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In this paper algebras with two binary diagonal fundamental opera-

tions are studied and conditions providing their term equivalence to ternary diag-

onal algebras are indicated. We show that the number of ternary term operations

alone determines the structure of the algebras.

Keywords: n-ary diagonal algebra, pn-sequence, minimal extension property

MSC2010: 20N15, 20M07.

1. Introduction

Many important types of algebras can be defined by axiom systems contain-

ing only identities. For example, groups considered as algebras (G, ·,−1, e) of type

(2, 1, 0) are defined by three simple identities, but groups also can be defined as

algebras with one binary operation satisfying one (rather complicated) identity (see

[13]). On the other hand, some varieties of algebras can by characterized by finite

or infinite sequences (p0, p1, p2, . . .), where pn determines the number of all distinct

n-ary term operations depending on every variable defined over any nontrivial alge-

bra from such varieties (for details the reader is refereed to Section 2). Moreover,

these sequences are very useful also in some algebraic constructions (for example see

[3], [4], [27], [28], [29]).

A diagonal semigroup (or a rectangular band ) is an idempotent semigroup

(G, ·) satisfying the identity xyz = xz. Equivalently, it can be characterized as a

semigroup satisfying the identity xyx = x (see [17]). Diagonal semigroups seem to

be firstly investigated by F. Klein-Barmen in [22], where distinct possible values of

the product aba for semigroup elements a and b were discussed. Nowadays they are

studied by many authors in various directions (see, e.g., [14], [18], [23], [35]) and

have many important applications (see, e.g., [32], [36]).

As a generalization to the case of an n-ary algebra (i.e., an algebra with one

n-ary fundamental operation for n > 1), J. P lonka introduced a notion of an n-ary
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diagonal algebra which is an idempotent n-ary algebra (A, f) satisfying the identity

f(f(x11, . . . , x1n), . . . , f(xn1, . . . , xnn)) = f(x11, x22, . . . , xnn)

(see [33]). Then, K. Urbanik proved that every diagonal algebra is term equivalent to

a binary algebra with finitely many fundamental operations (see [37]). In particular,

it follows from Urbanik’s construction that the clone of a ternary diagonal algebra

(A, f) is generated by two distinct diagonal semigroup operations, call them · and

◦, such that the operation · does not coincide with ◦ or its dual. That is to say,

the algebras (A, f) and (A, ·, ◦) are term equivalent. Therefore only algebras of the

form (A, ·, ◦) are here investigated.

The aim of this paper is to characterize the variety of ternary diagonal algebras

by their ternary clones. We show the number of ternary term operations alone

determines the structure of the algebras. The following four identities play a special

role in our considerations.

(xy) ◦ z = x(y ◦ z), (1)

(xy) ◦ z = (x ◦ z)y, (2)

x ◦ (yz) = (x ◦ y)z, (3)

x ◦ (yz) = y(x ◦ z). (4)

Our main result is given by the following statement.

Characterization Theorem. Let (A, ·, ◦) be an algebra with two semigroup fun-

damental operations. Then the following conditions are equivalent:

(a) (A, ·, ◦) is term equivalent to an essentially ternary diagonal algebra,

(b) p3(A, ·, ◦) = 6,

(c) (A, ·, ◦) satisfies exactly one of the identities (1) – (4).

Then the following classic combinatorial characterization of ternary diagonal alge-

bras (cf. [11]) is directly derivable from Characterization Theorem.

Corollary 1.1. The sequence a∗ = (0, 1, 6, 6, 0, 0, . . .) is the minimal extension of the

sequence a = (0, 1, 6) and an arbitrary universal algebra A represents the sequence

a∗ if and only if A is term equivalent to an essentially ternary diagonal algebra.

Recall that each diagonal semigroup (A, ·) is isomorphic to some semigroup

(X×Y, ·) with multiplication defined by (x1, y1) · (x2, y2) = (x1, y2). If elements

(x1, y1) and (x2, y2) are viewed as opposite vertices of a rectangle in X × Y , then

the products (x1, y1)·(x2, y2) and (x2, y2)·(x1, y1) are the remaining vertices of this

rectangle, see e.g. [2]. Following this, we get a nice geometrical interpretation of our

result. Consider a binary algebra with two diagonal semigroup operations (A, ·, ◦)

whose reducts (A, ·) and (A, ◦) are decomposed to (X1 × Y1, ·) and (X2 × Y2, ◦),

respectively. It follows from Characterization Theorem that the algebra (A, ·, ◦)

is term equivalent to a ternary diagonal algebra (A, f) if and only if these two

decompositions have a common refinement, that is (A, ·, ◦) can be decomposed to

a product X × Y × Z with two binary operations satisfying exactly one of (1)–(4).
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In particular, for X1 = X, Y1 = Y × Z, X2 = X × Y and Y2 = Z we obtain

a decomposition corresponding to the identity (1). Then the binary operations ·
and ◦ can be described as follows:

(x1, y1, z1) · (x2, y2, z2) = (x1, y2, z2) and (x1, y1, z1) ◦ (x2, y2, z2) = (x1, y1, z2).

If (x1, y1, z1) and (x2, y2, z2) are viewed as points of the 3-dimensional real space R3,

then the operation · represents the orthogonal projection of the point (x2, y2, z2) onto

the plane x = x1, whereas the operation ◦ can be viewed as the orthogonal projection

of the point (x1, y1, z1) onto the plane z = z2. Therefore the identity (1) states that

the superposition of these two projections is commutative.

The remaining identities, characterizing ternary diagonal algebras, correspond

to other groupings of the sets X, Y and Z and have similar geometrical interpreta-

tions.

2. Notation and terminology

An n-ary operation f of the set A is said to depend on the variable xi, if there

exist a1, . . . , an, b ∈ A such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ̸= f(a1, . . . , ai−1, b, ai+1, . . . , an).

If f depends on every its variable, then f is called essentially n-ary. Following this,

an n-ary diagonal algebra (A, f) with essentially n-ary fundamental operation f will

be called an essentially n-ary diagonal algebra.

For an universal algebra A, let pn(A) for n ≥ 1 denote the number of all

distinct essentially n-ary term operations of A and let p0(A) stands for the number

of all distinct constant unary term operations of A. Then, the sequence

p(A) = (p0(A), p1(A), . . . , pn(A), . . . )

is called the pn-sequence of the algebra A (see [10]). We say that an algebra A

represents a (finite or infinite) sequence (a0, . . . , an, . . . ), if pn(A) = an for every

n. Let a = (a0, a1, . . . , ak) be a finite sequence of non-negative integers. We say

that the sequence a has the minimal extension property if there exists an algebra A

representing the sequence a such that for every algebra B representing a, we have

pn(B) ≥ pn(A) for all n > k. Then the pn-sequence of A

a⋆ = (a0, a1, . . . , ak, pk+1(A), pk+2(A), . . . )

is known as the minimal extension of the sequence a (for more details see [11]).

The theory of pn-sequences of universal algebras was founded by E. Marczewski

and his Wroc law School back in the sixties. It began from E. Marczewski’s idea

of the characterization of algebras by their clones [31]. This – together with the

notion of a pn-sequence introduced by G. Grätzer [10] – originated a method of

identifying varieties of algebras with a numeric function pn, the function invariant

under the clone equivalence of algebras. As E. Marczewski expected, there are many

varieties of algebras uniquely determined by their pn-sequences (at least in some

classes of algebras), e.g., the variety of semilattices, distributive lattices or Boolean
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algebras (see [6], [25]). In the most spectacular case only one element of a pn-

sequence uniquely determines a variety of algebras (it is so, e.g., for the variety of

distributive lattices, some affine spaces or Steiner quasigroups, see [6], [7], [8], [24]).

The problem of characterization of these sequences, which uniquely identify some

varieties of algebras, is still open. But in many papers numbers implying algebraic

structures are indicated and pn-sequences of algebras are studied from distinct points

of view (see, e.g., [1], [16], [26]). There are two main general problems in the theory

of pn-sequences. The first is to describe all sequences which can be represented as

pn-sequences of algebras of a certain kind (see, [3], [12], [16], [21]). The second is to

determine which properties of algebras can be deduced from their pn-sequences (see

[4], [5], [20], [34]).

For a given algebra A = (A,F ), the smallest set containing all projections and

all elements of F that is closed under superpositions of functions is called the set of

term operations of A, or the clone of A (for details see [30]). Two algebras defined

on the same set are term equivalent if their clones are equal. Such algebras have the

same pn-sequences.

3. Auxiliary results

We consider here clones of algebras (A, ·, ◦), which both reducts (A, ·) and

(A, ◦) are not term equivalent essentially diagonal semigroups. The following four

ternary operations seem to be especially important.

f1(x, y, z) = (xy) ◦ z, f2(x, y, z) = x ◦ (yz),

f3(x, y, z) = (x ◦ y)z, f4(x, y, z) = x(y ◦ z).

The proof of Characterization Theorem is based on the following three main state-

ments.

Proposition 3.1. If (A, ·, ◦) satisfies one of the identities (1) and (2), then (A, ⋆),

where x⋆y = (xy)◦y, is a diagonal semigroup and (A, f1), where f1(x, y, z) = (xy)◦z,

is a ternary diagonal algebra term equivalent to the algebra (A, ·, ◦).

Proposition 3.2. If (A, ·, ◦) satisfies one of the identities (3) and (4), then (A, ⋆),

where x⋆y = y◦(xy), is a diagonal semigroup and (A, f2), where f2(x, y, z) = x◦(yz),

is a ternary diagonal algebra term equivalent to the algebra (A, ·, ◦).

Proposition 3.3. For the algebra (A, ·, ◦) we have

p2(A, ·, ◦) ≥ 6 and p3(A, ·, ◦) ≥ 6.

The proofs of these three propositions are the key part of this section. But now, let

us begin with the following observation.

Lemma 3.1. If (A, ·, ◦) is an algebra with two idempotent essentially binary ope-

rations such that xy is not equal to x ◦ y nor y ◦ x, then at least one of the term

operations f1 and f2 is essentially ternary. The same is true for the term operations

f3 and f4.
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Proof. First observe that f1(x, y, z) = (xy) ◦ z depends on z and also on at least one

of the variables x, y. Clearly, none of f1 and f2 is equal to a variable. Assume that

both f1 and f2 are essentially binary (and not essentially ternary), i.e., assume that

f1(x, y, z) = x ◦ z or f1(x, y, z) = y ◦ z and also, independently, f2(x, y, z) = x ◦ y or

f2(x, y, z) = x ◦ z. Then xy = (xy) ◦ (xy) = x ◦ (xy) or xy = y ◦ (xy) which yield

immediately xy = x◦x = x, xy = x◦y, xy = y◦x or xy = y◦y = y, a contradiction.

The dual statement for the term operations f3 and f4 can be proved analogously. �

Let g(x1, x2, . . . , xn) = f(σ(x1), σ(x2), . . . , σ(xn)) for some fixed n-ary term

operation f and a permutation σ of variables x1, x2, . . . , xn. Such defined term

operation g is denoted by f σ. In the case f = f σ we say that the permutation σ

is admissible by the operation f . The set of all admissible permutations for a fixed

term operation f forms a group which is called the symmetry group of f .

In the further considerations we assume that the operations · and ◦ are not

commutative.

Lemma 3.2. The symmetry groups of the term operations f1, f2, f3, f4 have only

one element.

Proof. Assume that the term operation f1(x, y, z) = (xy)◦z admits the transposition

(x, y), i.e., the identity (xy) ◦ z = (yx) ◦ z holds. Replacing in this identity x by

xy we get ((xy)y) ◦ z = (y(xy)) ◦ z. Since (A, ·) is a diagonal semigroup, the

last identity implies (xy) ◦ z = y ◦ z. Consequently, we have y ◦ z = (xy) ◦ z =

(yx) ◦ z = x ◦ z and finally, by idempotence of ◦, the identity x ◦ z = y ◦ z leads to

x ◦ y = y, a contradiction. Using again idempotence of the operations · and ◦, we

infer that for every permutation σ of variables x, y, z such that σ(z) ̸= z, the identity

f1(x, y, z) = f1(σ(x), σ(y), σ(z)) implies z = σ(z), a contradiction. Therefore the

symmetry group of the term operation f1 contains only the identity permutation.

For the term operations f2, f3 and f4 the proof is similar. �

If the symmetry group of an essentially n-ary term operation f of an algebra

A has k elements, then the clone of A contains exactly n!
k distinct essentially n-ary

term operations obtained from f by permuting of its variables. Therefore we have

the following.

Corollary 3.1. Every essentially ternary term operation fi, where i ∈ {1, . . . , 4},

induces six distinct essentially ternary term operations obtained by permuting of its

variables.

Lemma 3.3. If the term operations f1 and f2 both are essentially ternary, then

p3(A, ·, ◦) ≥ 12. The same is true for f3 and f4.

Proof. According to Lemma 3.2, the symmetry groups of term operations f1 and f2
have only one element. So, it suffices to prove that

(xy) ◦ z ̸∈ {x ◦ (yz), x ◦ (zy), y ◦ (xz), y ◦ (zx), z ◦ (xy), z ◦ (yx)}.
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Then every of f1 and f2, generates 6 essentially ternary term operations which are

pairwise distinct and, consequently, p3(A, ·, ◦) ≥ 12.

Obviously, the assumption (xy) ◦ z ∈ {z ◦ (xy), z ◦ (yx)}, leads to the com-

mutativity of ◦, a contradiction. Let (xy) ◦ z = x ◦ (yz). Then xy = (xy) ◦ (xy) =

x◦ (y(xy)) = x◦ y, which is impossible. If (xy)◦ z = x◦ (zy), then (xy)◦ z = ((xy)◦
z)◦z = (x◦(zy))◦z = x◦z and hence (xy)◦z is not essentially ternary despite the as-

sumption. More general, if (xy)◦z = σ(z)◦(σ(x)σ(y)) for an arbitrary permutation

σ of the set {x, y, z}, then (xy)◦z = ((xy)◦z)◦z = (σ(z)◦(σ(x)σ(y)))◦z = σ(z)◦z,

so (xy) ◦ z is not essentially ternary despite the assumption.

The dual statement for the term operations f3 and f4 holds analogously. This

completes the proof. �

Lemma 3.4. The term operation x ∗ y = f1(x, y, x) is not commutative and x ∗ y ̸∈
{y, yx, x ◦ y}. Moreover,

(a) x ∗ y = x ⇐⇒ f1(x, y, z) = x ◦ z,

(b) x ∗ y = xy ⇐⇒ f2(x, y, z) = x ◦ y,

(c) x ∗ y = y ◦ x ⇐⇒ f1(x, y, z) = y ◦ z.

Proof. All the statements are easy to prove using diagonality of the operations · and

◦. �

Lemma 3.5. p2(A, ·, ◦) ≥ 6.

Proof. Let x ∗ y = f1(x, y, x). By Lemma 3.4, x ∗ y ̸∈ {y, yx, x ◦ y}. Suppose that

x ∗ y ∈ {x, xy, y ◦ x}.

Case 1. x ∗ y = x. Then f1(x, y, z) = x ◦ z which means that f1 is not

essentially ternary. So, f2 must be essentially ternary (Lemma 3.1). Let x • y =

f2(x, y, x) = x◦(yx). Since f2 is essentially ternary x•y ̸= x. In the case x•y = y, by

diagonality of ◦, we obtain y = y◦y = (x•y)◦y = (x◦(yx))◦y = x◦y, a contradiction.

Hence x • y ̸∈ {x, y}. Also x • y ̸∈ {x ◦ y, y ◦ x} because f2 is essentially binary. If

x•y = xy, then z◦(xy) = z◦(x•y) = z◦(x◦(yx)) = z◦(yx), which contradicts Lemma

3.2. Let now x•y = yx. Then (yx)◦z = (x•y)◦z = (x◦ (yx))◦z = x◦z = (xy)◦z,

by Lemma 3.4 (a). This also contradicts Lemma 3.2. So, x•y ̸∈ {xy, yx, x◦y, y◦x}.
Assume that x • y = y • x. Since (A; ◦) is an essentially diagonal semigroup, we get

x = x ◦ x = (x ◦ (yx)) ◦ x = (x • y) ◦ x = (y • x) ◦ x = (y ◦ (xy)) ◦ x = y ◦ x,

a contradiction. Therefore x • y is not commutative.

Case 2. x ∗ y = xy. Then f2(x, y, z) = x ◦ y, by Lemma 3.4 (b), which

means that f1 is essentially ternary (Lemma 3.1). Consider the operation x ⋆ y =

f1(x, y, y) = (xy) ◦ y. Obviously x ⋆ y ̸∈ {x, y, x ◦ y, y ◦ x}. If x ⋆ y = xy, then

z ◦ x = f2(z, x, y) = z ◦ (xy) = z ◦ (x ⋆ y) = z ◦ ((xy) ◦ y) = z ◦ y, which implies

z◦x = z, a contradiction. For x⋆y = yx we have f1(x, y, z) = (y⋆x)◦z = f1(y, x, z).

This contradicts Lemma 3.2. So, x ⋆ y ̸∈ {xy, yx, x ◦ y, y ◦x}. Assume x ⋆ y = y ⋆ x.

Since (A; ◦) is an essentially diagonal semigroup, we get y = y ◦ y = y ◦ ((xy) ◦ y) =
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y ◦ (x ⋆ y) = y ◦ (y ⋆ x) = y ◦ ((yx) ◦ x) = y ◦ x, a contradiction. Therefore x ⋆ y is

not commutative.

Case 3. x ∗ y = y ◦ x. Then, by Lemma 3.4 (c), we have f1(x, y, z) = y ◦ z
which shows that f1 is not essentially ternary. Hence f2 is essentially ternary. Let

x ⊙ y = f2(x, x, y) = x ◦ (xy). If x ⊙ y ∈ {x, y}, then z ◦ x = z ◦ (xy) = z ◦ y,

a contradiction. If x⊙ y = x ◦ y, then f2(x, y, z) = x ◦ yz = x⊙ yz = x ◦ (x(yz)) =

x ◦ xz = x ◦ z = x ⊙ z = f2(x, x, z) which is impossible because f2 is essentially

ternary. By the same reason x⊙y ̸= y◦x. If x⊙y = xy, then x◦z = (xy)◦z = y◦z,

a contradiction. For x ⊙ y = yx we obtain f2(z, x, y) = f2(z, y, x), which also is

impossible (Lemma 3.2). Hence x⊙y ̸∈ {xy, yx, x◦y, y ◦x}. Assume x⊙y = y⊙x.

Then x = x ◦ x = (x ◦ (yx)) ◦ x = (x⊙ y) ◦ x = (y ⊙ x) ◦ x = (y ◦ (yx)) ◦ x = y ◦ x,

a contradiction. Therefore x⊙ y is not commutative.

Summarizing, in any case we have at least six essentially binary term opera-

tions. Therefore p2(A, ·, ◦) ≥ 6, as required. �

Lemma 3.6. If the algebra (A, ·, ◦) satisfies the identity f1 = f σ3 , then σ(y) = z

and σ(z) = y, i.e., this algebra satisfies (2) and x ◦ (yz) = x ◦ y.

Proof. Indeed, in the case (xy) ◦ z = (y ◦ z)x we also have (xy) ◦ y = yx and,

consequently, (yx) ◦ z = (xy) ◦ z, which contradicts the statement of Lemma 3.2. In

the case (xy) ◦ z = (z ◦ y)x we have (xy) ◦ y = yx and as above (yx) ◦ z = (xy) ◦ z,

a contradiction. If (xy)◦z = (z◦x)y, then (xy)◦x = xy and hence z◦(xy) = z◦x. But

then we have (xy)◦ z = ((z ◦ (xy))y and, consequently, x◦ z = (z ◦x)x. This implies

(x ◦ z)y = ((z ◦x)x)y = (z ◦x)y, which contradicts Lemma 3.2. If (xy) ◦ z = (x ◦ y)z

or (xy) ◦ z = (y ◦ x)z, then x ◦ z = xz which is impossible because, by assumption,

algebras (A, ·) and (A, ◦) are not term equivalent. Therefore, (xy) ◦ z = (x ◦ z)y

and hence also (xy) ◦ x = xy, z ◦ (xy) = z ◦ x and consequently x ◦ (yz) = x ◦ y, as

required. �

Lemma 3.7. If the algebra (A, ·, ◦) satisfies the identity f1 = f σ4 , then σ is the

identity permutation, i.e., this algebra satisfies (1) and x ◦ (yz) = x ◦ z.

Proof. (A, ·) and (A, ◦) are not term equivalent, thus (xy) ◦ z ̸∈ {z(x ◦ y), z(y ◦ x)}.

If (xy) ◦ z = y(x ◦ z), then (xy) ◦ x = yx and (xy) ◦ z = (yx) ◦ z, a contradiction

with Lemma 3.2. If (xy) ◦ z = y(z ◦ x), then (xy) ◦ x = yx and, consequently,

(yx) ◦ z = (xy) ◦ z, a contradiction. If (xy) ◦ z = x(z ◦ y), then as above we get

z ◦ (xy) = z ◦ y. But then (xy) ◦ z = x(z ◦ (xy)) and, consequently, x ◦ z = x(z ◦ x).

This implies y(x ◦ z) = y(z ◦ x), which contradicts Lemma 3.2. Therefore must be

(xy) ◦ z = x(y ◦ z). Then also (xy) ◦ y = xy, z ◦ (xy) = z ◦ y and consequently

x ◦ (yz) = x ◦ z, as required. �

Analogously one can prove the following.

Lemma 3.8.

(a) If the algebra (A, ·, ◦) satisfies the identity f2 = f σ3 , then σ is the identity

permutation, i.e., this algebra satisfies (3) and (xy) ◦ z = x ◦ z.
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(b) If the algebra (A, ·, ◦) satisfies the identity f2 = f σ4 , then σ(x) = y and

σ(y) = x, i.e., this algebra satisfies (4) and (xy) ◦ z = y ◦ z.

Lemma 3.9. If p3(A, ·, ◦) = 6, then exactly one of operations f1, f2 is an essentially

ternary diagonal operation and the algebra (A, ·, ◦) is term equivalent to this algebra

(A, fi) which is essentially ternary.

Proof. The term operations f1, f2, f3, f4 are all idempotent. By Corollary 3.1, every

essentially ternary operation fi induces six distinct ternary operations f σi obtained

by permuting of variables in fi. Lemmas 3.1 and 3.3 together with the assumption

p3(A, ·, ◦) = 6 show that exactly one of the operations f1, f2 is essentially ternary.

So, if f1 is essentially ternary, then for some permutation σ of variables x, y, z we

have either f1 = f σ3 or f1 = f σ4 . Similarly, if f2 is essentially ternary, then either

f2 = f σ3 or f2 = f σ4 . This, by Lemmas 3.6 and 3.7, means that in (A, ·, ◦) exactly

one of the identities (1) – (4) is satisfied.

If (A, ·, ◦) satisfies one of identities (1) and (2), then the operation f1 is idem-

potent and essentially ternary. It is also diagonal. In fact, in the case when (1) is

satisfied we get

f1(f1(x11, x12, x13), f1(x21, x22, x23), f1(x31, x32, x33))

= (((x11x12) ◦ x13)((x21x22) ◦ x23)) ◦ ((x31x32) ◦ x33)

= (((x11x12) ◦ x13)((x21x22) ◦ x23)) ◦ x33
= ((x11x12) ◦ x13)(((x21x22) ◦ x23) ◦ x33)
= ((x11x12) ◦ x13)((x21x22) ◦ x33) = (x11(x12 ◦ x13))(x21(x22 ◦ x33))
= x11(x22 ◦ x33) = (x11x22) ◦ x33 = f1(x11, x22, x33),

In the case of (2) we have

f1(f1(x11, x12, x13), f1(x21, x22, x23), f1(x31, x32, x33))

= (((x11x12) ◦ x13)((x21x22) ◦ x23)) ◦ ((x31x32) ◦ x33)

= (((x11x12) ◦ x13)((x21x22) ◦ x23)) ◦ x33
= (((x11 ◦ x13)x12)((x21 ◦ x23)x22)) ◦ x33
= ((x11 ◦ x13)(x12(x21 ◦ x23)x22)) ◦ x33 = ((x11 ◦ x13)(x12x22)) ◦ x33
= ((x11 ◦ x13)x22) ◦ x33 = ((x11x22) ◦ x13) ◦ x33 = (x11x22) ◦ x33
= f1(x11, x22, x33).

as required. For the identities (3) and (4) we consider the operation f2. The argu-

mentation is very similar, so we omit it.

Since every essentially ternary term operation fi easily induces both fun-

damental operations · and ◦, we get the term equivalence between (A, ·, ◦) and

(A, fi). �

Proof of Proposition 3.1. If at least one of the fundamental diagonal operations of

(A, ·, ◦) is commutative, then |A| = 1. Thus the assumption that both (A, ·) and
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(A, ◦) are essentially diagonal semigroups, implies that both · and ◦ are not com-

mutative.

It is not difficult to verify that x ⋆ y = (xy) ◦ y = f1(x, y, y) is an essentially

binary diagonal operation. Since f1 is defined as a combination of the fundamental

operations of (A, ·, ◦) which are both idempotent, it is enough to note that xy =

f1(x, y, xy) and x ◦ y = f1(x, x, y). The rest is a consequence of Lemma 3.9. �

Proof of Proposition 3.2. is dual to the proof of Proposition 3.1. �

Proof of Proposition 3.3. It follows from Lemmas 3.1 and 3.2 for essentially ternary

term operations and from Lemma 3.5 for essentially binary ones. �

4. The main results

This section is devoted predominantly to the proof of our main results. We

recall them for the convenience of the reader. Then we present some examples and

pose some problems.

Theorem 4.1. Let (A, ·, ◦) be an algebra with two semigroup fundamental opera-

tions. Then the following conditions are equivalent:

(a) (A, ·, ◦) is term equivalent to an essentially ternary diagonal algebra,

(b) p3(A, ·, ◦) = 6,

(c) (A, ·, ◦) satisfies exactly one of the identities (1) – (4).

Proof. (a) ⇒ (b) Assume that (A, ·, ◦) is (up to the term equivalence) an essentially

ternary diagonal algebra. Then the number of distinct essentially ternary term

operations of (A, ·, ◦) equals 6 (routine calculations are here omitted).

(b) ⇒ (c) Assume that p3(A, ·, ◦) = 6. By Lemma 3.1, at least one of f1 and

f2 is essentially ternary (the same is true for f3 and f4). If both f1 and f2 are

essentially ternary, then according to Lemma 3.3 the number of distinct essentially

ternary term operations of (A, ·, ◦) is not less than 12 (the same we have for f3 and

f4). Therefore exactly one of f1 and f2 (and also one of f3 and f4) is essentially

ternary. By Lemmas 3.6 – 3.8, one of the identities (1) – (4) holds.

(c) ⇒ (a) If one of the identities (1) – (4) holds, then by Propositions 3.1 and

3.2, the algebra (A, ·, ◦) is term equivalent to an essentially ternary diagonal algebra,

completing the proof. �

Corollary 4.1. The sequence a∗ = (0, 1, 6, 6, 0, 0, . . .) is the minimal extension of the

sequence a = (0, 1, 6) and an arbitrary universal algebra A represents the sequence

a∗ if and only if A is term equivalent to an essentially ternary diagonal algebra.

Proof. (a) Consider the class of binary idempotent algebras (A, ·, ◦), such that (A, ·)
and (A, ◦) are non-term equivalent essentially diagonal semigroups. Assume that

(A, ·, ◦) represents the sequence a = (0, 1, 6). Then Proposition 3.3 implies that

p3(A, ·, ◦) ≥ 6. Moreover, by Characterization Theorem, p3(A, ·, ◦) = 6 if and only

if it is term equivalent to an essentially ternary diagonal algebra A (according to
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the following Example 4.1 such algebra really exists). By Characterization Theorem

again, A represents the sequence a∗ = (0, 1, 6, 6, 0, 0, . . .). Thus we have pn(A, ·, ◦) ≥
pn(A) for every nonnegative integer n. Therefore a∗ is the minimal extension of the

sequence a in this class.

More general, assume that an arbitrary universal algebra A represents the

sequence a. In particular we have p0(A) = 0 and p1(A) = 1. Therefore A is idem-

potent. It follows that either its pn-sequence p(A) is strictly increasing or A is term

equivalent to a diagonal algebra (A, f) (see [19], see also [37]). Then the assumption

p2(A) = 6 implies that (A, f) is an essentially ternary diagonal algebra. Thus we

have pn(A) ≥ pn(A, f) for every n, and consequently, the p(A, f) = a∗ is the mini-

mal extension of the sequence a.

(b) If an arbitrary universal algebra A represents the sequence a∗, by [37] again,

we infer A is an essentially ternary diagonal algebra. Conversely, consider an es-

sentially n-ary diagonal algebra (A, f). It is clear that, by the assumptions of the

idempotence and the diagonality of (A, f), every its term operation reduces to the

form f(xi1 , . . . , xin) for some xi1 , . . . , xin ∈ {x1, . . . , xn}. Note that every term

operation of this form depends on every its variable. Indeed, consider a term opera-

tion φ(x1, . . . , xk) = f(xi1 , . . . , xin), where {xi1 , . . . , xin} = {x1, . . . , xk} for some

k ≤ n, and assume that is = j for some s = 1, . . . , k. Suppose that φ(x1, . . . , xk)

does not depend on the variable xj . Then we have

f(y1, . . . , ys−1, φ(x1, . . . , xk), ys+1, . . . , yn)

= f(y1, . . . , ys−1, xj , ys+1, . . . , yn),

and therefore f(y1, . . . , ys−1, xj , ys+1, . . . , yn) does not depend on the variable xj ,

a contradiction.

Note also that two arbitrary term operations of this form are distinct if

only their variables differ in any place. Indeed, take two term operations φ1 =

f(xi1 , . . . , xin) and φ2 = f(xj1 , . . . , xjn) such that xi1 , . . . , xin and xj1 , . . . , xjn
are variables from the set {x1, . . . , xn} satisfying xis ̸= xjs for some s ∈ {1, . . . , n}.

Assume that φ1 = φ2. Then the following holds:

f(y1, . . . , ys−1, f(xi1 , . . . , xis , . . . , xin), ys+1, . . . , yn) =

= f(y1, . . . , ys−1, f(xj1 , . . . , xjs , . . . , xjn), ys+1, . . . , yn)

and hence

f(y1, . . . , ys−1, xis , ys+1, . . . , yn) = f(y1, . . . , ys−1, xjs , ys+1, . . . , yn),

a contradiction.

Therefore the number of distinct essentially k-ary term operations of (A, f) for

any k ≤ n can be counted as the number of distinct factorizations of the n-element

set onto k nonempty partitions. So, pk(A, f) =
{
n
k

}
· k! for every 0 ≤ k ≤ n and

pk(A, f) = 0 for every k > n, where
{
n
k

}
denote the Stirling numbers of the second

kind (cf. [11]). In particular, for n = 3 it follows that the algebra (A, f) represents

the sequence (0, 1, 6, 6, 0, 0, . . .). �
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Remark 4.1. Simple combinatorial arguments show that for every essentially n-ary

diagonal algebra Dn we have p0(Dn) = 0, p1(Dn) = 1, pm(Dn) = 0 for every m > n

and for every k such that 2 ≤ k ≤ n the following formula holds:

pk(Dn) = kn −
k−1∑
l=1

(
k

l

)
pl(Dn).

In particular, for small k we have

p2(Dn) = (2n−1 − 1) · 2! = 2n − 2,

p3(Dn) = (3n − 3) −
(
3
2

)
(2n − 2) = 3n + 3 − 3 · 2n,

p4(Dn) = 4n + 6 · 2n − 4 · 3n − 4

and also

pn−1(Dn) = 1
2n!(n− 1),

pn(Dn) = n!

For n = 2 we get

p(D2) = (0, 1, 2, 0, 0, 0, . . . ),

so we obtain the well known fact for diagonal semigroups. Proper 3, 4 and 5-

dimensional diagonal algebras are characterized by the pn-sequences:

p(D3) = (0, 1, 6, 6, 0, 0, 0, . . . )

p(D4) = (0, 1, 14, 36, 24, 0, 0, 0, . . . )

p(D5) = (0, 1, 30, 150, 240, 120, 0, 0, 0, . . . )

Thus the pn-sequences of essentially n-ary diagonal algebras are increasing at be-

ginnings and then decreasing. Since the pn-sequences of idempotent algebras are

strictly increasing (except some known varieties of algebras, for details see [19]), the

pn-sequences of essentially diagonal algebras are very unusual.

Example 4.1. Let (G,+) be an Abelian group of exponent 30. Then (G, f), where

f(x, y, z) = 6x + 15y + 10z is an essentially ternary diagonal algebra. Putting

xy = f(x, y, y), x ⋆ y = f(y, x, y) and x ◦ y = f(y, y, x)

we obtain three essentially binary operations induced by f . It is not difficult to

see that (G, ·), (G, ⋆), (G, ◦) are essentially binary diagonal semigroups and ev-

ery of the algebras (G, ·, ⋆), (G, ⋆, ◦), (G, ·, ◦) is term equivalent to (G, f). More-

over, these algebras satisfy (1), (3) and (4), respectively. The identity (2) is sat-

isfied by the algebra (G, ·, ◦), where xy = f(y, x, x) and x ◦ y = f(x, x, y). Thus

p2(G, ·, ◦) = p3(G, ·, ◦) = 6 and, consequently, p2(G, f) = p3(G, f) = 6. Since (G, f)
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is idempotent, p0(G, f) = 0 and p1(G, f) = 1. The diagonal law of f implies that ev-

ery n-ary term operation with n > 3 reduces to the fundamental operation f involv-

ing only 3 (not necessarily distinct) variables. Therefore pn(G, f) = 0 for every n > 3

and, consequently, the algebra (G, f) represents the sequence (0, 1, 6, 6, 0, 0, . . .).

Example 4.2. Let (G,+) be an Abelian group of exponent 6. Defining on this group

a ternary operation f(x, y, z) = x + 3y + 3z we obtain an idempotent essentially

ternary algebra (G, f) representing the sequence (0, 1, 2, 3, . . . , n, . . . ) (see [34]).

Therefore it is not a ternary diagonal algebra. But the groupoid (G, ·) with the

operation xy = f(x, x, y) is an essentially diagonal semigroup. It represents the

sequence (0, 1, 2, 0, 0, . . . ). The groupoid (G, ◦), where x ◦ y = 2x + 5y, is not

a diagonal semigroup and it has exactly 4 distinct essentially binary term operations

xy, yx, x ◦ y and y ◦ x. Since (x ◦ y) ◦ y = xy, the algebra (G, ·, ◦) is term equivalent

to the idempotent groupoid (G, ◦) and hence it represents the sequence (0, 1, 4). So,

it is not induced from (G, f).

Problem 1. Characterize all diagonal algebras obtained from Abelian groups and

also from groups.

Below we present a method of construction of essential ternary diagonal alge-

bras based on Cantor identities described in [9].

Example 4.3. Consider a variety V of algebras with one binary · and two unary

fundamental operations ′, ∗, satisfying

(xy)′ = x, (xy)∗ = y and (x∗)(x′) = x.

A model of these identities is a set A (empty, of one element or infinite) with a mul-

tiplication which is a bijection between A × A and A. Then ∗ and ′ are the two

components of the inverse to multiplication. These identities have been first con-

sidered by B. Jónsson and A. Tarski in [15] and recently in [9] under a name Cantor

identities, since G. Cantor may have been the first to recognize a bijection between

a set and its square.

Let A = (A, ·,′ ,∗) be a proper algebra from the variety V. Then A is infinite

and free algebras with 1-element and n-element set of free generators are isomorphic

for every n > 1. Then there exists an n-ary term operation f = f(x1, . . . , xn) with

n > 1 and unary term operations f1, . . . , fn such that the algebra (A, f, f1, . . . , fn)

satisfies

f(f1(x), . . . , fn(x)) = x and fi(f(x1, . . . , xn)) = xi, i = 1, . . . , n.

Put δ = δ(x1, x2, . . . , xn) = f(f1(x1), f2(x2), . . . , fn(xn)). Then the algebra (A, δ)

is an essential n-dimensional diagonal algebra (for details and a generalization see

[9]). In particular, for n = 3 we get a method of construction of essential ternary

diagonal algebras.
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Varieties of diagonal algebras are uniquely determined by their pn-sequences.

Moreover, in the class of binary algebras (A, ·, ◦) with two diagonal semigroup fun-

damental operations the number p3(A, ·, ◦) = 6 alone indicates ternary diagonal

algebras.

Problem 2. Find another varieties uniquely defined by their pn-sequences. In

particular, consider varieties of algebras with two binary fundamental operations.

Problem 3. Is the variety of normalizations of distributive lattices uniquely deter-

mined by its pn-sequence?
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