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ENHANCED CRYPTOGRAPHIC ALGORITHM BASED ON
CHAOTIC MAPS AND WAVELET PACKETS

Corina MACOVEI*, Adina-Elena LUPU (BLAJ)?, Mircea RADUCANU?®

This paper presents an enhanced version of an existing encryption algorithm
by combining wavelets and chaos theory concepts. The novelty consists in replacing
the simple permutation block in the existing algorithm with subbands permutation
using logistic map and then integrating the tent map chaotic system to benefit from
its properties. Subbands permutation is more secure than simple permutations.
Chaotic maps add more security by their well-known properties: pseudo-
randomness, ergodicity and sensitivity to initial conditions. The proposed encryption
scheme is successfully applied on a wide range of images with different features.
The theoretical analysis and Matlab simulations show that the enhanced algorithm
produces secure encrypted signals. Also, a comparison between the original
algorithm and its enhanced version is presented.

Keywords: chaos-based cryptographic algorithm, logistic map, tent map, subband
wavelet decomposition

1. Introduction

Secure data transmission is perhaps one of the main challenges in the age
of digitalization. The main technique used for this purpose is encryption, whether
we are talking about text, images or video. Transmitting them on an insecure
channel can be the target of cryptanalytic attacks, so data protection plays an
important role. Although security is always a mandatory requirement, sometimes
the encryption speed is more important, commonly used algorithms like DES
(Data Encryption Standard) [1] and AES (Advanced Encryption Standard) [2] -
time consuming and high complexity algorithms [3] - not being suitable. Thus, the
use of chaotic maps is a good alternative due to their properties [4], such as
sensitivity to initial conditions, ergodicity or random behavior that are relevant for
encryption. The sensitivity to initial conditions - or to bifurcation parameters -
means that if we encrypt a message with a chaotic map having some initial
conditions/bifurcation parameters and another message with the same chaotic map
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and slightly different initial conditions or bifurcation parameters we obtain two
different enciphered messages. Ergodicity ensures that the statistical properties of
the process that describes the chaotic map can be computed from a single sample
with many iterations. In addition, the speed and the low complexity make the
chaotic maps-based encryption suitable for a large number of practical
applications.

A speech encryption is presented in [5], where the speech signal is divided
into blocks and then the wavelet transforms and the Hénon chaotic map are used
to encrypt the signal. In [6] wavelet decomposition is mentioned as a method to
remove noise in a forensic speech enhancement schema. Wavelet packets
transforms and chaotic maps are used in [7] to perform simultaneously image
compression and encryption. The proposed method is fast and efficient due to the
two concurrent operations. Paper [8] presents wavelet packet transforms and
chaotic maps as methods for securing sensitive biometric data. Another study, [9],
presents a robust encryption scheme based on image decomposition into
approximation and detail components using wavelets, followed by the diffusion of
the approximation coefficients through a chaotic map. In [10], an adaptive
encryption scheme for digital images based on wavelet optimization is presented.
The wavelet transforms are used there to decompose the image, while a chaotic
map is used to encrypt it. Paper [11] investigates the benefits of wavelets
combined with chaotic maps in the new field of quantum computing.

Inspired by the algorithm designed and implemented in paper [12], this
study proposes an improved version. The original algorithm is based on the
Hénon chaotic map and consists in transformations, multiple substitutions and
fixed transposition operations. The purpose, here, is to enhance the performance
of the algorithm by replacing the pixels' permutation with subband decomposition
and permutation of the resulted subbands with the logistic map. The reason we are
performing this change is the fact that subband decomposition followed by
permutation using a chaotic map is a more secure technique than a simple
permutation of pixels, an additional security layer being added. The choice of the
wavelet function used in this article is done by testing its behaviour in our context.
By several trials, we concluded that Haar wavelet function is fitting our purpose
due to its simplicity and good results. Furthermore, we replaced Hénon's map with
the tent map chaotic system to benefit from the latter's uniform distribution.

2. Preliminaries

2.1 Wavelet transforms and wavelet packets

The Fourier transform is a representation of the signal in the frequency
domain. Thus, the temporal or the spatial location, in the case of images, is lost.
The Short-Time Fourier Transform (STFT) built as a windowed Fourier transform
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overcomes this problem. However, the major deficiency of STFT is that for a
chosen window function the time and frequency resolutions are constant for the
entire time-frequency plane. The wavelet transforms correct this shortcoming of
the STFT. The theory of continuous and discrete wavelet transforms [13], [14],
wavelet packets [15-17], their connection with filter banks and sub-band analysis
[18], [14], multi-resolution analysis have been presented in numerous papers that
can be considered references for this field.
The continuous wavelet transform is defined:
1 t=b
Wf(a, b) = ﬁ f f(t)ll) (T) dt; aeR*, beR (D)
a

where y(t) is a wavelet function.

The scaling function corresponding to two-dimensional images can be
written as ¢(X,y)=o(x)¢(y). The wavelet function in one-dimensional case is
transformed in three wavelet functions (horizontal, vertical and diagonal):
VIEYFUEO(Y), v (xy)=0()y(y) and y°(x,y)=y()y(y).

The two-dimensional discrete wavelet transform (see Fig. 1) can be
implemented using digital filters (h(n) and g(n) being the impulse response
functions of a low-pass filter, respectively of a highpass filter) and downsamplers.
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Fig. 1. The two-dimensional discrete wavelet transform

In Fig. 1, Aj+1 is the approximation coefficient for the (j+1)th level, while
Hj+1, Vj+1 and Dj.1 are three detail coefficients for the same level. The algorithm
may continue recursively by decomposing the approximation coefficient Aj+1, thus
obtaining the coefficients: Aji2, Hj:2, Vj+2 and Dj:2. Further, the low frequency
component (Aj+1), as well as the high frequency components (Hj+1, Vj+1, Dj+1) are
decomposed in subbands resulting wavelet packets, [17]-[18].

The Haar sequence was proposed in 1909 by A. Haar as an exemple of
orthonormal system function for L?([0,1]). Later on, it has been shown that these
are actually wavelet functions. The Haar mother wavelet and scaling function are
defined by:
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1, 0<t<0.5
b 1, 0<5t<1
Yu(®) =1-1 05< t<1; ou(t) = {0; otherwise )
0; otherwise
From (2) results the two-scale equations:
ou(t) = oy (2t) + y(2t — 1) 3)
Yu(t) = ou(2t) — oy (2t —1) 4)

In general, some Haar transform properties are exploited, namely:

e it has the simplest expression;

e it is the only symmetric wavelet in the Daubechies family;

e it allows the exact reconstruction of a signal (image) from the
transform coefficients without introducing edge effects;

e it decomposes the vector of data representing the signal into two
vectors of half its length;

e the impulse response h(n) and g(n) form a QMF (quadrature mirror
filters) filter bank.

2.2 Chaotic maps

Two of the simplest chaotic maps are used in this paper: the logistic map
and the tent map.
The definition of the logistic map is given by:
X1 = R xp (1 —x) ©)

where R is the control parameter with values in (0; 4] and xx belongs to the
domain (0; 1); k denotes discrete time.
The definition of the tent map [20] is given by equation:

1-p/ ’
oYt oo I<ye<p

Ve+1 = 2 p’+1 , (6)
1Yk T g P =y<l1

where p’ is the control parameter with values in (-1,1) / {0} and the generated y,
values belong to the (-1,1) interval; k denotes iteration.

The bifurcation parameters values are very important for chaotic maps,
engendering the regime of the map: chaotic or periodic. In cryptographic
applications only the values which lead to chaotic behavior are relevant. Metrics
such as Lyapunov exponents and bifurcation diagrams are useful when selecting
the bifurcation parameter value. Hence, to generate a chaotic behaviour for the
logistic map, the bifurcation parameter R should be restricted to the interval [3.6,
4]. Also, when selecting R we must take into account the computation step to
avoid periodicity of the map, as it was experimentally emphasized in [21]. In the
case of the tent map, all the values p’ belonging to (-1,1)/{0} lead to chaotic



Enhanced cryptographic algorithm based on chaotic maps and wavelet packets 123

behavior [20], this being one of the main reasons we choose this map in our
implementation, alongside with its uniform distribution, independent of the
bifurcation parameter value.

3. Chaos based cryptographic algorithm
3.1 Encryption algorithm based on the chaotic generalized Hénon map

In [12], it is proposed an encryption method based on simple operations,
some permutations and XORs, that are embedded in a hyperchaotic map, the 3D
generalized Hénon map. It is applied on different types of signals (text or image)
leading to good results and high security.

The algorithm is performed in several steps, the first one being the
division of the interval of chaotic map's possible values in ten subintervals
corresponding to S-box (substitution box) subintervals. While iterating the chaotic
map, the sine function is applied as function of two states of the map and the
result is mapped to one of the subintervals. The next step is a bitxor operation
between the value assigned to the S-box subinterval resulted from sine function
and the plain message character or pixel converted to binary (1 byte). The result is
then permuted according to a preset rule. The new encrypted message is converted
from binary to decimal and scaled by a factor, ensuring that will preserve the
chaotic behaviour. Finally, the cryptogram is included in the Hénon map
iterations. The testing results prove this is an efficient and secure encryption
scheme.

A disadvantage of this algorithm is the resulted non-uniform histogram of
the encrypted image. A good encryption algorithm should lead to a uniform or
gaussian histogram of the encrypted image, so no patterns could be detected.
Another disadvantage is the long time needed to encrypt an image, about 941
seconds.

3.2 Proposed image encryption algorithm

Instead of implementing the generalized Hénon map, as in [12], this paper
uses the tent map described in [20] to encrypt and embed the signal. The scheme
of the encrypting algorithm is presented in Fig. 2.
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Fig. 2. Encrypting scheme

The encryption steps are the following:
Image decomposition in subbands using the Haar wavelet packets on a fixed
level.
Subband permutation using the logistic map.
Image reconstruction of the permuted wavelet packets.
Divide the attractor of the tent map in 10 subintervals; the probability for a
value generated by the tent map to fall in one of the 10 subintervals is
uniform. This is one important advantage of the proposed algorithm over the
one in [12].
For each subinterval a value from K, = {as, 0 ... ai0} is associated, where o;
are fixed integers in (0, 255) interval; these a values are randomly chosen and
stored in a vector.
For each value x, generated by the tent map, apply a sinus transformation:
sine(x). This is necessary to ensure that the value is in the range (-1,1), after
the message was embedded in the evolution of the map.
Depending in which subinterval sine(x) falls, select the corresponding a value
from K.
The next step is a bit XOR between the 8 bit representation of o and 8 bits
representation of the message (m).
The resulted value m' is converted back to decimal and divided by 1 = 10°,
which results to m".
Finally, m" is added to the evolution of the chaotic map, resulting in the
transmitted cryptogram.
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We should mention that the original image in Fig. 2 is taken from the
article used as reference [12] in our work. An important aspect is the fact that the
bifurcation parameter of the chaotic map should be carefully selected, which is a
part of the encryption/decryption key. Only the parameters with positive
Lyapunov exponents may lead to a secure encryption [21].

4. Results and interpretation

A secure cryptographic algorithm should prove certain characteristics to
be resistant to statistical and cryptanalytic attacks. These properties are evaluated
through tools like histograms, entropy or correlation. The key space should be
large enough to avoid the brute-force attack to succeed by exhaustive key search.
The sensitivity to key changes should be a mandatory condition, since nowadays
the attacker can try many possibilities within a reasonable time frame. If he
computes the algorithm steps with some keys in the vicinity of the good key, then
the output should be completely different compared to the output using the correct
key. Also, the algorithm should be low time-consuming for both operations:
encryption and decryption. Often a trade-off between the security of the system
and its complexity should be considered.

In this paper we present the algorithm results illustrated on four gray PNG
images having 256X256 size. These images are displayed in Fig. 3, alongside
with their corresponding histograms. The first image is also present in the
previous article, the foundation of our work [12]. The second image is a landscape
image taken by a phone camera, the image being characterized by high entropy.
To better emphasize the difference between the original image and the encrypted
one, the results are illustrated as well on two low entropy images having a few
gray levels (the third and the fourth images in Fig. 3). The study was performed in
parallel on the four images to highlight the idea that our algorithm can be applied
on a large range of images with different properties.

The programming language used in our implementation is Matlab version
R2017b and the algorithm was run on an ASUS ROG GR8 Il system having the
following properties:

e Windows-10 (64-bit).

e Processors: Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz,
3.60GHz.

e Memory: 16-GB.
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Fig. 3. Original images (up) and their corresponding histograms (down).

The first step of our algorithm is to apply on the original images the
subband decomposition on 7 levels using the Haar wavelet function. Subband
permutation using the logistic map is performed subsequently, followed by image
reconstruction (see Fig. 4). One can notice that the images are unrecognizable,
still some patterns are present. The histograms under each image in Fig. 4 show
that the pixels are more diffused in the entire range (although these are not
uniformly or Gaussian distributed), compared to the histograms of the original
images.

For a better encryption we performed a XOR operation between elements
of the wavelet encrypted image and an o value known. The result is divided to 10°
and then added to the iterations’ values of the tent map. Thus, a uniform
distribution is obtained, see Fig. 6.

One disadvantage of our algorithm that should be taken into consideration
is the fact that the encrypted image is eight times bigger than the original one
because of multiple transformations applied. The size of the encrypted image is
512X1024, while the size of the original one is 256X256 as mentioned before.
The decrypted image is the same as the original one, so it is perfectly
reconstructed.
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Fig. 4. Subband decomposiﬁon for cartoon (top-left), high entropﬁ%ﬁ-right), low entropy
(bottom-left) and bi-level (bottom-right) images and their corresponding histograms.
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The entropy is a measure of randomness. An increased entropy means that
the pixels are shuffled and the image redundancy is diffused. Considering this, it
can be observed in Table I that the encrypted image entropy is close to the
maximum value 8, meaning that the image is well-encrypted.

The correlation between adjacent pixels was analyzed by plotting scatter
diagrams of the encrypted images compared to those of the original images as it
can be seen in Fig. 5. Correlation measures the relationship between pixels. It is
clear that a strong correlation exists between the pixels of the original images,
while the encryption algorithm described in this paper leads to a weak correlation
between the pixels.

/e on logation (x+1.y)

Pixsl gray valu

50 00
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Fig. 5. Correlation for the origi;;gél and the encrypted images— the high entropy image (left) and the
low entropy image (right) — for the improved algorithm.
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The encrypted image is sent to the receiver and he must know the
encryption key to decrypt it. Subbands permutation key is represented by the
initial condition and bifurcation parameter corresponding to the logistic map. For
the second part of encryption, namely chaotic encryption, the key is the initial
condition and bifurcation parameter of the tent map chaotic system.

5. A Comparison between Improved and Original Algorithms

As mentioned before, the new improved algorithm provides better results
compared to the original algorithm. In Fig. 6 it is obvious that the histogram
corresponding to the encrypted image with the new algorithm is uniform, while
the other histogram corresponding to the original algorithm is not uniform. Well
encrypted images should have uniform or Gaussian histograms.

2500

50 100 150 200 250 0 50 100 150 200 250

Fig. 6. Histograms for the encrypted image with the original algorithm vs. improved algorithm.

In Table 1, one can notice that the entropy for the encrypted image is close
to the maximum value 8 when encryption is performed with the improved
algorithm, while the entropy for encrypted image using the original algorithm
(although is higher than the entropy for the plain image) is not close to the
maximum value. The entropy enhancement with our algorithm is about 2.76%
(compared to the original one), a higher entropy meaning a better encryption.

Table 1
Entropy values for encrypted images.
Image Entropy Entropy encrypted Entropy encrypted Enhancement
original image image with the image with the
original algorithm improved algorithm
Cartoon 5.9036 7.7863 7.9964 2.6983%
High Entropy 7.5909 7.7766 7.9966 2.8289%
Low Entropy 3.6309 7.7823 7.9966 2.7536%
Bi-level 1.9857 7.7798 7.9964 2.7841%




Enhanced cryptographic algorithm based on chaotic maps and wavelet packets 129

A low correlation between adjacent pixels corresponds to a good
encryption. By comparing Fig. 5 and Fig. 7, it can be observed that the correlation
between adjacent pixels is low for the image encrypted with the improved
algorithm (Fig. 5) and a stronger correlation is present for the images encrypted
with the original algorithm (Fig. 7).

Pixel gray value on ocation (x+1)

Fig. 7. Correlation for encryptgam(':;r"tggh‘ image(top left), hlghentropy level image (top right), low
entropy level image (bottom left) and bi-level image(bottom right) with the original algorithm.

Also, the execution time was improved. This aspect is very important
because the algorithms should run in a reasonable time to be used in real-time
applications. The original algorithm runs in about 941 seconds for a PNG image
of size 256X256 and the time increase exponentially for large images. On the
other hand, the improved algorithm presented in this paper runs in 48 seconds,
being about 20 times faster.

6. Conclusions

The results show that the performance of the new encryption algorithm is
independent of the image content and the proposed scheme is efficient and secure.
It should be noted that the bi-level images are the ones that could benefit more
from the proposed algorithm because those images contain pixels with just two
values 0 or 255, these values being distributed in the entire possible range (0,255)
in the encryption process.

The encryption is performed in two stages, thus ensuring resistance against
cryptographic attacks. As future work, there are also other evaluations that should
be taken into consideration when testing the algorithm results. Also, we intend to
investigate other wavelet functions.
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