire
loudspeaker response had passed the filter. In both situations the filter is not
optimized for the loudspeaker response, but as the filter’s length is increasing, the
time support of the filter will increase as well, making the limits for the delays
larger.

One other problem is that the magnitude of the loudspeaker response is
very low at low frequencies (0-100Hz) and at high frequency near the Nyquist
frequency. Inverting all the response will cause a strong amplification for these
spectral components which is not desired. For this we use a frequency dependent
regularization factor in our cost function [7] that will introduce a new term in our
optimization algorithm. As shown in [7], we can keep a good equalization for a
desired frequency band and ignore in our equalization process the remaining
spectral components. We will not deepen this theory, for more details see [7]. This
process will change equation 6 Into equation:

wo =(R+ARp)"'p ®)

, where Rp is the autocorrelation matrix of a band stop filter and f is a
weighting parameter that will influence how much effort will make the filter to
minimize the error introduced by the new term. For example, by choosing a band
stop range of 120 Hz-16 kHz and =99 we will assure that the remaining
frequency band from the spectrum will not count in the equalization process.
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Fig. 2. Time domain equalization error calculated for different equalization filter lengths (L) for
the particular Yamaha NS-40M loudspeaker response

4. Performance evaluation criteria

If our goal is to transform the loudspeaker response into a perfect impulse
with the equivalent to a flat spectrum for the frequency domain, some evaluation
for the performance of the inversion must be considered. The natural criteria will
refer to time domain and consists of the error energy after filtering defined in
equation 2. More authors [2][3][8] judged their optimal filters lengths after this
criteria.

Also in frequency domain a standard deviation of the magnitude is
commonly used:

1 M-1
0=\ (20-1ogyo (¥(e; })- Ey f 9)
i=0
1 M-1
Where By = >"20-log;o (¥ () (10)
i=0

5. Experiment strategy

Because there is a lot of measurements needed for the purpose of
evaluating the dependence for the performance regarding filters lengths,
simulation software was developed under a Matlab platform. First of all we
validated, by comparing for an individual case, our equalization calculations with
a real measurement after a prefiltering equalization. The results can be viewed in
Figure 3. As can be seen, very close results are obtained.

Next, three different loudspeaker responses were measured for the purpose
of simulating and comparing the equalization performance. These loudspeakers
are characterized by different spectral proprieties as can be observed in figure 4. If
different optimal filters lengths are observed for each loudspeaker, then applying a
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controlled zero phase spectral distortion for one loudspeaker response, we record
the behavior of the optimal equalization filter lengths for different distorsion
cases. This distortion consists in band stops having as parameters the frequency
band and the attenuation. Usually, this is the case in real situations; spectral falls
are more common then high amplification for loudspeakers responses. We
considered some limits for the distortions, so the attenuation will not exceed 20-
30 dB and the stopband will not be narrower than 200 Hz. Above this limits we
consider that the equalization is not proper because it will output high resonances
or high amplifications, things that are very sensible to human hearing. Also the
high dynamic range will limit the playback through a bad signal to noise ratio.

Conclusions of the recorded data are followed. When establishing an error
versus filter’s lengths plot, for a loudspeaker response, the error was calculated for
every equalization filter with lengths belonging to a discrete set that covers with
decreasing resolution a range of lengths between 0 and 1024. Observing the
plotted data, we can notice that the error is not improving significantly for high
lengths, so we decide the optimal filter length as the length that will output an
energy error or a spectral deviation larger with 10% then the mean values
recorded for lengths larger then 700. For each filter length situation, a step by step
search for the optimum delay was calculated as well, so for every length the error
would be the minimum possible.
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Fig. 3. Simulation versus real measurement after equalizing an M-audio BX8a loudspeaker
response with a N=200 order filter

6. Results

Three loudspeakers responses were equalized for the purpose of
comparing filter lengths. These were Yamaha NS-40M M-audio BX8a and a
custom made loudspeaker using Mtx RTC 502 drivers. As can be seen from figure
4 and Table 1, the optimal filter lengths differ by a larger amount from one case to
other. Next we took the Yamaha’s response and applied some zero phase
distortions. Also for each case simulated we recorded the standard deviation of the
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spectral magnitude of loudspeaker response. Results can be seen tables 1-7.
Figure 5 presents how the distortions were applied.
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Fig. 4. a) magnitudes of three real loudspeaker responses b) their corresponding equalization error
in dependence of filter’s length
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_201 """"" Yamaha distorted [}

Hz
Fig. 5. Applying distortion on Yamaha NS-40M loudspeaker response

Table 1
Optimal equalization filter lengths (OEFL) calculated for three different
loudspeakers
Loudspeaker type Spectral magnitude Optimal filter length
standard deviation [dB] Based on time error
Yamaha NS-40M 1.9 67
M-Audio BX8a 37 68
Custom 6.8 235
Table 2
OEFL calculated for controlled distortions on 2 kHz+2.4 kHz band for Yamaha’s
response
Attenuation [dB] 0 3 6 9 15 30
Spectral magnitude
standard deviation [dB] 1.9 21 2.6 3.3 4.7 0
Optimal ﬁlt[er length 67 65 66 68 73 0
Based on time error
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Table 3
OEFL calculated for controlled distortions with constant attenuation of 20dB for
Yamaha’s response

Band stop [kHz] 2-2.2 2-2.5 2-3 2-4 2-6 2-8
Spectral magnitude

standard deviation [dB] 27 3.6 4.8 6.3 7.6 8.3

Optimal filter length 75 20 79 68 67 65

Based on time error

Table 4

OEFL calculated for controlled distortions with constant two band stops attenuation
of 15dB each for Yamaha’s response

2-22/ | 2-2.5/ 2-3/ 2-4/ 2-5/

10-10.2 | 10-10.5 | 10-11 10-12 10-13

2.6 3.6 4.7 59 6.7

Band stop [kHz]

Spectral magnitude
standard deviation [dB]
Optimal filter length
Based on time error

97 133 109 103 98

Table 5

OEFL calculated for controlled distortions with constant two band stops attenuation
of 30dB each for Yamaha’s response

222/ | 2-2.5/ 2-3/ 2-4/ 2-5/

10-10.2 | 10-10.5 | 10-11 10-12 10-13

109 279 163 103 93

Band stop [kHz]

Optimal filter length
Based on time error

Table 6
OEFL calculated for controlled distortions with constant three band stops
attenuation of 15dB each for Yamaha'’s response
2-22/ | 2-2.5/ 2-3/ 2-4/
Band stop [kHz] 6-62/ | 6-6.5/ 6-7/ 6-8/
10-10.2 | 10-10.5 10-11 10-12

106 156 122 108

Optimal filter length
Based on time error

7. Conclusions

Starting from the difference on optimal equalization filter length for three
real situations of loudspeaker responses, correlation of this parameter with the
spectral magnitude proprieties of the loudspeakers were investigated by
simulations. Based on these results we can state that the global spectral cues like
standard deviation or maximum dynamic range are not correlated with the optimal
filter length.

Analyzing the spectral falls from the response, we can observe that if the
falls are narrower, in every situation listed, the optimal length is increasing, with
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exceptions for spectral minima thinner than 500 Hz where it seems that the
optimal length has a decrease. Probably small bands like this don’t have a
noticeable influence on global errors.

The attenuation of the falls are also correlated with the filters lengths, a
higher attenuation involves a necessary of more filter coefficients.

Also with the number of falls in the spectral magnitude rising, the optimal
filters length is increasing. When the spectral minima is wide, the attenuation
doesn’t have a noticeable influence, but as the fall is becoming thinner, the
attenuation has a major role (see table 2, 4 and 5). This is the biggest perceivable
difference noticed.

Analyzing the frequency criteria, the same trend was noticed for all
statements. With all these distortions, the optimal length is less than 300 which is
more than enough for today’s computation speed for real time implementation.
Practically, if the loudspeaker response doesn’t have a big dynamic range (no
more than 30 dB) for our band of interest, a 300 length filter can do an optimal
equalization.

After grouping all the results, the major conclusion is that for normal
loudspeakers with a magnitude dynamic range under 30 dB, a 300 order LMS
filter will do the job in almost every case. Different correlation were noticed and
discussed.
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