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APPLICATION OF MAX MIN APPROACH AND 
AMPLITUDE FREQUENCY FORMULATION TO 

NONLINEAR OSCILLATION SYSTEMS  

Davood Domiri GANJI1, Mohammadreza AZIMI2 

This paper applied the Max-Min Approach (MMA) and Amplitude 
Frequency Formulation (AFF) to derive the approximate analytical solution 
for motion of nonlinear free vibration of conservative, single degree of 
freedom systems. In both nonlinear problems MMA and AFF yields the same 
results. In comparison to forth-order runge-kutta method which is powerful 
numerical solution, the results show that these methods are very convenient 
for solving nonlinear equations and also can be used for the wide range of 
time and boundary conditions for nonlinear oscillators. 

Keywords: nonlinear oscillation, max min approach, amplitude frequency 
formulation, analytical solution. 

1. Introduction 

This study has clarified the motion equation of two oscillators by 
Max min approach and Amplitude frequency formulation to obtain the 
relationship between Amplitude and angular frequency. As it can be 
illustrated in Fig.1, 1m  is mass of the block on the horizontal surface, 2m is the 
mass of block which is just slipped in the vertical and is linked to 1m , L is length of 
link, g is gravitational acceleration, and k is spring constant.  

By assuming , 1xu u
l

= << , the equation of motion can be yield as 

following terms: 
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In which u and t are generalized dimensionless displacement and time 
variables. 
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Fig. 1. Geometry of first problem 

 
The second problem is derived from the motion of simple pendulum 

attached to a rotating rigid frame that is shown in fig.2 which has following 
nonlinear differential equation: 

( )( ) ( )1 cos sin 0θ θ θ+ −Λ =  (2) 
In which θ and t are generalized dimensionless displacements and 

time variables, and
2r

g
Ω

Λ = .  

As it can be considered both of the problem are strongly nonlinear. In recent 
years, many powerful methods such as Max Min Approach [1, 2], 
Amplitude Frequency Formulation [3-6], Harmonic Balance Method (HBM) 
[7], Homotopy Perturbation Method (HPM) [8-12], Variational Iteration 
Method (VIM) [13, 14], Parameter Expansion Method (PEM) [15] and 
Energy Balance Method (EBM) [16-19], are used to find approximate 
solution to the nonlinear differential equations 

This study has investigated two nonlinear oscillators by Max min 
approach and Amplitude frequency formulations which are two methods 
come from Chinese mathematics. The comparison between approximate 
solutions and the forth-order runge kutta method assures us about accuracy 
and validity of solution.  

 
Fig. 2. Geometry of second problem 
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2. Application of MMA to the first problem: 

In order to solve first problem with the max min approach, it can be 
rewritten as: 
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We can rewrite Eq. (3) in the following form: 
( ), , , 0u f u u u t u+ =  (4) 

Where   ( ) 2 2 22 2 2
0
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Inserting ( )tAu ωcos=  an initial assumption and inserting this trial 
function into Eq. (4), the maximum and minimum value of ( ), , ,f u u u t can 
be yield: 
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Using He Chengtian's average [1], gives: 
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Where m, n are weighting factors and k= n/(m+n). Substituting 
approximate angular frequency into Eq. (4) yields: 

 
( ) ( )2 , , , , , ,u u u uf u u u t u u u tω ρ+ = + +  (7) 

Where: 
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Substituting ( ) ( )tAtu ωcos=  into ρ , gives: 
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Using Fourier expansion series, secular term can be obtained: 
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Avoiding secular term requires 01 =δ , therefore angular frequency 
can be yield: 
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3. Application of AFF to the first problem: 

According to He's frequency formulation [3], we can assume for the 
amplitude frequency formulation: 
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In order to solve Eq. (1), we first use two trial functions as follows: 
( )1 cosu A t=  (13) 

( )2 cosu A tω=  (14) 
Inserting Eqs. (12) and (13) into Eq. (1) , gives the following 

Residuals: 
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Weighted residuals can be introduced as follows: 
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Equating 1 1ω = , 2ω ω= , we can obtain weighted residuals :  
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The substitution of Eqs. (19) and (20) into Eq. (12), angular 
frequency can  be yield: 



136                     Davood Domiri Ganji, Mohammadreza Azimi 

( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+−−−+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

−

2416
3

22416
3

2

4242

1

2
3

1

2
2
02

2

1

2
2

3

1

2
2
0

1

12
32

21
23

2

A
m
mA

lm
gmAA

m
mA

lm
gmA

mmAAmmAA

ω
ωωωω

ωω
ω

 (21) 

Solving Equation (21), Amplitude-frequency relationship can be 
obtained: 
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4. Application of MMA to the second problem: 
Eq. (2) can be rewritten as follows: 

( ) ( ) ( ) ( )1sin sin 2 0, 0 0, 0
2
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Substitution of the relatively accurate approximations: 
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To attack Eq. (24) by the max min approach, we rewrite it in the 
following form: 

( ), , ,f tθ θ θ θ θ= −  (25) 
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Section.2, It can be written: 
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Similar of pervious example, angular frequency can be yields: 
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Where m, n are weighting factors and k= n/(m+n). Substituting 
approximate angular frequency into Eq. (25) obtains:  
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( )2 , , ,f tθ ω θ θ θ θ θ θ ρ+ = + +  (28) 

Inserting ( ) ( )cosu t A tω= as a trial function into ρ can be yield: 
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Using Fourier series and avoiding secular term, angular frequency 
can be obtained: 

 2 4 2 41 1 1 11
8 12 2 192MMA A A A Aω = − − Λ + Λ −Λ +  (30) 

 
5. Application of AFF to the second problem: 
 
Like pervious example, the trial functions ( ) ( )1 cosAθ τ τ=  and 

( ) ( )2 cosAθ τ ωτ=  are inserted into Eq. (2) to yield the residuals: 
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Weighted residuals can be yield as: 
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Inserting Eq. (33) and Eq. (34) into Eq. (12), angular frequency can 
be yield: 
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8 12 2 192AFF A A A Aω = − − Λ + Λ −Λ +  (35) 
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6. Results and Disscussions 
 
In this section, the obtained results will be studied in some numerical 

cases. In Fig.3 the comparison between Analytical solutions and runge-kutta 
result is shown. As we see, amplitude frequency formulation and Max min 
approach obtain same results and have a high validity in comparison with 
runge-kutta method. 

 
Fig.3. Comparison between AFF & MMA & Runge-kutta forth order in first problem for 

2 2
1 2, 9.81 , 100 , 5 , 1 , 1

6
A g m s k N m m kg m kg l mπ
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Fig.4 shows the comparison between forth-order runge kutta and 

analitycal solutions in second problem for , 0.25
3

A π
= Λ = . Good agreement 

can be illustrated in Fig.4. 

 
Fig.4. Comparison between AFF & MMA & Runge-kutta forth order in second problem for 

, 0.25
3

A π
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6. Conclusions 

In this paper, Max min approach and Amplitude frequency 
formulation which are two powerful methods and derived from Chinese 
mathematics are applied to the motion equations of two nonlinear 
oscillators. At first the equation of motion was derived for both problems. 
Max min approach and Amplitude frequency formulation was applied to the 
nonlinear ordinary differential equations and finally the results compared 
with forth order runge kutta method. Simple procedure and high accuracy 
and validity are the advantages of these methods. 
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