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MATHEMATICAL MODELING OF THE DEVICE FOR
TRANSPORTING SMALL-SIZED CARGO

Oleksandr ZARIVNYI!, Yuriy ROMASEVYCH?

The paper presents a method for synthesizing the mathematical model of a two-
wheel device designed for transporting small-sized cargo. It is characterized as an
unstable dynamic system and modeled by using a recurrent neural network (RNN)
with long short-term memory layers (LSTM). 1t is trained on experimental data in the
form of time series. The latter includes the tilt angle of the device and the slew velocity
of the balance mechanism’s shaft obtained through experimental research. The
processing and analysis of the obtained forecasting results of the system’s states one
and ten time-steps ahead are conducted with the help of RNN. Mathematical model
based on an LSTM RNN describes the device quite well for one-time step ahead. For
the ten time-steps ahead the overall forecasting error is slightly shifted to negative
values. However, the trained RNN may be used to develop of the device motion
optimal control.

Keywords: two-wheel device; unstable dynamic system; LSTM;
mathematical model, dynamic system.

1. Introduction

In any human activity at all times, cargo transporting has consistently been
one of the main problems and its relevance does not decrease. Methods and means
for solving the stated problems develop constantly. The technical means employed
in this context are extremely diverse, ranging from delivery robots to gigantic
tankers.

This study is dedicated to the question of transporting small-sized cargo that
arises in areas of courier delivery in the city, within a single enterprise, or within
storage facilities and workshops. In order to perform a task of such scale, a
considerable amount of vehicle constructions, ranging from different trolleys to
automatized robots, for example, humanoid Boston Dynamics “Atlas” robot [1],
Amazon Prime delivery robot “Scout” [2] has been developed. However, two-
wheel scooter-like type vehicles have not yet been examined due to the complexity
of ensuring their dynamic and static balance. Nevertheless, such two-wheel vehicles
offer several advantages over other types: they occupy minimal space during
parking or cargo transporting, provide high longitudinal stability, and maintain a
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low center of gravity, allowing for higher speed and movement across public
roadways or within storage facilities, etc.

To ensure the stability of the device's motion for transporting small-scale
cargo, safe exploitation conditions, optimize energy consumption, and enhance the
device's capacity, it is necessary to synthesize a stabilization system for its position.
These calculations must be based on an adequate mathematical model of the
device’s position which later allows for obtaining a control system that ensures the
device’s position stability. Thus, adequate mathematical model of the device is the
goal of the current study. In order to achieve it, the following objectives should be
investigated: 1) to analyze the current stage of the researches in the area of
mathematical modelling of electromechanical underactuated systems and select the
most proper for the further study; 2) to carry out experiments and record the data of
device control and movement; 3) develop ANN and train it based on the obtained
data; 5) estimate the ANNSs errors for device movement and make conclusion about
adequateness of ANN application as a device mathematical model.

2. Analysis of relevant scientific articles

The device for which the synthesis of the mathematical model is
accomplished refers to the domain of electromechanical systems. Without taking
into consideration the electrical part of the device (it is characterized by
significantly quicker transient processes in comparison to the mechanical part of
the system), the system may be examined as solely mechanical one. In general,
there are three approaches to building mathematical models of mechanical systems:
a “white-box”, a “black box™ and a “gray box” - a combination of the first two [3].

The first one is based on physical laws and usually the equation of motion
for the system’s elements is derived either from Newton’s equations or through
Euler-Lagrange methods. Such an approach to building mathematical models and
constructions of two-wheel vehicles is presented in the work [4], where a structure
of a two-wheel scooter-like type vehicle with a flywheel balancing mechanism is
proposed. The mathematical model of this system is created in the form of equations
of motion with their further linearization. Another two-wheel wvehicle, the
construction of which is similar to that of a bicycle, is described in the work [5].
Two gyroscopes are used to stabilize its position. The mathematical model of such
a device is presented as differential equations of motion. A mathematical model of
a two-wheel robot described by an inverted pendulum model is the basis for the
work [6]. In the work [7], a motion model of a two-wheel self-balancing robot was
obtained, which later allowed for the synthesis of optimal control of its motion
using Lagrangian [8] and Kane’s [9] methods. A model of a two-wheel device (the
Essboard) that has freely rotating wheels and a stepper motor is examined in the
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work [10]. Geometric, kinematic, and dynamic characteristics of the device’s
structure are determined when building its mathematical model.

The mentioned works are characterized by extremely comprehensive (in
terms of corresponding measurements and their processing) research. Thus, before
building a mathematical model in the form of equations of motion (a “white box’")
assumptions that simplify the process of equations formulation are made [6, 10].
This allows for the reduction of the number of calculations, however, when
neglecting certain parameters (deformation of the device’s elements, deflection of
the vehicle’s wheel’s tire, the shape of the wheel contact patch with the ground and
its slippage, etc.) a model that can be used only in the first approximation is
obtained. Increasing the accuracy of the model demands consideration of other
significant effects, which requires a substantially larger amount of calculations.

Geometrical, kinematic, or dynamic characteristics of the device are not
expected to be considered when building the “black-box” model. For this, ample is
determining the input and output characteristics that describe the state of the system,
whereas a mathematical model is determined through numerical methods of
function approximation. This approach is applied when building a low-drive system
of an inverted pendulum motion model. A least squares estimation is used for this
purpose in the work [11]. The advantages of this method lie in its consideration of
any relevant factors that influence the functioning of the system. One shortcoming
of such an approach is the absence of general recommendations regarding the
selection of the functions based on which the approximation of the dynamic system
response takes place. This shortcoming may partially be eliminated by using
artificial neural networks (ANNSs). Particularly, recurrent neural networks (RNNs)
with long short-term memory layers (LSTM) which enable high-quality forecasting
of time series are used for this purpose [12]. The latter, as is known, are the input
and output characteristics of a dynamic system, collected over a period of time. The
employment of LSTM has allowed for building a mathematical model of the motion
of the mechanical second-order oscillatory system and determining optimal
coefficients for a PID controller [13]. Mathematical modeling of the nonlinear
Lorenz system is accomplished with the help of LSTM [14]. Data used for the
training of the ANN is the time series that is obtained based on the numerical
integration of a differential equations system. A similar approach is used in the
work [15], where a dynamic nonlinear system is also examined. The problem of
forecasting states of nonlinear dynamic systems using an RNN adaptive learning
method is examined in the work [16]. In the field of robotics, RNNs are also utilized
for discovering mathematical models of motion or synthesizing optimal control, for
example, for the two-legged robot [17] or the robot manipulator [18].

In the “gray-box” approach a specific case of both the previous approaches
is considered, where the general form of equations of motion is known, but the
coefficients or physical characteristics are unknown. The “gray-box™ approach is
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used for building a mathematical model of a hoverboard [3]; based on the study of
the device’s kinematics a general equation of motion is determined, and the
unknown coefficients are determined based on the experimental data of the system
through methods of mathematical approximation of the function. For another case
mentioned in the work [19], when the general equation of motion of the device is
known, but the coefficients of the equations are unknown, the latter are determined
using an RNN.

Employment of the “white-box” and “gray-box” approaches requires
substantial numerical calculations. Not all dynamic parameters of the system can
be measured with sufficient accuracy, including the effects of dry and viscous
friction, gaps, clearances, and other nonlinearities. Therefore, when building
mathematical models of mechanical systems, the “black-box™ approach is often
utilized, which involves the further use of LSTM.

3. Materials and methods

A device for transporting small-sized cargo (Fig. 1, a) with a mass of 10 kg,
can transport cargo up to 12 kg. It is a prototype and the studied issue is connected
with its mathematical modelling. A developed mathematical model will allow to
design of a proper control algorithm, which is the issue for further investigations.

The scale of the device remains unchangeable for the cargoes in the range
of approximately 5...12 kg. Increasing the transported masses needs increasing of
device scale, and vice versa. However, this issue lies out of the scope of the current
study. It allows for the accomplishment of the transporting of the cargo that is
placed on its platform across public roadways. The device’s balancing is secured
by means of a special mechanism (item 4 in Fig. 1, a). Its working principle lies in
shifting the device’s center of mass when tilted from the equilibrium position. The
shift occurs due to the deviation of the rear wheel from the device's frame, driven
by a stepper motor (position 5 in Fig. 1, a) NEMA 23 57BYGH2100-4004A-8 (step
value of 1.8°, rated current of 4 A, torque value of 2.7N-m. The latter, through the
belt drive, tilts crankshafts, which are hinge-mounted on the fork of the rear wheel
(Fig. 2).

Arduino Nucleo F446RE development board (item 7 in Fig. 1, a) is used for
controlling the process of the device stabilization and kinematic characteristics
experimental data record. 9-axis gyro-accelerometer MPU9250 (item 6 in Fig. 1, a)
is connected to the board.
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b)
Fig. 1. Device for transporting small-sized cargo: a) 3D-model; b) lab installation

In the Fig. 1, a) the following notation are used: 1 - rear drive motor wheel,
2 - sensor of the rear wheel’s slew, 3 - frame of the device, 4 - balancing mechanism,
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5 - stepper motor, 6 - 9-axis gyro-accelerometer, 7 - control board, 8 - rotary support
with the wheel slew mechanism, 9 - front drive motor wheel.

400

T "\G

P ® ~

\/'@

{
| [~ |
\

N r’%

Fig. 2. The k1nemat1c scheme of the device for transporting small-sized cargo augmented with the
main dimensions of the device

In order to build a mathematical model of a considered dynamic system,
experimental data at its balancing was collected, specifically: the tilt angle o of the

device and the angular velocity of the stabilization mechanism £ (Fig. 3).

Fig. 3. Indication of angles o and
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Due to the fact that the accelerometer and gyroscope data obtained from the
MPU9250 module is affected by noise, a complementary method of determining
the tilt angle of the device is employed [20]. The following expression is used for
this purpose:

ai = Kgyroagyro.i_ (1 - Kgyro)aaccel.i, (1)
where i — the subscript that indicates the number of the signal measurement cycle;
Kgyro — the subscript that determines the weight of influence of the gyroscope data
(Kgyr0=0,985) when determining the angle a;; aacceri — the angle that is obtained
using the accelerometer, which is determined using the following expression:

Oacceli= 57,29 - arcsin (uy.; / g), ()
where u,; — the acceleration of the device along the horizontal axis; g — the
acceleration of gravity; agy.i —the angle that is obtained using the gyroscope, which
is determined using the following expression:

Ogyro.i — Q-1 + (¢.i-1 + o z.i)/2 : At, (3)
where ¢.;.1 and ¢.; — the previous and current value of angular velocity obtained
using the gyroscope; Af — the time between the measurements (At=0.0036 s). For
the first measurement cycle, ao=0 is set.

The gyroscope data is processed using a digital moving average filter [21].
The filter’s window size comprises three measurements.

A PD controller is used to collect data of the device’s position relative to the
vertical axis stabilization. The controller receives the tilt angle o of the device as

input, producing the angular velocity of the stabilization mechanism’s tilt ,8 as

output. For the PD-controller, values of the proportional and differential component
coefficients are selected empirically. Both are equal to three. These specific values
allow for stabilizing the device’s position relative to the vertical axis. The work of
this controller may only be considered as a temporary measure that allows for
collecting an experimental data array in the process of stabilizing the device’s
position.

The device for transporting small-sized cargo requires position stabilization
only in one plane. Therefore, characteristics that describe the motion of the device
in the plane that is perpendicular to its functional motion direction are chosen for
building a mathematical model. One characteristic is the tilt angle a of the device
(Fig. 4a) which controls the tilt of the system relative to the vertical axis, and the
other characteristic is the angular velocity of the stabilization mechanism’s tilt ﬂ
(Fig. 4, b) that changes the control influence in the process of the device’s position
stabilization.

The experimental data record is organized in batches. An array of data
comprising 8405 elements is assembled in the form of a time series. The experiment
lasted approximately 30 seconds.
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1S
b)
Fig. 4. Experimental data: a) the tilt angle o of the device; b) angular velocity of the stabilization

mechanism ﬂ

Neural network technologies are employed to build the mathematical model
of the dynamic system of the device for transporting small-sized cargo. ANNS,
created by analogy with the functioning of condensations of biological neurons, are
mostly presented as feedforward neural networks. The usage of feedforward ANNs
is typically limited to statistical problems that do not consider the time coordinate.
Thus, an ANN of another type, specifically an RNN, should be used for problems
of time series forecasting. They also have certain constraints, for example, they
almost do not consider states of the system that are obtained more than 10 time
steps back. This is due to the vanishing (or “explosion”) of the error gradient when
training an ANN. LSTM which can consider up to 1000 time steps depending on
the complexity of the ANN structure is devoid of this shortcoming [22]. This is why
specifically the LSTM was used for the mathematical modeling of the stabilization
dynamics of the device for transporting small-sized cargo.

The implementation of the structure, calculations, and training of the ANN
are accomplished in the Wolfram Cloud environment [23]. It consists of the input
layer, hidden layers, and output layer (Fig. 5). Neurons of the input layer (Fig. 5)
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receive a 10x2 matrix. It corresponds to ten time measurements of the system’s
state, each of which includes two characteristics, namely the tilt angle a of the

device and the angular velocity of the stabilization mechanism ,B . This number of

the system’s states is chosen because at lower values the LSTM has not allowed for
obtaining a high-quality forecast of the time series. The hidden layer consists of 3
layers each composed of 20 LSTM elements (elements 1-3 in Fig. 5). This number
was selected empirically. A SequenceLastLayer (element 4 in Fig. 5) which returns
the last value of the succession (a 10x20 matrix) of outputs of the previous layer of
the LSTM is used after the LSTM layers. The linear layer (element 5 in Fig. 5) is
the last one in this structure. Thus, the developed ANN structure receives 10 system
states as input and returns a one time-step ahead forecast.

O |
O R B E—
Cl Input d) q) q)
1 2 3 - 5
Input Port
Input: matrix(size: 10x2)
Output Port
Output: vector(size: 1)

Fig. 5. The ANN structure used in the research

After the ANN structure development, its training is conducted. Training,
validation, and test datasets must be prepared before the beginning of the training.
Each of the datasets must include normalized data which is necessary to avoid the
ANN “paralysis” phenomenon. For this, all data in the time series undergoes a
normalization process. For example, a normalized value of the tilt angle of the
device is calculated using the following expression:

dk — (ak _amin), (4)

X nax ~ i
where o — is the k-th value of the angle o in the time series; omin and omax are the
minimum and maximum values of the angle in the time series. Here and below the
upper symbol «*» means normalized values. A similar procedure is carried out for

the /3 data. All three datasets contain normalized data organized into training pairs:
XY, ()
where ¥ — the ANN output (a,,, scalar) that corresponds to the forecast of the tilt

angle ¢ in the subsequent time interval; £ — the number of the measurement that

takes values from 10 to 5379 (the volume of the training data); X — the 10x2 matrix
that is received at the ANN input and which is presented as follows:
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The validation data includes 1345 training pairs, and the test data includes
1681 training pairs. The ANN training is carried out using the ADAM method [24]
with a batch size of 100 and a total of 1000 training cycles (Fig. 6). The size of the
batch and the number of the training cycles R are selected empirically (Fig. 6). Upon
800 cycles of the ANN training the reduction of the error magnitude almost does
not occur, so the ANN may be considered trained. Apart from that, the analysis of
the error plot based on the validation dataset (Fig. 6) indicates the absence of the
ANN overfitting.
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Fig. 6. The error magnitude L during the ANN training on the training (black plot) and the
validation (gray plot) datasets

Upon training the ANN, a quality assessment of its forecasts is conducted
based on the test dataset. The determination of forecast errors occurs in several
stages. At first, an ANN forecast array is formed based on the test dataset:

Y = S (Xtest)7 (7
where Y, —is the ANN forecast array based on the test dataset; f— the nonlinear
operator of the trained ANN; X —is the input 10x2 matrix of the ANN from the

test dataset.

test

It is worth mentioning the originality of ANN testing for ten time-steps
ahead, which is applied in the current study. Since the dynamical controlled system
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is under consideration the forecast error (only for the case of ten time-steps ahead)
is carried out in the following manner. The ANN is fed by the matrix

. . . . . . . . . T
o _|:ka—9 Xs Ky K Hs Oy G Koo &Gy O
l - . . . D . . . . . .
Bis Bis Bia Biss Bis Bw Bis By B Bl

returns the scalar ¢&,,,. The next step: ANN is fed by the matrix

and

a7

and returns

% _|:ka8 %7 X Hs KGa Xy Gy Ky & Oy
2 - . . . . . . . . . .

ﬂk—S ﬂk—7 ﬂk—ﬁ ﬂk—S IBk—4 ﬂk—3 ﬂk—Z ﬂk—l ﬂk ﬂk+l_

the scalar &,,, . Note, that in the matrix X, the forecast &,,, of previous step and

the control value of the current step are used. The procedure must be continued until
d,.,, is obtained. Thus, for the ANN forecasting from the second to tenth steps the

data ,,fusion” is exploited: the forecasted angles @ and measured angular velocities

/3 form the ANN inputs.
Further, the ANN forecast error array is calculated:

E=Y w— Y (8)

A

where E — is the ANN forecast error array; Y,

., — s the ANN output (&,,, scalar),
that corresponds to the forecast of the tilt angle « in the subsequent time interval in

the test dataset. Upon that, a denormalization of the obtained data is conducted:

A

E-— 5 o )
o -

max min

Quality assessment of the ANN forecasting is conducted using four
indicators, two of which are absolute and two of which are relative ones. Absolute
indicators are obtained using the following formulas:

1 1681 5 10
e = [—:" e.,

€ = maxQe_i‘l (11)
where e; — is the j-th value of the forecast error in array E; j — the subscript that
takes values from 1 to 1681 (the volume of the test dataset).

Relative indicators are obtained using the following formulas:
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e
€RMS % :%.100%’ (12)
N
1681 &
- (13)

— max 0
e = -100%.
max aj‘

We further conduct the analysis of the obtained data.

4. Results and discussion

Verification of the performance of the ANN in forecasting the tilt angle of
the device for transporting small-sized cargo is conducted in two stages. In the first
stage, one time-step ahead forecasting is conducted, while in the second stage, ten
time-steps ahead are conducted. The obtained results are presented in Fig. 7. Fig. 7
demonstrates that the magnitude of the error is significantly smaller than the tilt
angle value. Additionally, values of numerical estimates (10) - (13) were calculated

and are provided in Table 1.
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b)
Fig. 7. The tilt angle of the device plot (dotted) and the ANN performance error plot (solid) based
on the test data when verifying the forecast 1 step ahead (a) and 10 steps ahead (b)

Table 1.
Estimates of denormalized forecast errors
Forecast horizon Estimates
CRMS, deg CRMS.%s % €max, deg €max.%s %
1 step ahead 1.24-102 8.11:10! 3.84-1072 1.68:10°
10 step ahead 5.08:1072 3.34:10° 1.65-10" 7.24:10°

In Fig. 7, a, the plot of the tilt angle error when forecasting 1 step ahead does
not show clearly defined patterns, while cyclic error changes can be observed when
forecasting 10 steps ahead (Fig. 7, b). Moreover, the average value of the forecast
error of the tilt angle of the device is displaced downwards relative to the Oj axis.
Thus, we can conclude that when conducting forecasts 10-time steps ahead, the
developed ANN on average returns values of the angle a that are underestimated.
Apart from that, in Fig. 8 shows an increase in the error magnitude at low values of
the angle .

In general, graphic dependencies (Fig. 7) and the calculated estimates (Table
1) give grounds for asserting that the developed ANN allows for the
accomplishment of high-quality forecasting of the future states of the dynamic
system (device), which allows for treating it as the mathematical model of the
device for small-sized cargo transporting.

The applied here approach makes it possible to indicate the negative shift of
the forecast error while the forecasting horizon is increased. Analysis of this fact
brings two original outputs: 1) there is a reasonable limit of forecasting when the
error becomes significant and further increasing of horizon forecasting is connected
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with unreliable data appearance; 2) the trend of the forecasting error shift may be
taken into account to correct the ANN outputs and to improve the quality of ANN
forecasting. The latter is an issue for further investigations, which requires a much
deeper understanding of the correlations ,,time horizon — ANN forecast error”.

In general, the proposed approach gives the technique for estimation of

ANNs forecasting errors, especially of middle- and long-terms forecasts. The
technique application helps to understand the evolution of errors forecasting with
relation to the forecasting term (for how many steps ahead the forecast is made).

1)

2)

3)

4)

[1].
(2].

5. Conclusions

In order to build a mathematical model of the device for small-sized cargo
transporting position stabilization dynamics an analysis of the up-to-date
scientific research on this subject is conducted. As a result of the analysis,
the “black-box™ approach is chosen for achieving the stated goals. It is
implemented by using an ANN with LSTM layers.

In order to train the ANN an experiment is conducted and an array of
experimental data in the form of a time series corresponds to the succession
of the system’s states (tilt angle «) and the applied controls (angular velocity
of the stabilization mechanism’s slew ,6’ ) is collected. The obtained data
array is organized into training pairs and separated into the training,
validation, and test datasets. The ANN training and the verification based
on the validation dataset have shown a high quality of forecasts and the
absence of overfitting.

When validating the trained ANN based on the test data it has been
determined that it returns a sufficiently high quality of the subsequent values
of the tilt angle a 1 and 10 time steps ahead forecast. Moreover, the quality
of the ANN forecasts decreases with the forecast horizon increasing,
however, such a decrease in the forecasting quality is not significant. For
example, for the erus. error, the quality of the forecast decreased by a factor
of 4 when increasing the forecast horizon by a factor of 10.

The obtained results allow for recommending the trained ANN as the
mathematical model of the device for transporting a small-sized cargo
position stabilization system, which will further be used for the synthesis of
an optimal system of the device position stabilization.
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