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ON UNCERTAINTY PRINCIPLE OF ORTHONORMAL SEQUENCES
FOR THE ¢-DUNKL TRANSFORM

Kamel Brahim®, Bsaissa Anis 2

In this work, using some elements of the q-harmonic analysis and the q-Dunkl
transform, for fixred q €]0,1[, we establish a g-analogue of uncertainty inequalities for
orthonormal sequences and prove a quantitative version of Shapiro’s uncertainty princi-
ple for the q-Dunkl transform. As a side results, we prove a variation of Donoho-Stark’s
uncertainty inequality, in particular, if f is eg-concentrated on S and Fg’q(f) s €x-
concentrated on X with | flly , = 1 and es + ex < 1, then [S||Z] > (1 — (es + ex))?

1. Notations and preliminaries

A Fourier uncertainty principle is an inequality or uniqueness theorem concerning
the joint localization of a function f and its Fourier transform F(f). Every discussion of
the uncertainty principle must necessarily begin with the classical uncertainty principle,
called the Heisenberg-Pauli-Weil inequality in which concentration is measured in terms of
dispersions. It states that for f € L?(R9)

d a2
2 FIZ ey |V (N2 ay 2 51512 gy, (1.1)
with equality if and only if f is a multiple of a suitable Gaussian function, where F is the
classical Fourier transform defined by

F()(E) = (2m) 2 / 1) f(x)d,

Rd
and (-,-), | - | are the usual inner product and norm on R.
Generalizations of this result in both classical and quantum analysis have been treated and
many versions of Heisenberg-Pauli-Weil type uncertainty inequalities have been obtained for
several generalized Fourier transforms.
Recently, considerable attention has been devoted to proving new mathematical formulations
and new contexts for the uncertainty principle.
In [18], H. Shapiro proved a number of uncertainty inequalities for orthonormal sequences
that are stronger than corresponding inequalities for a single function . More precisely, if
(¢n)pe, is an orthonormal sequence in L?(R?), then

sup (|7l 32 gty + NIEIF (o) 2 ) = o0 (1:2)

A quantitative version of Shapiro’s result (1.2) has been proved by Jaming and Powell [11]
and then by Malinnikova [14],
N

Vo> 0 YN 213 (e oulZan + N6 Flen) o) = ON1 (13)

n=1
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In [5, 8], the authors established a Heisenberg uncertainty inequality for the g-Dunkl trans-
form. In particular we have

l2l* FI2, + AP ESOIE = e1(s. )11, (1.4)

or equivalently
2] Flla g [N F5 () 12,0 = 2, @) 115, (1.5)

Motivated by these results, our purpose in this paper is to prove a quantitative version of
Shapiro’s mean dispersion theorem for the ¢-Dunkl Rubin transform. Also, the Donoho-
Stark’s uncertainty principle for the g-Dunkl transform is proved.
This paper is organized as follows: in this section, we present some notations and results
used in g-theory and useful in the sequel. Also, we recall some basic properties of the g-
Dunkl operator and the g-Dunkl transform introduced in [3]. In Section 2, we prove some
Donoho-Stark’s inequalities and finally in Section 3, we prove a g-analogue of uncertainty
inequalities for orthonormal sequences and show a quantitative version of Shapiro’s uncer-
tainty principle for the ¢-Dunkl transform.

For the convenience of the reader, we collect here some usual notions and notations
used in the g-theory and useful in the sequel. For more information on the g-theory we refer
the reader to [10, 12, 17]. Throughout this paper, we will fix ¢ €]0, 1] such that ng(;;]) € 27.
We note _

R, ={xq";neZ}, Ry + ={q";n € Z} and R, = R, U {0}.

For a € C; the g-shifted factorials are defined by

n—1 e}

(@q@o=1; (a,¢)n =0 —ag"); (a,9)ec = [J(1 - ag™.
k=0 n=0
We also denote for all z € C and n € N
1—q° (¢, n
], = i nl ! = ————.

In [16], Rubin defined a g-analogue differential operator by
9,(f)(2) = fla'2) + f(=q7"2) — f(g2) + f(—qz) — 2/(2)

21 —q)z
The ¢-Jackson integrals are defined by [10]

. (1.6)

@y = (- 00X e [ T@dge= [ f@dg— [ f@)dg
0 a 0 0

k€EZ
and -
/ f@)dgr = (1— ) S (F(@") + f(=q")
-0 nez

provided the sums converge absolutely.
Using the g-Jackson integrals, we denote by:

o 12,Re) = {f < Ifl,, = (S 1 F@P P dga)b < oo},
® ngq(Rq) ={f: ||f||oo,q =sup{|f(z)] : z € R;} < 0}

For the particular case p = 2, we denote by (.,.) the inner product of the Hilbert space
Li,q(Rq) as

“+o0
(f.9) = / F@)g(@)]a P dy.

— 0o
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In the following, we recall some basic properties of the g-Dunkl operator and the g-Dunkl
transform introduced in [1].
For a > —1, the ¢-Dunkl operator is defined by

f(z) = f(=x)

2x ’

Aaq(F) (@) = 9g[Hao(H)(z) + [2a +1],

where
Houq : f = fe + fo — fe + q2a+1f0a

fe and f, are the even and odd parts respectively of the function f.
It was shown in [1] that for each A € C, the function

AT

o, 2
[2a+2]qja+1()‘xaq )

Y9z = jo (AT, ¢?) +

is the unique solution of the g-differential-difference equation

Aog(f) =1iAf, f(0)=1
where j, (7, q?) is the normalized third Jackson s g-Bessel function given by
i (n+1)
. 2\ _ _1\n qn
Ja(@,q") = Z( 1) (@, 2)n (2D ¢2),,

n=0

The g-Dunkl transform F7)'? is defined on L}, ,(R,) by (see [1])

(1= q)a)™. (1.7)

a, Ca, o a, «
FRUH0) = %52 [ @t @l dye (1)
_ (4g¢~*
for all A € Rq where Coa,q = W

This transform satisfies the following properties(see [17]):
e For f e Ll (Ry):

«@,q 2 «,q
IEE Dl < il (19)

e Forall f e L], ,(Ry) such that zf € L, ,(R,)
Fp"(Rag(5) =AFU(N),  Mag(FRU() = —iF5"(f).  (110)

e The g-Dunkl transform F7'? is an isomorphism from L(Zl, 4(R,) onto itself and satisfies
the following Plancherel formula:

D (P lg = 1 ll2,q0 (1.11)

eVzeR,  (FR)THFRUN))(@) = flx) = 5= [T FRU(H NG (VAP A

The g-analogue of the Heisenberg uncertainly principle is given by (see [5])

Theorem 1.1. Let s >0, o> —1 and f € L2 ,(Ry) then

el fll NP ER ()l g = (s, I flla g (1.12)

where c(s,q) s a constant which depends on s and q.
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2. An L2 (R,) Donoho-Stark "s uncertainty principle

In this section we will prove a g-analogue of the variation on Donoho-Stark “s uncer-

tainty principle for L2 ,(R,).
A subset T' C R, is said to be measurable subset of R, if

7] :/ xr(@)|22* < oo,

— 00

where xr is the characteristic function of T

The time-limiting and the frequency-limiting operators on Li’q(Rq) are defined by

Bsf=xsf;  Fef=Fp") " IxsFp(f)]
where S and ¥ are measurable subsets of R,.

Definition 2.1. Let 0 < e <1 and f € L2 (R,) then

(1) A function f is said to be e-concentrated on S if: ||Ese f[ly , < €[ flly,,-

(2) Fp*(f) is said to be e-concentrated on ¥ if: || Fse fly , < €l f]l5,-
Lemma 2.1. FyEg is a Hilbert-Schmidt operator with the kernel:

B(t, ) / BN @ ()P g
2 too pieo 21,12a+1 1 2a+1 4C?xq
F2Es| s :/ / [(t, ) [[t]™ T 2™ dgtdgr < —5-[S||X].
o (,9)%
Proof. We have
(FsEsf)(\) VU2) (Fy U (Esf)) (@) |z dga
v / VAL Dl g
By Fubini’s theorem we obtaln
(FsEs f)(\) = ’q/f /w ) (1) a2 ) |2 d gt
so that
(FsEsf)(A / FOkE N[ dgt
where
E(t,\) /%’q (1) 2P

Let g+(\) = k(t, ) then the inversion formula shows that
Fp(ge)(A) = Oxz(NYIN ().

By the Plancherel formula it follows

/ lg¢(s) " s!* quSZ/ IF5 (g WP A < p q’g 2.

oo o (4, 9)%

Hence, integrating over ¢ € S, we obtain the desired result.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

O

Theorem 2.1. Let S and X be a g-mesurable sets such that f is eg-concentrated on S and

FR(f) is es-concentrated on X3 and suppose that || fll, , =1 and es +ex < 1. Then

[S[[3] = (1= (es +ex))*.
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Proof. The norm of an operator @ is defined by:
1Rl
Q= suwp ———.
geL? ,(Ry) ||g||2,q
By the triangle inequality we have
If = FsEsflly, < If = Fsfllyg + 1P f — FsEsfll,,
<es+ |[Fs|llf — Esflly, <es tes
then
[FeEsfllo,y =1 — (s +e€s).
Therefore
[[FeEslll, 21— (ex + €s).
Using Holder’s inequality, we obtain
2 e 2a+1 2 2a+1
IFspsrl, = [ | [ s on a1 e
2 e 2, 12a+1 2041
Ul [ [ IR ORI dt
By Fubini-Tonnelli’s theorem and Lemma 2.1
2caqll fll;
[FeEs fllsq < 1flloq[FeEsllys < W\/ |S]1%].
Thus, the proof is complete. U
Definition 2.2. For f € L), ,(Ry) N L2 (R,). We say that
(1) f is e-timelimited on S if:
||fXSu||17q S €||f||17q'
(2) f is e-bandlimited on ¥ if
1Ep (f)xsellz,q < €llfll2,0- (2.20)

Theorem 2.2. Let 0 < €1,e2 < 1, S, ¥ be a pair of g-measurable subsets of R, and f €

L Ry NL2 (Ry). If f is ey-time limited on S and ey -bandlimited on ¥ then :

1SIIZ1 > (1 - e)*(1 — €)(¢,9)%-
Proof. We have

1fxsllg = [1fll1,q = [fxsell1,4
hence

1 xsllg = (L =€)l fll1q-
Using the Cauchy-Schwarz inequality, we obtain

Fxs|li g < ISIIFIZ,q
So
ISIIFI5,q = (1 =€) || 4
On the other hand, we have
2 2 2
IER (Fxslly,, = 1FD (Ol — IFp (Fxselly,,
From (1.11) and (2.20) we get

o, 2
1ED (Fxslla, = (1= e)IIfI5,

(2.21)
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Then , 5
4ez |2
o, 2 o, o,
||F‘Dq(f)XEHQ,qS |Z|||FDq(f)||c2>o,q§ (q ;)2 Hf”%,q
Consequently
4c2 13|
«,q f 2 > ]._62 f 2 .
oz I, > (1= DI,

By (2.21) we obtain:

2
it > @D ey - )
«,q

3. Uncertainty principle for orthonormal bases

In this section we will prove an uncertainty principle for orthonormal bases for
L(Q),q(Rq)

Theorem 3.1. Let (gon)gzl be an orthonormal system in L2 (Ry) and let S and X be two
measurable subsets of R,. Assume that

[Escnllyy < an ;i [[Fxenllyy < bn

then
2

N

3 3 4c,
S (1= Za, = Sby) € —2L |55,
~ 2 2 (¢:9)2%

Proof. We consider the corresponding self-adjoint operator

Q = (FxEs)"(FxEs) = EsFx,Es.

Since
9 4ci’q
tr(Q) = [[FeEs|ys < e IS||]
I oo
we have
N 4c?

@,
> {Qen,on) < t1(Q) = |FuEs|ys < —=2-|5]15].
= (¢:9)3

On the other hand,
<Q30n790n> = (FZESSDTL;ESQDTL)

= (¢n,n) = (¢n — Espn, n)
- <ES<Pna Pn — F2¢n> - <FEES<Pna Pn — ESWn> .
It follows that
<Q§0na 90n> Z 1 - 2an - bn

and
N 4 2
S (1= 2a, — by) € —2_|S]|5). (3.22)
— T T 9%

Now, if we consider the operator

Q = (Esky)" (Esky)
we get similarly
N 2

4cq
(1 —an —2b,) < 0.4 IST1%]. (3.23)

n=1
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The desired result follows by combining (3.22) and (3.23).

The following corollary is an immediate consequence of Theorem 3.1

Corollary 3.1. Let rg,71 > 0 and let 0 < €1,€e5 < 1 such that €1 + €2 < %, let (gon)flvzl be an
orthonormal system in L2, (Ry) such that @, is e, -concentrated on a set By, = RyN]—rq, ro
and Fry(¢y) is ea-concentrated on a set By, = RyN| —rq1,71[ for eachn=1,...,N, i.e.

J

Then

[on(®) 1t dgt > 1 - ;/ F5 (pn) (W) Jw** T dw > 1 - 6. (3.24)

™0 Bry

- 16ci’q(r0r1)20‘+2 .
T (1-3932)(q,9)% [2a + 22

Another immediate application of the localization inequality is the g-analogue quan-
titative version of Shapiro Umbrella Theorem.

(3.25)

Corollary 3.2. let A, B > 0 and {pn}N_; be an orthonormal system in Li’q(Rq) such that
lal*@ullo, < A° and & Fy(en)ll,, < B".

Then
N < c(s,q)(AB)***2,

2 1(a+1)

where c(s,q) = 64+ 47

@)% RaTa]
Proof. Let rg = 45 A and ry = 4%3, we have

2 2a+1
| leal) el e

%
1 1
—2 2 2 20+1 2
:/B 2|~ = en (@) Pl dgr < 2o llalenllz , <

c
70

1
16

SO @, is i—concentrated on By, and in the same way we prove that F'? is i—concentrated

on B,,. The desired result follows from Corollary 3.1. O

Theorem 3.2. Let s be a positive real and (on),, be an orthonormal sequence in L? ,(Ry).
Then there exists a constant C(«, s,q) such that
N
5 2 5 s 2 1_;'_#
D Uzl eally g + NN F5(0n)ll5,,) = Cla, s,q) N 25D, (3.26)
n=1
This theorem implies in particular that, if the elements of an orthonormal sequence
and their g-Dunkl-Fourier transforms have uniformly bounded dispersions then the sequence
is finite.

Proof. Let (¢n)n be an orthonormal sequence in Ly 4(R,). For each k € Z we define

P = {n s maa {{llal* eully o IINF5 " (oa) | € (2257, 2%]}

then

< 2sk

el @nlly,y < 2% and  [[IAFF5*(0n)lly, <

whenever n € P,. From Corollary 3.2, deduce that the number of elements in U?:_ oo Pj
is less than c;(a,s, )42+ where ¢;(a,s,q) is a constant that does not depend on k.

This shows that when ¢ (a, s, ¢)42*(®+1) < 1, the number of elements in U;.C:foo P; is null.
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Consequently, there exists kg such that Py is empty for all k£ < k.

For given N > 2¢1(«, s, q) choose k such that

2¢1 (e, 5, q)4%F @) > N > 2¢) (a, 5, q)42F~ D@+ Then at least half of {1,..., N} . does not
belong to Uf;ll P; and we obtain

N 9 N
s 2 o a, s(k— s
Z(|||a:| enlly, + H\)\|2 Hpea(p ) ’2 ) > 54 k=1 > 4(q, 5,q) N 2@
n=0 4
For N < 2¢;(a, 8,¢q) we have
N 2 45(ko—1) s
Z(|||$|€§0n||;,q + H|)\|2()/+1Fg7q((pn)H ) Z N4S(ko*1) Z —— N1+2(a+1)
n=1 2.9 (zcl(aa Saq))z(a+1>
this achieve the proof. O
We deduce the following result
Corollary 3.3. Let (¢n)n>1 be an orthonormal sequence in L2 (Ry), then
sup (|12l @nll,y + 1€ FE (en)l,,, ) = oo (3:27)
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