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The paper presents a method for synthesizing the mathematical model of a two-

wheel device designed for transporting small-sized cargo. It is characterized as an 
unstable dynamic system and modeled by using a recurrent neural network (RNN) 
with long short-term memory layers (LSTM). It is trained on experimental data in the 
form of time series. The latter includes the tilt angle of the device and the slew velocity 
of the balance mechanism’s shaft obtained through experimental research. The 
processing and analysis of the obtained forecasting results of the system’s states one 
and ten time-steps ahead are conducted with the help of RNN. Mathematical model 
based on an LSTM RNN describes the device quite well for one-time step ahead. For 
the ten time-steps ahead the overall forecasting error is slightly shifted to negative 
values. However, the trained RNN may be used to develop of the device motion 
optimal control. 
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1. Introduction 
 

In any human activity at all times, cargo transporting has consistently been 
one of the main problems and its relevance does not decrease. Methods and means 
for solving the stated problems develop constantly. The technical means employed 
in this context are extremely diverse, ranging from delivery robots to gigantic 
tankers. 

This study is dedicated to the question of transporting small-sized cargo that 
arises in areas of courier delivery in the city, within a single enterprise, or within 
storage facilities and workshops. In order to perform a task of such scale, a 
considerable amount of vehicle constructions, ranging from different trolleys to 
automatized robots, for example, humanoid Boston Dynamics “Atlas” robot [1], 
Amazon Prime delivery robot “Scout” [2] has been developed. However, two-
wheel scooter-like type vehicles have not yet been examined due to the complexity 
of ensuring their dynamic and static balance. Nevertheless, such two-wheel vehicles 
offer several advantages over other types: they occupy minimal space during 
parking or cargo transporting, provide high longitudinal stability, and maintain a 
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low center of gravity, allowing for higher speed and movement across public 
roadways or within storage facilities, etc. 

To ensure the stability of the device's motion for transporting small-scale 
cargo, safe exploitation conditions, optimize energy consumption, and enhance the 
device's capacity, it is necessary to synthesize a stabilization system for its position. 
These calculations must be based on an adequate mathematical model of the 
device’s position which later allows for obtaining a control system that ensures the 
device’s position stability. Thus, adequate mathematical model of the device is the 
goal of the current study. In order to achieve it, the following objectives should be 
investigated: 1) to analyze the current stage of the researches in the area of 
mathematical modelling of electromechanical underactuated systems and select the 
most proper for the further study; 2) to carry out experiments and record the data of 
device control and movement; 3) develop ANN and train it based on the obtained 
data; 5) estimate the ANNs errors for device movement and make conclusion about 
adequateness of ANN application as a device mathematical model. 

 
2. Analysis of relevant scientific articles 
 
The device for which the synthesis of the mathematical model is 

accomplished refers to the domain of electromechanical systems. Without taking 
into consideration the electrical part of the device (it is characterized by 
significantly quicker transient processes in comparison to the mechanical part of 
the system), the system may be examined as solely mechanical one. In general, 
there are three approaches to building mathematical models of mechanical systems: 
a “white-box”, a “black box” and a “gray box” - a combination of the first two [3]. 

The first one is based on physical laws and usually the equation of motion 
for the system’s elements is derived either from Newton’s equations or through 
Euler-Lagrange methods. Such an approach to building mathematical models and 
constructions of two-wheel vehicles is presented in the work [4], where a structure 
of a two-wheel scooter-like type vehicle with a flywheel balancing mechanism is 
proposed. The mathematical model of this system is created in the form of equations 
of motion with their further linearization. Another two-wheel vehicle, the 
construction of which is similar to that of a bicycle, is described in the work [5]. 
Two gyroscopes are used to stabilize its position. The mathematical model of such 
a device is presented as differential equations of motion. A mathematical model of 
a two-wheel robot described by an inverted pendulum model is the basis for the 
work [6]. In the work [7], a motion model of a two-wheel self-balancing robot was 
obtained, which later allowed for the synthesis of optimal control of its motion 
using Lagrangian [8] and Kane’s [9] methods. A model of a two-wheel device (the 
Essboard) that has freely rotating wheels and a stepper motor is examined in the 
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work [10]. Geometric, kinematic, and dynamic characteristics of the device’s 
structure are determined when building its mathematical model. 

The mentioned works are characterized by extremely comprehensive (in 
terms of corresponding measurements and their processing) research. Thus, before 
building a mathematical model in the form of equations of motion (a “white box”) 
assumptions that simplify the process of equations formulation are made [6, 10]. 
This allows for the reduction of the number of calculations, however, when 
neglecting certain parameters (deformation of the device’s elements, deflection of 
the vehicle’s wheel’s tire, the shape of the wheel contact patch with the ground and 
its slippage, etc.) a model that can be used only in the first approximation is 
obtained. Increasing the accuracy of the model demands consideration of other 
significant effects, which requires a substantially larger amount of calculations.  

Geometrical, kinematic, or dynamic characteristics of the device are not 
expected to be considered when building the “black-box” model. For this, ample is 
determining the input and output characteristics that describe the state of the system, 
whereas a mathematical model is determined through numerical methods of 
function approximation. This approach is applied when building a low-drive system 
of an inverted pendulum motion model. A least squares estimation is used for this 
purpose in the work [11]. The advantages of this method lie in its consideration of 
any relevant factors that influence the functioning of the system. One shortcoming 
of such an approach is the absence of general recommendations regarding the 
selection of the functions based on which the approximation of the dynamic system 
response takes place. This shortcoming may partially be eliminated by using 
artificial neural networks (ANNs). Particularly, recurrent neural networks (RNNs) 
with long short-term memory layers (LSTM) which enable high-quality forecasting 
of time series are used for this purpose [12]. The latter, as is known, are the input 
and output characteristics of a dynamic system, collected over a period of time. The 
employment of LSTM has allowed for building a mathematical model of the motion 
of the mechanical second-order oscillatory system and determining optimal 
coefficients for a PID controller [13]. Mathematical modeling of the nonlinear 
Lorenz system is accomplished with the help of LSTM [14]. Data used for the 
training of the ANN is the time series that is obtained based on the numerical 
integration of a differential equations system. A similar approach is used in the 
work [15], where a dynamic nonlinear system is also examined. The problem of 
forecasting states of nonlinear dynamic systems using an RNN adaptive learning 
method is examined in the work [16]. In the field of robotics, RNNs are also utilized 
for discovering mathematical models of motion or synthesizing optimal control, for 
example, for the two-legged robot [17] or the robot manipulator [18]. 

In the “gray-box” approach a specific case of both the previous approaches 
is considered, where the general form of equations of motion is known, but the 
coefficients or physical characteristics are unknown. The “gray-box” approach is 
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used for building a mathematical model of a hoverboard [3]; based on the study of 
the device’s kinematics a general equation of motion is determined, and the 
unknown coefficients are determined based on the experimental data of the system 
through methods of mathematical approximation of the function. For another case 
mentioned in the work [19], when the general equation of motion of the device is 
known, but the coefficients of the equations are unknown, the latter are determined 
using an RNN. 

Employment of the “white-box” and “gray-box” approaches requires 
substantial numerical calculations. Not all dynamic parameters of the system can 
be measured with sufficient accuracy, including the effects of dry and viscous 
friction, gaps, clearances, and other nonlinearities. Therefore, when building 
mathematical models of mechanical systems, the “black-box” approach is often 
utilized, which involves the further use of LSTM. 

 
3. Materials and methods 

 
A device for transporting small-sized cargo (Fig. 1, a) with a mass of 10 kg, 

can transport cargo up to 12 kg. It is a prototype and the studied issue is connected 
with its mathematical modelling. A developed mathematical model will allow to 
design of a proper control algorithm, which is the issue for further investigations.  

The scale of the device remains unchangeable for the cargoes in the range 
of approximately 5…12 kg. Increasing the transported masses needs increasing of 
device scale, and vice versa. However, this issue lies out of the scope of the current 
study. It allows for the accomplishment of the transporting of the cargo that is 
placed on its platform across public roadways. The device’s balancing is secured 
by means of a special mechanism (item 4 in Fig. 1, a). Its working principle lies in 
shifting the device’s center of mass when tilted from the equilibrium position. The 
shift occurs due to the deviation of the rear wheel from the device's frame, driven 
by a stepper motor (position 5 in Fig. 1, a) NEMA 23 57BYGH2100-4004A-8 (step 
value of 1.8°, rated current of 4 A, torque value of 2.7N·m. The latter, through the 
belt drive, tilts crankshafts, which are hinge-mounted on the fork of the rear wheel 
(Fig. 2). 

Arduino Nucleo F446RE development board (item 7 in Fig. 1, a) is used for 
controlling the process of the device stabilization and kinematic characteristics 
experimental data record. 9-axis gyro-accelerometer MPU9250 (item 6 in Fig. 1, a) 
is connected to the board. 
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a) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
b) 

Fig. 1. Device for transporting small-sized cargo: a) 3D-model; b) lab installation 
 

In the Fig. 1, a) the following notation are used: 1 - rear drive motor wheel, 
2 - sensor of the rear wheel’s slew, 3 - frame of the device, 4 - balancing mechanism, 
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5 - stepper motor, 6 - 9-axis gyro-accelerometer, 7 - control board, 8 - rotary support 
with the wheel slew mechanism, 9 - front drive motor wheel. 

  
Fig.  2. The kinematic scheme of the device for transporting small-sized cargo augmented with the 

main dimensions of the device 
 

In order to build a mathematical model of a considered dynamic system, 
experimental data at its balancing was collected, specifically: the tilt angle α of the 
device and the angular velocity of the stabilization mechanism β  (Fig. 3). 

 
Fig. 3. Indication of angles α and ꞵ 
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Due to the fact that the accelerometer and gyroscope data obtained from the 
MPU9250 module is affected by noise, a complementary method of determining 
the tilt angle of the device is employed [20]. The following expression is used for 
this purpose: 

αi = Kgyroαgyro.і – (1 – Kgyro)αaccel.і,                              (1) 
where і – the subscript that indicates the number of the signal measurement cycle; 
Kgyro – the subscript that determines the weight of influence of the gyroscope data 
(Kgyro=0,985) when determining the angle αі; αaccel.і – the angle that is obtained 
using the accelerometer, which is determined using the following expression: 

αaccel.і= 57,29 ∙ arcsin (uy.і / g),                                 (2) 
where uy.і – the acceleration of the device along the horizontal axis; g – the 
acceleration of gravity; αgyro.і – the angle that is obtained using the gyroscope, which 
is determined using the following expression: 

αgyro.і = αi-1 + (φ.i-1 + φ z.i)/2 ∙ ∆t,                    (3) 
where φz.i-1 and φz.i – the previous and current value of angular velocity obtained 
using the gyroscope; ∆t – the time between the measurements (∆t=0.0036 s). For 
the first measurement cycle, α0=0 is set. 

The gyroscope data is processed using a digital moving average filter [21]. 
The filter’s window size comprises three measurements. 

A PD controller is used to collect data of the device’s position relative to the 
vertical axis stabilization. The controller receives the tilt angle α of the device as 
input, producing the angular velocity of the stabilization mechanism’s tilt β  as 
output. For the PD-controller, values of the proportional and differential component 
coefficients are selected empirically. Both are equal to three. These specific values 
allow for stabilizing the device’s position relative to the vertical axis. The work of 
this controller may only be considered as a temporary measure that allows for 
collecting an experimental data array in the process of stabilizing the device’s 
position. 

The device for transporting small-sized cargo requires position stabilization 
only in one plane. Therefore, characteristics that describe the motion of the device 
in the plane that is perpendicular to its functional motion direction are chosen for 
building a mathematical model. One characteristic is the tilt angle α of the device 
(Fig. 4a) which controls the tilt of the system relative to the vertical axis, and the 
other characteristic is the angular velocity of the stabilization mechanism’s tilt β  
(Fig. 4, b) that changes the control influence in the process of the device’s position 
stabilization. 

The experimental data record is organized in batches. An array of data 
comprising 8405 elements is assembled in the form of a time series. The experiment 
lasted approximately 30 seconds. 
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а) 

 
b) 

Fig. 4. Experimental data: a) the tilt angle α of the device; b) angular velocity of the stabilization 
mechanism β  

 
Neural network technologies are employed to build the mathematical model 

of the dynamic system of the device for transporting small-sized cargo. ANNs, 
created by analogy with the functioning of condensations of biological neurons, are 
mostly presented as feedforward neural networks. The usage of feedforward ANNs 
is typically limited to statistical problems that do not consider the time coordinate. 
Thus, an ANN of another type, specifically an RNN, should be used for problems 
of time series forecasting. They also have certain constraints, for example, they 
almost do not consider states of the system that are obtained more than 10 time 
steps back. This is due to the vanishing (or “explosion”) of the error gradient when 
training an ANN. LSTM which can consider up to 1000 time steps depending on 
the complexity of the ANN structure is devoid of this shortcoming [22]. This is why 
specifically the LSTM was used for the mathematical modeling of the stabilization 
dynamics of the device for transporting small-sized cargo. 

The implementation of the structure, calculations, and training of the ANN 
are accomplished in the Wolfram Cloud environment [23]. It consists of the input 
layer, hidden layers, and output layer (Fig. 5). Neurons of the input layer (Fig. 5) 
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receive a 10x2 matrix. It corresponds to ten time measurements of the system’s 
state, each of which includes two characteristics, namely the tilt angle α of the 
device and the angular velocity of the stabilization mechanism . This number of 
the system’s states is chosen because at lower values the LSTM has not allowed for 
obtaining a high-quality forecast of the time series. The hidden layer consists of 3 
layers each composed of 20 LSTM elements (elements 1-3 in Fig. 5). This number 
was selected empirically. A SequenceLastLayer (element 4 in Fig. 5) which returns 
the last value of the succession (a 10x20 matrix) of outputs of the previous layer of 
the LSTM is used after the LSTM layers. The linear layer (element 5 in Fig. 5) is 
the last one in this structure. Thus, the developed ANN structure receives 10 system 
states as input and returns a one time-step ahead forecast. 

 

 
Fig. 5. The ANN structure used in the research 

 
After the ANN structure development, its training is conducted. Training, 

validation, and test datasets must be prepared before the beginning of the training. 
Each of the datasets must include normalized data which is necessary to avoid the 
ANN “paralysis” phenomenon. For this, all data in the time series undergoes a 
normalization process. For example, a normalized value of the tilt angle of the 
device is calculated using the following expression: 

( ) ,ˆ
minmax

min

αα
ααα
−
−

= k
k                                                  (4) 

where αk − is the k-th value of the angle α in the time series; αmin and αmax are the 
minimum and maximum values of the angle in the time series. Here and below the 
upper symbol «^» means normalized values. A similar procedure is carried out for 
the  data. All three datasets contain normalized data organized into training pairs: 

,ŶX̂ →                                                    (5) 
where Ŷ  − the ANN output ( 1ˆ +kα  scalar) that corresponds to the forecast of the tilt 
angle α̂  in the subsequent time interval; k − the number of the measurement that 
takes values from 10 to 5379 (the volume of the training data); X̂ − the 10x2 matrix 
that is received at the ANN input and which is presented as follows: 

β

β
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The validation data includes 1345 training pairs, and the test data includes 

1681 training pairs. The ANN training is carried out using the ADAM method [24] 
with a batch size of 100 and a total of 1000 training cycles (Fig. 6). The size of the 
batch and the number of the training cycles R are selected empirically (Fig. 6). Upon 
800 cycles of the ANN training the reduction of the error magnitude almost does 
not occur, so the ANN may be considered trained. Apart from that, the analysis of 
the error plot based on the validation dataset (Fig. 6) indicates the absence of the 
ANN overfitting. 

 
Fig. 6. The error magnitude L during the ANN training on the training (black plot) and the 

validation (gray plot) datasets 
 
Upon training the ANN, a quality assessment of its forecasts is conducted 

based on the test dataset. The determination of forecast errors occurs in several 
stages. At first, an ANN forecast array is formed based on the test dataset: 

( ),X̂Ŷ testANN f=                                               (7) 
where ANNŶ  – is the ANN forecast array based on the test dataset; f − the nonlinear 
operator of the trained ANN; testX̂  – is the input 10x2 matrix of the ANN from the 
test dataset. 
 

It is worth mentioning the originality of ANN testing for ten time-steps 
ahead, which is applied in the current study. Since the dynamical controlled system 
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is under consideration the forecast error (only for the case of ten time-steps ahead) 
is carried out in the following manner. The ANN is fed by the matrix 

T
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returns the scalar 1ˆ +kα . The next step: ANN is fed by the matrix 
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and returns 

the scalar 2ˆ +kα . Note, that in the matrix 2X̂  the forecast 1ˆ +kα  of previous step and 
the control value of the current step are used. The procedure must be continued until 

10ˆ +kα  is obtained. Thus, for the ANN forecasting from the second to tenth steps the 
data „fusion” is exploited: the forecasted angles α̂  and measured angular velocities 
β̂  form the ANN inputs. 

Further, the ANN forecast error array is calculated: 
 

,ŶŶÊ testANN −=                                                (8) 

where Ê  – is the ANN forecast error array; testŶ  – is the ANN output ( 1ˆ +iα  scalar), 
that corresponds to the forecast of the tilt angle α in the subsequent time interval in 
the test dataset. Upon that, a denormalization of the obtained data is conducted: 

.ÊE min
minmax

α
αα

+
−

=                                          (9) 

Quality assessment of the ANN forecasting is conducted using four 
indicators, two of which are absolute and two of which are relative ones. Absolute 
indicators are obtained using the following formulas: 

 

,
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1 1681

1

2∑
=

⋅=
j

jRMS ee                                             (10) 

 
( ),maxmax jee =                                               (11) 

where ej − is the j-th value of the forecast error in array E; j − the subscript that 
takes values from 1 to 1681 (the volume of the test dataset). 
 

Relative indicators are obtained using the following formulas: 
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We further conduct the analysis of the obtained data. 
 
4. Results and discussion 

 
Verification of the performance of the ANN in forecasting the tilt angle of 

the device for transporting small-sized cargo is conducted in two stages. In the first 
stage, one time-step ahead forecasting is conducted, while in the second stage, ten 
time-steps ahead are conducted. The obtained results are presented in Fig. 7. Fig. 7 
demonstrates that the magnitude of the error is significantly smaller than the tilt 
angle value. Additionally, values of numerical estimates (10) - (13) were calculated 
and are provided in Table 1. 

 
 

 
а) 
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b) 

Fig. 7. The tilt angle of the device plot (dotted) and the ANN performance error plot (solid) based 
on the test data when verifying the forecast 1 step ahead (a) and 10 steps ahead (b) 

 
Table 1.  

Estimates of denormalized forecast errors  

Forecast horizon Estimates 
eRMS, deg eRMS.%, % emax, deg emax.%, % 

1 step ahead 1.24∙10-2 8.11∙10-1 3.84∙10-2 1.68∙100 
10 step ahead 5.08∙10-2 3.34∙100 1.65∙10-1 7.24∙100 

 
In Fig. 7, a, the plot of the tilt angle error when forecasting 1 step ahead does 

not show clearly defined patterns, while cyclic error changes can be observed when 
forecasting 10 steps ahead (Fig. 7, b). Moreover, the average value of the forecast 
error of the tilt angle of the device is displaced downwards relative to the Oj axis. 
Thus, we can conclude that when conducting forecasts 10-time steps ahead, the 
developed ANN on average returns values of the angle α that are underestimated. 
Apart from that, in Fig. 8 shows an increase in the error magnitude at low values of 
the angle α. 

In general, graphic dependencies (Fig. 7) and the calculated estimates (Table 
1) give grounds for asserting that the developed ANN allows for the 
accomplishment of high-quality forecasting of the future states of the dynamic 
system (device), which allows for treating it as the mathematical model of the 
device for small-sized cargo transporting. 

The applied here approach makes it possible to indicate the negative shift of 
the forecast error while the forecasting horizon is increased. Analysis of this fact 
brings two original outputs: 1) there is a reasonable limit of forecasting when the 
error becomes significant and further increasing of horizon forecasting is connected 



100                                 Oleksandr Zarivnyi, Yuriy Romasevych 

with unreliable data appearance; 2) the trend of the forecasting error shift may be 
taken into account to correct the ANN outputs and to improve the quality of ANN 
forecasting. The latter is an issue for further investigations, which requires a much 
deeper understanding of the correlations „time horizon – ANN forecast error”. 

In general, the proposed approach gives the technique for estimation of 
ANNs forecasting errors, especially of middle- and long-terms forecasts. The 
technique application helps to understand the evolution of errors forecasting with 
relation to the forecasting term (for how many steps ahead the forecast is made). 

 
5. Conclusions 
 

1) In order to build a mathematical model of the device for small-sized cargo 
transporting position stabilization dynamics an analysis of the up-to-date 
scientific research on this subject is conducted. As a result of the analysis, 
the “black-box” approach is chosen for achieving the stated goals. It is 
implemented by using an ANN with LSTM layers. 

2) In order to train the ANN an experiment is conducted and an array of 
experimental data in the form of a time series corresponds to the succession 
of the system’s states (tilt angle α) and the applied controls (angular velocity 
of the stabilization mechanism’s slew β ) is collected. The obtained data 
array is organized into training pairs and separated into the training, 
validation, and test datasets. The ANN training and the verification based 
on the validation dataset have shown a high quality of forecasts and the 
absence of overfitting. 

3) When validating the trained ANN based on the test data it has been 
determined that it returns a sufficiently high quality of the subsequent values 
of the tilt angle α 1 and 10 time steps ahead forecast. Moreover, the quality 
of the ANN forecasts decreases with the forecast horizon increasing, 
however, such a decrease in the forecasting quality is not significant. For 
example, for the eRMS.% error, the quality of the forecast decreased by a factor 
of 4 when increasing the forecast horizon by a factor of 10. 

4) The obtained results allow for recommending the trained ANN as the 
mathematical model of the device for transporting a small-sized cargo 
position stabilization system, which will further be used for the synthesis of 
an optimal system of the device position stabilization. 
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