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SOLITARY WAVE AND SHOCK WAVE SOLUTIONS OF THE
VARIANTS OF BOUSSINESQ EQUATIONS

Houria Triki, Abhinandan ChowdhuA? and Anjan Biswa&*

This paper obtains the solitary wave as well as the shock waltgions
of the variants of the Boussinesq equations in bothl(land (12) dimensions.
The domain restrictions are also identified in the process.
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1. Introduction

The theory of nonlinear evolution equations (NLEES) is g/wemportant area
of research in the fields of Applied Mathematics and Theoaéthysics [1-15].
There are various issues of NLEEs that need to be addresdexte Tnclude the
integrability aspect, conservation laws, wave interaxgtiand many more. In this
paper, the first aspect is going to be studied in detail fomagieneralized versions
of familiar NLEEs.

There are various tools that have been developed in the pagkecof decades
that enables the issue of integrability of NLEES to be adordsvith ease. Some
of these familiar tools of integrability are variationaiation method, semi-inverse
variational principleG’ /G—expansion method, exponential function method, Fan’s
F-expansion method, simple equation methi@hh-coth method, just to name a
few of these techniques. These techniques lead to sevads &f solutions that the
Theoretical Physicists and Applied Mathematicians ne@atry out further studies
in these areas.

Once these solutions are available, it is not a difficult tassarry out further
studies related to NLEES, including the computation of eowsd quantities, wave-
wave interactions, quasi-stationary solutions in presafiperturbations and many
other aspects of NLEEs. Therefore it is of prime importarcérst focus on the
integrability aspects of NLEES to retrieve various solnsi@f NLEES, for example
the cnoidal and snoidal waves, solitary waves, peakonpotissand others.
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2. Governing Equations

This paper is going to focus on the integration of a genezdlizersion of
Boussinesq equation (BE) that comes with three variantesdlgeneralized vari-
ants will be studied in both (£1) and (}1-2) dimensions. These three variants
will be respectively labeled as Variants I, 1l and lll. Thectrs, in this paper, will
be on solving these variants of the BE for solitary wave soh# and shock wave
solutions.

These equations arise in the area of Applied Mathematicsgenaralized
version of the regular BE. Rosenau generalized the KdV eguabd formulate
the K(m,n) equation. Later this equation was further generalized tmfate the
K(m,n) with generalized evolution. Similarly the BE was genemdizo formulate
the B(m,n) equation, that was solved in 2009 [1]. Another kind of gelieation
of the BE was given by Wazwaz in 2005 [10, 11]. In this papes,ttiree variants
are a further study of the three variants given by Wazwaz 052@ith generalized
evolution. It is well known that both KdV equation and BE spulle shallow water
waves.

3. Variant-I|

We first consider the Variant | of the improved Boussinegeetgquation:

Ut — K2 Uy — k%uyy —a (uzr‘)xX —bu"(u"), 0, (1)

X] XX

whereu(x,y,t) represents the wave profile, depending on the space cotegina
andy, and the time variable The subscriptg, y andt denote partial derivatives
with respect to these variables, amdb € R are constants.

In (1), the first term is the evolution term, the second andttie terms
represent the dispersion terms in th@ndy-directions respectively, while the last
two terms are the nonlinear dispersion terms.

3.1. Solitary Waves. We start the analysis by assuming a solitary wave ansatz of
the form [1-4]

A
Uy t) = cosiPt @
where
T = Bix+ Byy— vt 3)
and
p>0 (4)

for solitons to exist. Here, in (2) and (3),represents the amplitude of the soliton,
v is the velocity of the soliton whil8; andB; are the inverse widths in theandy
directions, respectively. The expongnis unknown at this point and its value will
be evaluated in the process of deriving the solution of thisa¢éion. Substituting
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(2) into (1) yields
p?A (V2 —kiBf —kZB3)  p(p+1)A(V?—k2Bf —k3B3)

— 5
costP 1 cost? 1 )
+2n pA2"BZ {a-+ 2anp+bBZ (4n3p3+ 7n?p? + 6np+2) }
cosH"P+21
_An’p?BIAT (a+ brPp?B])  2A%'Blbnp(np+1)*(2np+3) _
cosi"Pt cosH"PH4 1 '
From (5), equating the exponerisnd(2pn+ 2) gives
p=2pn+2 (6)
that leads to
p=2/(1—2n) @)

which is also obtained by equating the exponents (gair 2) and(2pn+4).

Now, the functions, LcosH'P*) 1 for j = 0,2,4 in (5) are linearly indepen-
dent. Thus, their respective coefficients must vanish.irgetheir coefficients to
zero gives the system of algebraic equations:

p?A (V*—kiB2 —Kk3B3) +2npA2"B? {a(l—i—Zn p)
+bBZ (4n®p3+ 7n? p?+-6n p+2)} —0 (8)

p(p-+1)A (V2 —kiBZ — k3B2) +2A?"Bibnp(np+1)?(2np+3) =0  (9)

4n?p?BIA?" (a+ brPp?Bf) =0. (10)
Solving the above system yields:
1
20B? (43 +2n°+1) | | 2
V= {k%BiJrk%B%— nA?"1B? |a+ 2an+ —2 ((1 —12_n)2 +3 } (11)

1
2bnAN-1B4) 2
V= {k%Bﬂk%B%—W} (12)
and
1-2n a

Now, equating the two values of the velocitjrom (11) and (12) yields the expres-
sion of the inverse widtB; that is given by (13). This shows the consistency of the
used method.

Further, the expression (13) implies that the soliton wilsefor

ab< 0. (14)

Therefore the bright soliton solution of Boussinesq equmefl) is given by

Uy t) = —— 2 (15)
coshi=2n (Byx+ By — vt)
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where the velocity of the soliton is given by (11) or (12) ahd tnverse widtiB;
of the soliton is given by (13).

Finally, it is necessary to have< 1/2 as seen from (4) and (7). Notice that
the bright soliton solution (15) exists provided tladit< O.

3.2. Shock Waves. In order to look for the shock waves solution to (1), the start
assumption is [8]

u(x,y,t) = Atani’ (Bix+ By — vt) (16)
where
T =Bix+Byy—wvt @n
and
p>0 (18)

for solitons to exist. Herd, B; andB, are free parameters, whilerepresents the
velocity of the soliton. The value of the unknown exponpwill be determined
during the course of derivation of the soliton solution of (1

Substituting (16)-(17) into (1) yields

pva{(p—1)taan‘2r—2ptanh°T—|—(p+ 1)tanH°+2r}

—kszBf{ p—1)tantP~21 —2ptantP 1+ (p+1)tanH+2 1 }
—k%pAI%{ p—1)tant’~27 —2ptantP 1+ (p+ 1) tanP+2 1 }
—2apnA?”B§{(2pn—1) tanhz'omzT—4pntanhz'°”T+(2pn+1)tant?p”+2T}
—2bpnA"B}{(pn—1)?(2pn—3)tanifP™ 1+ (pn+1)2 (2pn+-3)tanttP e

—{Zp‘zn2 (2pn—1) +4(pn— 1)3} tanttP21

—{2p2n2 (2pn+1) + 4(pn+1)3} tantPP2 1

+{8p%n*+(pn—1)2 (2pn—1)+(pn+1)? (2pn+1) } tanttP" 1} = 0 (19)

From (19), equating the exponergsand 2on+ 2 givesp = 2pn+ 2 so thatp =
2/(1—2n). It needs to be noted that the same valugpds yielded when the
exponents paip+ 2 and 2n+ 4, and the exponents— 2 and 2n, respectively,
are equated with each other. .

Thus, the linearly independent functions in (19) are t8hhr, wherej =
—4,-2,0,2,4. So, from (19), each of the coefficients of these linearjepen-
dent functions must be zero. Setting their respective coeffis to zero yields the
following parametric equations:

pVPA(p—1)—kZ2pAB: (p—1)—k3pAB3(p—1) + 8ap’n’A2"B2
—2bpnA"BT {8p*n®+ (pn—1)%(2pn-1) + (pn+1)%(2pn+1)} =0 (20)
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— 2pAVPA+ 2k2 p?ABE + 2k3p?AB3 — 2apnX"B3(2pn+ 1)

+2bpnA"BT {2p?n? (2pn+1) +4(pn+1)3} =0 (21)
{PPA-IZPAB] - KBPABS } (p-+ 1)~ 20pnA"B(pn+ 1)% (2pn+3) = 0 (22)
—2apnA"B2(2pn— 1) + 2bpnA"B} {Z(pn)2 (2pn—1) +4(pn— 1)3} =0 (23)
—2bpnA"BY(pn—1)%(2pn—3) = 0. (24)
To solve (24), we have considered firstly the cpge- 1 = 0. This yields
1
p= n (25)
Substituting (25) into (23) gives
a
Bi=1/25 (26)
which forces the constraint relation
ab> 0. (27)
Substituting (25) into (20), (21) and (22), respectivelyeg
1
2aB? — 100B7) A1 ] 2
V= {k§B§+k§B§—( | - 1) } 28)
1
38bB} —3aBZ) A1) ?
V= {k§B§+k§B§+( L 12 1) } (29)
and
1
v={kZB? + k3B3 +2bA"" 1B} 2. (30)

Equating any two values offrom (28), (29) and (30) gives the the same value of
B1 given in (26). Notice that the second cagm;2 3 = 0 is not considered here as
it does not give a unique value Bf.
Thus, finally, the shock waves solution to the Boussinesqtopu (1) is given
by
u(x,y,t) = Atanhcz (B1x+ By —vit) (31)

where the free paramet&; is given by (26) and the velocity by (28) or (29) or
(30). Notice that this solution exists provided timat 1/2 as seen from (18) and
p=2/(1—2n)andab> 0.
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4. Variant-l1

In this section, we consider the variant Il of the improveduBsinesq equa-
tion:

(ul>tt — K (UM —a (u2n)xx —bu"(U")y i = 0. (32)
The focus will be on searching the bright and dark solitomsohs to (32).

4.1. Solitary Waves. The starting hypothesis is the following [1-4]

u(xt) = (33)

cosi 1
where
T = B(x—vt). (34)
Here, in (33)-(34)A is the amplitude of the soliton whileis the velocity of the
soliton andB is the inverse width. The exponerss unknown at this point and
their values will fall out in the process of deriving the sadn of this equation.
Substituting (33)-(34) into (32) yields
P2l 22AIB2  pl(pl+1)VAB?  K2p?mPA™B2  k2pm(pm-+1)ATB2

cost' 1 costP*2t  cos™r costP™? 1
4n2 p2A2n82 (a_|_bn2 pZVZBZ) anp(np+ 1)2 (an+ 3) AZnVZB4
cosi"Pt cosi"PH4 1
2npA"B? {a(2np+ 1)+b (4n3p3+7n?p?+6np+2) v2B?}
+ 5 =0. (35)
cosi"P+2 ¢
Now, from (35), matching the exponents of cB8h? T and cosR"P+* 1 gives
pm+2=2np+4 (36)
so that
-2 37)
P~ m—on

which is also obtained by equating the exponents of ¥8stand cosR"P*2 r func-
tions.
Also, from (35), equating the exponent of c8shand cosR™P 1 yields

pl = 2np (38)
and therefore
| =2n. (39)
Now, from (35), setting the coefficients of the linearly ipgedent functions
1/cosf?p”+1 T to zero, wherej = 0,2,4 gives the following system of algebraic
equations,
p?lA2AIB? — 4arf p?A?"B? — 4br* p*APV?B* = 0 (40)
2bnp(4n®p®+ 7n?p? + 6np+ 2) APV B — K2 p?nPATB?
— pl(pl +1)V2A'B? + 2anp(2np+ 1)A?"B? = 0 (41)
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2bnp(np—+1)2(2np+ 3) AZ"V?B* — k?pm(pm+ 1)A™B? = 0. (42)
Solving this system, one obtains
1
(V—a)m| ™™
A= —F— 4
_ (m—=2n) [(v2—a)
B= 2nv b (44)
Thus (44) introduces the constraint conditions:
b(VV—a) >0, v#0, v#+ya (45)
Hence, finally, the 1-soliton solution of the Boussinesqgatiqun (32) is given by
u(xt) = a (46)

coshn zn [B(x—vt)]
where the amplitud@ and the velocity are connected by (43) and the width of the
soliton is given by (44).

4.2. Shock Waves. In this subsection the search is going to be for shock wave
solution to the Boussinesq-type equation given by (32).tad sff, the hypothesis
is given by [8]
u(x,t) = Atank t 47)
where
T =B(x—Wwt) (48)

where in (47) and (48)A andB are free parameters amds the velocity of the
wave. Also, the unknown exponeptwill be determined during the course of the
derivation of the soliton solution to (32). By inserting j448) into (32), we obtain

plA' B2V {(pl —1)tani?' 21 — 2pltant' 1 + (pl + 1) tankP'+2 r}
—k?mpA"B? { (mp— 1) tanH"P~21 — 2mptani"P1 + (mp+ 1) tanH"P+2 7}
—2apn/&"B? {(2pn- 1) tanifP" 27— 4pntantfP't + (2pn+ 1)tanifP 27 }
—2bpnA"BW2 {(pn—1)2 (2pn—3)tanttP™ 41+ (pn+1)2 (2pn+3)tanitPM e

—{p?n® (4pn—2) +4(pn—1)3} tanttP™2 1
—{p?n® (4pn+2) +4(pn+1)3} tanttP™2 1
+ {8(pn>3+ (pn—1)2(2pn—1) + (pn+1)2(2pn+ 1)}tanr?p”r} — 0. (49)

By equating the exponentpm+-2) and(2pn+4) in (49) gives
pm+2=2pn+4 (50)
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so that
2

m—2n’
It needs to be noted that the same value of yielded when the exponents paim
and 2on+ 2, and the exponengsm— 2 and 2on, respectively, are equated with each
other.

From (49), equating the exponemkand Zon gives

pl =2pn (52)

p= (51)

so that
| =2n. (53)

Finally, setting the coefficients of the linearly independfinctions tanfP™ r,
for j =—-2,0,2in (49), to zero yields

plA'B2?(pl—1) — 2apnA"B2(2pn—1)

+2bpnA?”B4v2{2p2n2(2pn—1) +4(pn—1)3} ~0 (54)
—2p?12A BV + 8ap?n?AZ"B? — kK2mpA"B%(mp— 1) — 2bpnA"BH?
x{8(pn)°+ (pn-1)2(2pn-1) + (pn-+ 1)2(2pn+1) } =0 (55)
plA'B2V?(pl 4 1) — 2apnX"B2(2pn+ 1) + 2p?nPk’ATB?
+2bpnA€”B4v2{2(pn)2(2pn+ 1) +4(pn+ 1)3} ~0 (56)
—k?mpA"B2(mp+ 1) — 2bpnA"BYV?(pn+1)2(2pn+3) =0 (57)
2bpnA"BHV2(pn—1)%(2pn—3) = 0. (58)

To solve (58), we have considered firstly the cpge- 1 = 0. This yields

1
P= n (59)

Substituting (59) into the above system gives
1 /v2—-a

B=C 60

vV 2b (60)

1
2bB2y2 ™0

and

which shows that solitons will exist for

b<0 (62)
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if m—2nis an even integer. However,i— 2n is an odd integer there is no such
restriction but the soliton will be pointing downwards. alsom (60) the following
restriction is obtained
b(v—a) > 0. (63)
Notice that the second caspr?— 3= 0 in (58) is not considered here as it does not
give unique values oA andB.
Equating the two values gf from (51) and (59) gives the condition:

an=m. (64)

Also from the necessary conditign> O for the existence of the dark soliton solu-
tion (47) and (51) the following restrictions are obtained.

m> 2n. (65)
Thus, finally, the shock waves solution to the Boussinesaitgou (32) is given by
u(x,t) = Atanhm [B(x— vt)] (66)

where the the free parameté&sndB are given by (60) and (61).

5. Variant-111

Now, we consider the variant Il of the generalized-@—-dimensional of the
improved Boussinesq equation:

(u')tt—k2 (UM —an (U7"), —ap (uzn)yy— by [U” (U)o —D2 [u” (u”)yy] = 0 (67)
The focus will be on searching the bright and dark solitonsohs to (67).

5.1. Solitary Waves. The starting hypothesis for the solution to (67) is the same
as in the Variant | that is given by (2) and (3).
Substituting (2)-(3) into (67), we get

pAA2AT pl(pl+ DA KPpPmPATBE  k*pm(pm+ 1)A™BE

cost' 1 costP!t21 cosP™r cosP™2 1
B An?p?AP" (1B + 2B + byin? p?v2B2 + bon? p?v2B3)
cosi"Pt
N 2npA{(2np+1) (a1 B3 +aB3) +v2 (4n3p3+7n2p?+6np+2) (I01B2+byB3)}
cosh"P2r
2np(np+1)%(2np-+3) VA" (B2 + bB3) 0 (68)
cost"Pt4 1 B

From (68), equating the exponeris and Zp+ 2 givespm= 2np+ 2, so that
p=2/(m-2n).

It needs to be noted that the same valugad yielded when the exponents
pm+ 2 and 21p+ 4 are equated with each other. Again equating the exponapts 2
andpl gives Zp= pl, that yieldd = 2n.
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Again this same value @i is obtained on equating the exponemp2z-2 and
pl + 2.

Now from (68), setting the coefficients of the linearly indegdent functions
1/ cost"P+i 1 to zero, wherg = 0,2, 4 gives

p?I2VPAl — An?p?A?" (24 B2 + aB3 + bin®pV2B2 + bon?p?VB3) = 0. (69)

—pl(pl +1)VPA — K2p?mPA™BZ + 2npA"(2np+ 1) (a9 B2 + a2B3)
+2npA™N? (4n°p? + TP p? + 6np+ 2) (b1 BZ + byB3) = 0. (70)

k2pm(pm-+ 1)ATBZ — 2np(np+ 1) (2np+3) VA2 (B2 +- b,B3) = 0. (71)
Solving the above system gives the following unique valuthefsoliton amplitude

A .
2 2 2 m—2n
m(vc—aBS — axB
A— ( 1 12 2 2) (72)
2nk?B%

which forces the constraint relation

V#£ 1y /aB? + ayB3 (73)

in order to obtain nontrivial solutions.
Thus, the bright soliton solution to the generalized twmelnsional Boussi-
nesq equation (67) is given by

A
ux,y,t) = — (74)
coshn2n (Byx—+ By — vit)
where the amplitud@ as function of the soliton velocity and the inverse widths
B; andB; of the soliton is given by (72).
Finally, it is necessary to have > 2n for the soliton solution (74) to exist.

5.2. Shock Waves. Now, we are interested by finding the dark soliton solutian fo
the considered Boussinesq equation (67). To do this, wenus@satz solution of
the form (16) and (17) from [8]. Substituting (16)-(17) i), we have
plA {(pl —1)tant’' 21 — 2pltant’' 1 + (pl + 1) tanH'+2 T}
- kzpmA{“Bf{( pm—1)tantP™ 21 — 2pmtantP™r + (pm-+ 1) tantP™2 T}
—2pnA?" (ag B3 +a;B3) {(an—l) tanr?p”‘zr—4pntanf?pnr+(2pn-|-1)tanr?pn+zr}
— 2pnA2™ (y B +2B3) {(pn—1)?(2pn—3)tantfP™ 1+ (pn+1)?(2pn+3tanttP 41
—{ p?n? (4pn—2) +4(pn—1)3HtanttP™21 — { p*n? (Apn+2)+4(pn+1)°} tantf P2

+ {8(pn)3+ (pn—1)2(2pn—1) + (pn+1)? (2pn+ 1)}tanthnr} =0. (75)



Variants of Boussinesq Equations 49

From (75), equating the exponergsn and 2on+ 2 givespm= 2pn+ 2, so that
p=2/(m—2n).

It needs to be noted that the same valup sfyielded when the exponents pair
pm-+ 2 and 2n+ 4, and the exponengsm— 2 and 2n, respectively, are equated
with each other. Again from (75), equating the exponents &d pl gives 2Zap=
pl that yieldsl = 2n. Note that this same value @fis obtained on equating the
exponents pairsrip+ 2 andpl + 2, 2np— 2 andpl — 2. _

Thus, the linearly independent functions in (75) are f8fH 1, wherej =
+4,+2,0. So, from (75), each of the coefficients of these linearljependent
functions must be zero. Setting their respective coeffisiemzero yields

pIV2A (pl — 1) — 2pnA?" (a3 BS + a,B3) (2pn— 1)
+2pnAM2 (1,82 + byB3) {2(pn)2 (2pn—1) +4(pn— 1)3} —0  (76)
—2pAA2A 4 8p*n?A%" (a1B2+a;B3) —k*pmA"BZ(pm-1) — 2pnAT?

x (b1B+b,B3) {8p3n31L (pn—1)2(2pn—l)+(pn+1)2(2pn+1)} =0 (77)
pIVZA' (pl +1) — 2pnA?" (a;BZ + a;B3) (2pn+ 1) + 2k?p?mPA™B?
+2pnA™A (byBS + byB3) {2(pn)2 (2pn+1) +4(pn+ 1)3} -0  (78)

—k?pmA"Bf(pmH1) —2pnA™? (0 B +07B3) (pn+1) (2pn+3) = 0 (79)

—2pnA™VA (01Bf + b2B3) (pn—1)2(2pn—3) = 0. (80)

To solve (80), we have considered firstly the cpee- 1 = 0. This yieldsp=1/n.
Substitutingp = 1/n. into (76)-(79) reduces the above system to:

V2 — (a1B2 + a,B3) + 2v2 (01Bf + b2B3) = 0 (81)
2v2 — 2 (a1B% + aoB3) + 3KPA™ "B + 10v% (4B + b,B5) =0 (82)
32 — 3 (a1B? + a,B3) + 16k°A™2"Bf + 38v% (B + ,B3) =0 (83)

K2A™2"B2 2\ (IyBf + bpB3) = 0. (84)
From solving the above equations, one gets a unique valledfee parametek
such that .
V2 — (a1B2 +a,B3) \ ™ "
A= ( B2 (85)

which proves again the consistency of the used method. &lthat the casepgh—
3=01n (80) is not considered here as it does not give a uniquesvaiA. Now,
equating the two values gffrom p = 2/(m—2n) andp = 1/n gives the condition
4n = m. Lastly, we can determine the shock waves solution to Boessj equation
(67) with generalized evolution term as

u(x,y,t) = Atanhm-zn (B1x+ Boy — vit) (86)
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where the free parametaris given by (85). It is important to note that this solution
(86) exists only whemn > 2n which is in agrement with the equality4= m.

6. Stability Analysisand Numerics

The stability analysis for the parameter regimes in ordetife solitary waves
to exist will be summarized in this section. The modified i@s of the three
variants that are conformable for the existence of theagglivaves are respectively
given by

Uit — k%UXX_ kguyy— a(UZH)XX_ b [un (un)xx]xx - O’

(uzn)tt - k2 (um)xx_ a (UZH)XX_ b[un (un)xx]tt =0,

(uzn)“ — K (UM xx—an (UZn) xx a2 (uzn)yy_ by [u” (un)xx]tt_bz [un (un)yy] o 0

Thus, Variants-Il and -lll are the only ones that changed.edsh casel = 2n.
Hence, the stability criteria for the solitary waves to éxgsgiven in the following
table.

Stability Criteriafor the Existence of Solitary Waves
Variants || Nonlinear Wave Stability Criteria

Shock Wave n<i
Variant—I <2
- 1
Solitary Wave n<s
Shock Wave n<?®
Variant—I v <2
Solitary Wave n<?®
: Shock Wave n<d
Variant-IIl <2
Solitary Wave n<?®

The numerical simulations are carried out for BE in threeards. The shock
wave as well as solitary wave solutions are numericallyiobthfor all three vari-
ants.

In Figure 1, the soliton profiles for the BE with Variant-I asbown. The
parameter values that are chosenraze0.25,a=-2,b=3, ks =1, ko =1,t = 1.

In Figure 2, the non-shock wave and shock wave solitons fowBlEVariant-
Il are shown. The parameter values are 2, m=5,a=-2,b=3,k=1,t =1.
In this case, for non-shock wave solit@x;> 0, while for shock wave solitoA < 0.

In Figure 3, the non-shock wave and shock wave solitons fowBlE Variant-
[Il are shown. The parameter values are chosen tob@, m=5,a;=1,a, =1,
by =05, b,=1,k=1,t=1. In this case, parameté < 0 for both types of
solitons.



Variants of Boussinesq Equations 51

(a) Solitary Wave (b) Shock Wave

FIGURE 1. Boussinesq Equation with Variant-I
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FIGURE 2. Boussinesq Equation with Variant-I1|
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FIGURE 3. Boussinesq Equation with Variant-1lI

7. Conclusions

This paper obtains the solitary wave and the shock waveisnkibf the three
variants of the Boussinesq equation. For each of the varidn® solitary wave
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solution as well as the shock wave solution is obtained. Tdrarpeter domains
and restrictions also fall out of the analysis. The numésgaulations are also
given for all the variants. These results are very imporsanat new in the context
of nonlinear evolution equations.

These results will be definitely used to carry out the furthrealysis of these
equations. For example, one can possibly study these t&arath time-dependent
coefficients as opposed to the constant coefficients asstudthis paper [14]. The
Lie symmetry approach can also be used to compute the catiseriaws of these
variants. The soliton perturbation theory can also be stlith obtain the adiabatic
variation of the conserved quantities as well as the slomg&an the velocity of
the soliton. These results will be reported in future pudilmns.
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