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KHAN AND CIRIC CONTRACTION PRINCIPLES IN ALMOST
b-METRIC SPACES

by Katarina Kuki¢, Wasfi Shatanawi* and Milanka Gardasevié-Filipovié

In the presented paper we utilize the concept of almost b-metric to construct
and prove fixed point results of Khan and Cirié contraction types. Our findings extended
and modified many existing results in the literature. Moreover, our results present a
positive answer of some open questions proposed by N. Mlaiki et al. in [N. Mlaiki , K.
Kukié, M. Gardasevié-Filipovié, H. Aydi, On Almost b-Metric Spaces and Related Fized
Point Results, Azioms 2019, 8, 70; doi:10.3390/azxioms8020070]
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1. Introduction

The b-metric space in the sense of Bakhtin [3] is one of the most important spaces in
the field of applied sciences. For some more works in this interesting space, we may suggest
the readers to see the following articles: [2], [6], [7] and [13]-[15]. Many generalizations of
b-metric spaces are still being developed and the fixed points theorems in such spaces are
examined, see, for example, [1] and [12].

Recently, the concept of almost rectangular b-metric spaces was introduced in [10]
and authors proved a theorem of Reich type contraction for that kind of space. Motivated
by that approach, in [11] N. Mlaiki et al. proposed the replacement of symmetry condition
in b-metric spaces by one or both of following postulates (bM2l) and (bM2r). It turns out
that many contraction principles remain valid even without classical symmetry condition in
b-metric spaces. Some examples showing that quasi b-metric, almost b-metric and classical
b-metric spaces are different classes of spaces may also be seen in [11].

Contraction principles with some symmetry in contraction condition, such as Reich or
Hardy-Rogers type contractions, are very easily obtained in almost b-metric spaces. For some
other principles, for example those having maximum of some set in contraction condition or
having contractive condition of rational type, the situation is a bit more delicate. In [11] we
proved one such principle and left some questions concerning Ciri¢ type contractions open.
In this article we give answers on two of those three open questions. Also, we investigate
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two contraction principles with conditions of rational type in almost b-metric space, such as
Khan type contraction.

2. Preliminaries
First, we briefly remind on the definition of almost b-metric spaces from [11].

Definition 2.1. Let X be a nonempty set and s > 1 be a given real number. Let dgp :
X x X — [0,400) be a mapping and x,y, z,x, € X,n € N:
(bM1): dgp(z,y) =0 if and only if x =y,
(bM21): dop(zp, ) — 0, n — oo implies dgp(x, x,) — 0, n — o0 in standard metric,
(bMZ2r): dyp(z,x,) = 0, n — 0o implies dyp(zy, ) = 0, n — 0o in standard metric,
(bM?’): dab(x7 y) < S(dab(gjv Z) + dab(za y))
Then:
(1) (X,dap, s) is called l-almost b-metric space if (bM1), (bM2l) and (bM3) hold;
(2) (X,dap, s) is called r-almost b-metric space if (bM1), (bM2r) and (bM3) hold;
(3) (X,dap,s) is called almost b-metric space if (bM1), (bM2l), (bM2r) and (bM3) hold.

The almost b-metric spaces represent a subclass of quasi b-metric spaces. From quasi
b-metric d4, we can construct b-metric dp such as
dg(z, de(y,x
db(l’,y) — Q( y) —; q(y )
and this method proved to be an elegant way to validate some contraction principles, such
as Reich or Hardy-Rogers, in quasi b, and so in almost b-metric spaces. For some other
principles, we need to apply (bM2r) or (bM21) and in those cases we use terms left-Cauchy
and right-Cauchy sequence, so we recall on the next definition:

Definition 2.2. [11] Let (X, dap, s) be an almost b-metric space. A sequence {x,} in X is
said to be
left-Cauchy: if and only if for each € > 0 there is an ng € N such that dop(zn, Tm) < €

for all n > m > ng, which can be written as lim  dgp(Tp, Tm) =0
n>m— oo

right-Cauchy: if and only if for each e > 0 there is ng € N so that dgp(zy, 2m) < € for

all m > n > ng, which can be written as lim  d(z,,z,) =0
m>n—o0

Cauchy: if and only if for each € > 0, there is ng € N so that dap(zy, Tm) < € for all
n,m > ng.

Further, notions of left or right complete quasi or almost b-metric spaces are common,
and more on that can be seen in [11].

3. Main results

In [10] for almost rectangular b-metric and later in [11] for almost b-metric spaces,
some contraction principles, such as Reich and Hardy-Rogers have been proved by construct-
ing the appropriate symmetric b-metric from almost b-metric. Such a method of proving
can be applied to a certain number of symmetric contractions, but not to all. In [11] we
have shown that it is not possible to prove the contractions in which the conditions refer to
the maximum by that simple methodology. Here we present some additional principles and
prove they are valid in almost b-metric spaces.

Before we proceed, we refer to an important result from theory of b-metric spaces
that sequence {x,} which satisfies d(xt1,2n) < Ad(2p, Zp—1) for some A € (0,1) and for
any n € N is Cauchy. That result facilitates many proofs of contraction principles in b-
metric spaces and it is a relatively new result obtained in 2017 and presented in [16] and [§],



Khan and Cirié contraction principles in almost b-metric spaces 135

later also in [9] and [17] in which authors separately present an elegant and shorter proof of
mentioned result. Since this result is also valid in the quasi-b-metric spaces, here we modify
the proofs from [9] and [17] for right and left Cauchy sequence in those spaces.

Lemma 3.1. Let {z,} be a sequence in quasi-b-metric space (X,dq,s > 1) such that

dg(@n, Tnt1) < A - dg(@n—1,2n) (3.1)
for some A € [0,1) and each n € N. Then, {x,} is right-Cauchy sequence.

Proof. In [11] we proved the lemma for A € [0, %) That part of the proof is quite straight-
forward, based on the inequality

dg(@n, Tni1) < Adg(20, 1)

and

SA™ (s\)™ !
dq(xnaxm) < (1 o\ +

— >dq(x0,x1)—>0,m>n—>oo.
s

Here we extend it to the case A € [%, 1). This can be proved by slightly modifying the proof
from [9] or from [17]. Now we present briefly the modification of the approach from [9]. The
following inequality is straightforward:

dg(@n, Tnyj) < Y (dg(@n, Tnt1) + dg(Tnt1, Tnt2) + oo + dg(Tntj—1, Tntj)) - (3.2)

If A € [1,1) one can find ng € N such that A" < 1 namely ny > —lloogf\. Then:

(1) {@nne} is right-Cauchy sequence. The proof of this claim is completely analogous to
the proof from [9].

dq(l‘nnoa -r(nJrl)nO) < s"e (dq(xnno7 xnng—i—l) + ...+ dq(x(n+1)n071> x(n+1)n0))

dy(zo, 1) 8™ - dy(xo,x1)
< gho \"no q ? — q ’ . no\n
S ST 1— A (™)

Since \"0 < %, as a consequence of proved case for A € [0, %), we conclude that {z,n, }
is right-Cauchy sequence.

(2) Since without assumption of symmetry we must keep in mind the index order in
dq(Tn, xm), recall first some basic characteristics of the integral part we use in proof.
If by [A] we denote the maximal integer not exceeding A then [A] < A < [A] 4+ 1 and

SO [L} <<« [n%} + 1 and therefore no["} < n<no[7ﬂ + ng for n,ng € N.

no - MNo no n,

Then, from (3.2) we have:

% (Fus) )

n

< {"Lo] (dq(a:no[ﬁ],xno[%]ﬂ) + dq(xno[ﬁ]Jrlv xno[%]+2) + ...+ dg(zn_1, xn)>

n

< 5”*"0[710] (/\"O[nno] + )\no[%]Jrl + ...+ /\nl) d(o, 1)

2
n

< Sno)\’ﬂo[ 0] (1 + A+ A2+ ) d((Eo, CUl)

- HL] d(l‘ml‘l)

SS"O)\"O[U T — 0, n — oo.
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Similarly,

dQ(mn»xnoﬂﬁﬁiﬁb)

< Sno(1+[ﬁ])—" (dq(xn, Tpt1) + ...+ dq(xno(l-&-[;—d])—la Ino(l_,_[%])))
< gmoUHlEgD-n ()\" A /\”0(”[%])*1) d(zo, 1)

<SMN (L+ A+ A%+ ) d(zo, 71)

[%] d(xo, 1)
1-X

(3) {zn} is right-Cauchy sequence. Let m > n:

< gno\no )"0 — 0, n — oo.

Ao, ) < 5*(dg(Tn, Tng(141:27) + (g (14127), Tno[22))

+ dq (mno [

we

,Tm)) = 0,m > n, n— oo.
J

Analogously we obtain the following Lemma for left-Cauchy sequence in quasi b-metric
spaces.

Lemma 3.2. Let {z,} be a sequence in quasi-b-metric space (X,dq, s > 1) such that

dg(Tnt1,%n) <A -dg(zpn, Tn_1) (3.3)
for some A € [0,1) and each n € N. Then, {x,} is left-Cauchy sequence.

Proof. Here we only present the main steps that are different for cases of the left and the
right-Cauchy sequence. Starting from (3.3) we obtain dg(zn+1,%n) < A"dg(21, 20). Instead
of (8.2), we obtain:

dg(Tntj,7n) < 87 (dg(Tntjs Tntj—1) + dg(Tnsjm1, Tnij-2) + o+ dg(Tni1,20)) . (3.4)
(1) {Znn,} is a left-Cauchy sequence:

dq(x(n—&-l)nov xnno) < sMo (dq(m(n—i-l)noa x(n-{—l)ng—l) + ...+ dq(xnno+1a mnno))

dy(21,0)

< no )\nno
=7 11—\

= const - (A"°)"

no

(2) Similarly to the case of the right-Cauchy sequence, we get that d, <xn, x {n]) —
no

0, n — 0o and d, (xno(lJr[L]),a:n) — 0, n — oo. Briefly:
no

dq (Imxno 7;1]) < ROt {W] (dq(znaxn—l) + ...+ dq(xno[%}_‘_l,xno[%]))

0
(] )
1-A

n_

< s"%\n“["o] (1 A+ A+ ) d(z1,x0) < 5™\ — 0, n — oo.

(3) {x,} is left-Cauchy sequence. Let n > m:

dy (T, Tm) < 8% (dg(Fn, Tng(2)) + dg(Tng 2], T (2141))

+ dq(xno([%]ﬂ),xm)) — 0,n >m, m — oo.
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Previous Lemmas are, of course, also valid in almost b-metric spaces and we will
use them in the rest of the paper. Now, we proceed with the modified version of Khan’s
Theorem, [5]. Before that, we briefly recall that almost-b-metric space (X, dgp, s) is right-
complete if and only if each right-Cauchy sequence {z,,} in X satisfies nhHH;O dap(z,25) = 0,
similarly for left-completeness and complete if and only if each Cauchy sequence in X is
convergent.

Theorem 3.1. Let (X, dap, s) be a right-complete r-almost b-metric space with coefficient

s>1andT: X — X be a mapping satisfying

dap(z, Tx) - dop(x, Ty) + dap(y, Ty) - dap(y, T)
dop (2, TY) + dop(y, Tx)

for all x,y € X, dap(x,Ty) + dop(y, Tx) # 0 where a1, ay are non-negative constants such

that ay + as < 1. Then T has a unique fized point.

dav(Tx, Ty) < ay - dap(,y) + a2

(3.5)

Proof. At the beginning of the proof, let’s consider the uniqueness of a possible fixed point.
To prove that a fixed point is unique, if it exists, suppose that T has two distinct fixed
points z*, y* € X. Then we get

dap (7", y") = dop(T2™, Ty") < ay - dap(2™,y")

dap(z*, Tx*) - dop(2*, Ty*) + dap(y*, Ty*) - dap(y*, Tx™)
dap(z*, Ty*) + dap(y*, Tx*)

< ardap(z”,y") < dap(2",y")

+ a2

so we conclude that if T has a fixed point, then it is a unique fixed point of T.

For arbitrary z¢p € X, consider the sequence z,, = Tx,,_1 = T"x¢, n € N. If x,, = z,,41 for
some n € N then z,, is the unique fixed point of T. Hence, we suppose that dgp,(zs, Tpr1) > 0
for all n € N. We start from (3.5) for dup(2p, Zpn+1). Then for any n € N we get:

dab(xnv xn+l) = dab(Txn—la Txn) S aldab(-rn—ly xn)

) dab(xn—la xn) : dab(xn—la mn+1) + dab(xvu xn—&-l) : dab(xna -Tn)
dab(mnfh anrl) + dab(xnv xn)
S (al + a2)dab(‘rn71a xn)
Now, since a; + as < 1, from Lemma 3.1 we conclude that {z,} is right-Cauchy sequence.
Since (X, dqp, s > 1) is a right-complete r-almost b-metric space, we get that the sequence
{zy,} right converges to the point z* € X, ie. dgp(2z*,z,) — 0, n — oo which, from (bM2r),
implies dgp (2, 2*) — 0, n — oco. Hence, applying (3.5) on (z,,x*), we get:
dab(Txna T.T,*) < aldab(zna x*)

dap(Tp, Txy) - dop(@pn, Tx*) + dap (™, Tx*) - dap (™, Ty,

dab<xna T-T*) + dab(x*a Txn)
Since dgp(Tpn, Txyn) = 0, dop(zy, 2*) — 0 and dgp(x*, Tz,) — 0 when n — oo, we conclude
that dgp(Txp, T2*) — 0 when n — oco. Finally, from (bM3), we obtain

dop(2", T2") < s(dap(2”, T2p) + dap(Txy, Tx*)) — 0, n = 00

so x* =Tx*. O

+a

+ ag

Theorem 3.2. Let (X, dap, s) be a right-complete r-almost b-metric space with coefficient
s>1and T : X — X be a mapping satisfying

dab(y, Ty) - (1 + dap(x, Tz))
1+ dap(z,y)
dav(y, Ty) + dap(y, Tx)
L+ dap(y, Ty) - dav(y, Tx)

dab(Txv Ty) <ap- dab(ma y) + aq

(3.6)
+ as
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for all z,y € X, where ay, as, az are non-negative constants such that a; + as +az < 1 and
as +asg < % Then T has a unique fized point.

Proof. Again, we start with the uniqueness of a possible fixed point. Suppose that T has
two distinct fixed points «*,y* € X. Then, from (3.6) for (Ta*, Ty*) we get
dav(y*, Ty") - (1 + dap (™, T2"))
_|_
1 + dab(x*a y*)
dav(y*, Ty") + dap(y*, T'z™)

dap(T2*, Ty*) < a1 - dop(2*, y*) + a2

+a
T+ dap(y*, Ty) - dap(y*, Ta)
and finally
dap(2", ") < ardap (2™, y") + azdap (y*, 7). (3.7)
Similar, starting from (8.6) for (Ty*, Tx*), we obtain
dap (Y™, 2") < ardap(y*, %) + asdap(*, y). (3.8)

After summing (3.7) and (3.8), we get that
dap (", y") + dap(y™, 2") < (a1 + a3) (dap(27,y7) + dap(y", 7)) -

Since a1 + a3 < 1, we conclude that dgp(z*,y*) + dap(y*, 2*) = 0 and further from (bM1)
we get that d(a*,y*) = d(y*,2*) = 0, so the fixed point, if it exists, is unique.

For arbitrary x¢p € X, consider the sequence x,, = Tz,_1 = T"xg, n € N. If ,, =
Tpt1 for some n € N then z, is the unique fixed point of T. Hence, we suppose that
dap(Tp, Tpy1) > 0 for all n € N. We start from (3.6) for dup(2n, nt1), hence for any n € N
we get:
dab(xna -Tn-i-l) = dab(Txn—lv Txn)
dab(xnv Txn) (1 + dab(xn—la Tmn—l))
1 + dab(xnfly xn)

< aldab(xn—la xn) + ag

tas dap(xp, Txy) + dap (T, TTp—1) (39)
1+ dap(@n, Txy) - d(xn, Top—1)
= a1dap(Tn-1,%n) + a2dap(Tn, Tni1) + azdap(Tn, Txy).
From (3.9), we obtain
dap (T, Tpy1) < 1_;271_agdab(xn_l,xn).
Since 4 < 1, from Lemma 3.1 we conclude that {z,} is a right-Cauchy sequence.

1—(12—(13
Since (X, dgp, s > 1) is a right-complete r-almost b-metric space, we get that the sequence

{zn} right converges to the point z* € X, ie. dgp(z*,2,) — 0, n — oo what, from (bM2r)
implies dgp(n,2*) — 0, n — oo. Further, applying (3.6) on (z,,z*), we obtain:
dap(z*, Tx*) (1 + dop(zn, T'zy))
1+ dap(xy, %)
dap(x*, Ta*) + dap(x*, Txy)
1+ dop(z*, Ta*)dgp(z*, Txy,)
< (a2 + a3)dgp(x*, Tz*), when n — co.

dop(T2n, Tr") < a1dap(xn, ™) + a2

+a3

Finally, starting from (bM3), using previous inequality, we get:
dap (2", T2™) < s (dap(x”, Txy) + dap (T, Tx™))
< s(ag + ag)dap(z*, Tx™).

Since as + a3z < %, from previous relation we can conclude that dg,(x*, Tx*) = 0, so z*is
fixed point of T. O
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In [11] we left some open questions concerning Ciri¢ type contractions. In the sequel
we give answers on two of those three questions. First we prove the generalized Ciri¢ type
contraction of the first order.

Theorem 3.3. Let (X,dap, s > 1) be a right-complete r-almost b-metric space and T : X —
X be a mapping satisfying

dab (l’, T.’E) + dab (ya Ty) dab (.’E, Ty) + dab (y, T:E)
2s ’ 2s

dab (TLL‘, Ty) S k - max {dab (l‘, y) )

(3.10)
for all x,y € X where 0 < k < min{1, %} Then T has a unique fixed point.

Proof. At the beginning of the proof, let’s consider the uniqueness of a possible fixed point.
To prove that a fixed point is unique, if it exists, suppose that T has two distinct fixed
points z*,y* € X. Then, from (3.10) we get

dab(x*, y*) = dab(Tx*,Ty*)
dab(llf*,Tl’*) + dab(y*aTy*) dab($*,Ty*) + dﬂb(y*aTx*)
25 ’ 2s
dab(x* y*) +dab(y*’x*)}
2s '

< k- max{d.(z*,y"),

}

= k- max{da(z",y"),

The first case

dap(z*,y*) + dap(y*, ")
2s

max{dap (2", y"), }=dap(x,y")

immediately leads to the contradiction
dab(m*v y*) < k- dab(m*v y*) < dab(x*; y*)

The other case

dab(x* y*) + dab(y*vx*)
2s

dab(x* y*) + dab(y*’x*)
2s

} =

max{dgp(z*,y"),

is equivalent to dgp(y*,x*) > (28 — 1)dap(2*, y*) and further in this case we obtain that

dap(z*,y*) + dap(y*, ™)
2s

dab(y*vx*) 2 Z dab(x*7y*)' (311)
Starting from condition (3.10) applied to dup(Ty*, Tz*) and keeping in mind (3.11), we
again come to the contradiction:

dab(y*, ‘T*) = dab(Ty*,TZL'*)
dap (Y™, Ty*) + dap(z*, Tx*) dap(y*, Ta*) + dap(z*, Ty*)
2s ’ 2s
dab(y*7 I’*) + d(lb(gj*a y*) }
2s

< k- max{d.(y*, "),

}

=k -max{d(y*,z"),
=k dop(y*,z") < dap(y*,z").
Finally, we conclude that the fixed point, if it exists, is unique.

For arbitrary z¢p € X, consider the sequence z,, = Tx,,_1 = T"xo, n € N. If x,, = x4 for
some n € N then x,, is the unique fixed point of T. Hence, we suppose that dgp, (s, Tpr1) > 0
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for all n € N. We start from (3.10) for dup(2Zn, Znt1). Then for any n € N we get:

dab(‘rny anrl) = dab(T:Enfh Tmn)
dab(xn—la Txn—l) + dab(xna T-rn)
2s ’

< k-max{dap(rn_1,Tn),

dap(Tn—1,TTn) + dap(n, TTp_1)
2s }
dab(Tpn—1,2n) + dop(Tn, Tpy1)
2s ’
dab(xn—la xn-&-l) + dab(x’ru xn) (312)
2s }
dab(x’ﬂ717 xn) + dab(xny xn+1)
2s ’

=k- max{dab(zn—ly xn)?

< k- max{dep(Tn—1,%n),

s(dab(wnflv xn) + dab(xna xn+1) }
2s

dab(xn—la zn) + dab(xny xn—&-l) }
5 .

If we suppose that dgp(Tn—1,%n) < dap(Tn, Tnt1), from (3.12) we get the contradiction

= k . max{dab(xn—17x7l)7

dab(xny anrl) S k- dab(xnyanrl) < dab(mnyanrl)y

0 it must be dup(Tn, Tnt1) < dap(Tn—1,Tyn). Then, from (3.12) we obtain:
dab(xna xn+1) S k- dab(xnflaxn)

and from Lemma 3.1 we conclude that {z,,} is a right Cauchy sequence. Since (X, dgp, s > 1)
is a right-complete r-almost b-metric space, we get that the sequence {z,} right converges
to some z* € X, ie., dgp(z*,z,) — 0, n = oo what, from (bM2r) implies dgp(zp,2*) —
0, n — oo.
Further, from (3.10) applied to (z,,z*), we obtain:
da an n dll *?T *
Ao (T, Ta*) < e - el 1, ), 20000 00) A0 TT)
s

dap(Tn, Ta™) + dap(z*, T:L‘n)}
2s
dab(xna T$n) + dab(x*y TZL'*)
2s ’

3.13
dap(Tn, TT*) + dap(z”, T$n)} ( !
2s
dab(x'ru Txn) + dab(m*y T.’L‘*)

2s ’
$(dap(Tn, ) + dap (™, Tx*)) + dap(z*, Tmn)}
2s '
Apart from the transformations shown on the right, in order to estimate du;(z*, Tx*) we
have to write the left side in a more convenient form and then to use (3.13):

< k- max{dap(xn, x*),

< k- max{dap(zn,x"),

1
—dogp(x*, Ta™) < dap(2*, Txy) + dop(Txpn, T2™)
S

dab(xny Txn) + dab(x*v TLL'*)
2s ’

<dap(x*, Txy) + k- max{dap(z,, %),

$(dap(Tn, ) + dap(x*, Tx*)) + dap(z*, Txy,)
2s

1.
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Previous inequality with n — oo becomes

1 dap(2*, Tx*
L goy(a* o) < - M
S

and finally we obtain the inequality

o~

.S

dap(z*,Ta*) < dop(2*, Tx™)

w ‘

that can be satisfied only with d,p(z*, Ta*) = 0, which means that z* is fixed point of T. O

We proceed with Ciri¢ type contractions and we consider Ciri¢ type contraction of
second order in r-almost b-metric space.

Theorem 3.4. Let (X, dap, s > 1) be a right-complete r-almost b-metric space and T : X —
X be a mapping satisfying
dab (33, Ty) + dab (y7 TJ))

2s

dap (Tx, Ty) < k - max {dab (z,9),dap (x, T2) ,dap (y, Ty) ,

(3.14)

for all x,y € X where k is non-negative constant such that k < <. Then T has a unique

fized point.

Proof. We start with the proof that a fixed point is unique, if it exists, which is almost the
same as in the previous Theorem, so here we only state the part that differs. Suppose that
T has two distinct fixed points z*,y* € X. Then, from (3.14) we get

dab(x*a y*) = dab(Tx*a Ty*)

dap(z*, Ty*) + dap(y*, TJ:*)}
2s

S k- max{da(,(a:*, y*)a dab(x*7 T.’L'*), dab(y*a Ty*)7

dap(2*,y*) + dap (Y™, a:*)}

2s '
The rest of the proof for uniqueness is the same as in Theorem 3.3.
For arbitrary zoy € X, consider the sequence z,, = Tx,_1 = T"x¢, n € N. If ,, = x4 for
some n € N then z,, is the unique fixed point of T. Hence, we suppose that dgp (2, 2pi1) > 0
for all n € N. We start from (3.14) for dgp(n, Znt1). Then for any n € N we get:

< k- max{d.(z*, y"),

dab(xn; xn—&-l) :dab(Txn—la Txn)
S k- max{dab('rnflv xn), dab(xnfla T"Enfl), dab(xn7 Txn)7
dab(xn—la Txn) + dab(xnz Txn—l) }
2s
< k- max{dab(xnflv IIJn), dab(xnfla xn)a dab(xna $n+1)7
dab(xnfla $n+1) + dab(xnz xn) }
2s
<k-: max{dab(xnfla :L'n), dab(xnfla xn)v dab(xna xn+1)a
S(dab(xnfla -Tn) + dab(xn; xn+1)) }
2s
< k- max{dap(Tn-1,2n), dab(Tn, Tni1),

(3.15)

dab(xnfla an) + dab(x'ru anrl)

2 g

If dop(2n—1, Tn) < dap(@n, Tni1), then from (3.15) we get the contradiction

dab(xnyxn—i-l) < k - dab(xnyxn-&-l)-



142 Katarina Kukié, Wasfi Shatanawi* and Milanka Gardasevi¢-Filipovié

Finally, we conclude that must be satisfied dop(n—1, Zn) > dap(n, Tni1), S0 from (3.15) we
get

dab(frn7 wn—}-l) § k : dab(ajn—la xn)
The same reasoning as in Theorem 3.3 gives us the conclusion that the sequence {z,}
right converges to some z* € X, ie. dgp(z*,x,) — 0, n — oo which, from (bM2r) implies
dap(zp, %) = 0, n — 0.
Again, similarly as in Theorem 3.3 from (3.14), we obtain:

1

;dab(m*,Ta:*) < dap(x*, Tay) + dap(Txp, Tx")

S dab(x*a Txn) + k - max{dab<xn; m*)7 dab(xna T-Tn)a dab(x*v T.’E*),
dab(mna T.Z‘*) + dab($*7 Txn)}

2s
S dab(x*a Txn) + k- max{dab(xn; $*>7 dab(mna T-/L'n)a dab(aj*v T.’L‘*),

$(dap(Tn, ) + dap (™, Tx*)) + dap(x*, Txy)
2s }
And when n — oo, finally we get

dap(z*,Ta*) < sk dap(z™, Tx")

so we conclude that z* is the fixed point of T O

Note here that ”left variants” of the preceding theorems can be proved analogously.

Remark 3.1. [t might looks like the Theorem 3.3 is a consequence of Theorem 3.4, but the
condition for contraction in Theorem 3.3 is 0 < k < min{1, %}, unlike in the Theorem 3.4
where we demand 0 < k < % If in the Theorem 3.3 we demanded 0 < k < % then it would
be the consequence of the Theorem 3./ since

da 7T da‘ 7T 1
b(@ x)2+ b(y, Ty) < = - max{du (2, Tz), du(y, Ty)}
s S

< max{das(x,Tx), dep(y, Ty)}.

Under stated conditions, it is not the case and we find this result interesting and not observed
in the case of b-metric spaces, as far as we know.

Remark 3.2. Bannach, Kannan, Chaterjea and Reich type contraction principles are direct
consequences of Theorems 3.3 and 3.4.

At the end, we leave one open problem:

Problem (Quasicontraction of Ciri¢ type) Let (X, dap, s > 1) be a right-complete
r-almost b-metric space and T : X — X be such that

dab (Tl’, Ty) S k max {dab (1:7 y) ) dab (‘rﬂ TZL') 7dab (ya Ty) 7dab (SE, Ty) 7dab (ya TI)}
for all z,y € X where 0 < k < % Then T has a unique fixed point.

4. Conclusions

We studied contraction principles in almost b-metric spaces and obtained that many
principles are valid even without symmetry condition for b-metric. In almost b-metric spaces
we replaced symmetry with weaker conditions (bM21) and (bM2r). As a sequel of paper [11],
here we expanded the set of contraction principles valid in almost b-metric space.
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All results obtained in the paper, may further generalize results obtained in [4] for
metric type spaces. For example, we formulate Theorem 3.1 in this manner, and emphasize
that the same can be done for all other results in this paper:

Let (X, dqp, s) be right-complete r-almost b-metric space with coefficient s > 1 and T, S :
X — X be two mappings such that TX € SX and one of these subsets of X is right-
complete. Suppose that

dap(Tx, Ty) < a1 - dap(Sz, Sy)

dap (S, Tx) - dop (S, Ty) + dap(Sy, Ty) - dap(Sy, T'x) (4.1)
dop(Sz, Ty) + dap(Sy, Tx)

for all z,y € X, dop(Sz, Ty) + dap(Sy, Tx) # 0 where a1, as are non-negative constants such

that a; + a3 < 1. Then T and S have a unique point of coincidence. If moreover, the pair
(T, S) is weakly compatible, then 7" and S have a unique common fixed point.

+ as

All of the above, together with the examples given in the paper [11], confirms that
it is useful to consider the almost b-metric spaces, as well as that there are still many open
questions and topics for further research.
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