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LARGE MARGIN LOSS FOR IMAGE RETRIEVAL 

Andrei RACOVIȚEANU1, Corneliu FLOREA2, Mihai BADEA3 

Over the years the research community has searched for the most efficient 

descriptors for the task of image retrieval. Along with the development of hardware 

resources that led to the widespread use of convolutional networks, new alternatives 

emerged. Although the results were promising, there are still many possibilities to 

improve the efficiency of the descriptors provided by the convolutional networks. 
This paper proposes an efficient method based on CNN features extracted using a 

large margin loss to provide a better separability in the descriptor space for an 

image retrieval task. The method was tested in two scenarios on a complex database 

that contains images of different places. The first scenario was testing the large 

margin loss on the entire database, while the second involved more particular 

situations where the potential of this type of loss is better isolated. In both scenarios, 

promising results were obtained regarding most of the retrieval metrics. 
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1. Introduction 

Convolutional networks have emerged as one of the most popular methods 

in the fields of Image Processing and Computer Vision as a result of the 

development of corresponding hardware equipment. Besides the classical 

problems of classification, segmentation or detection, CNNs (Convolutional 

Neural Networks) can be used in image retrieval tasks, especially in finding 

similar images. The applicability of image retrieval is vast and includes 

recommendation systems or finding relevant images in fields such as medicine or 

photography. With the development of Internet browsers and the necessity to 

access useful information, the first image retrieval algorithms appeared. These 

approaches are still used by the majority of search engines to locate relevant 

photos based on certain keywords. However, in these first stages, the visual 

information included in the images was not taken into account. Later, research 

started to focus on methods of extracting the relevant visual features according to 

the tasks that had to be addressed [1]. 

One of the most well-known visual descriptors in Computer Vision 

problems is HOG (Histogram of oriented gradients) [1] and LBP (Local Binary 
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Pattern) [3]. HOG was effective at filtering image details (contours, corners), 

while LBP excelled in recognizing textures. HOG [2] is derived from the previous 

SIFT (Scale Invariant Feature Transform) construction [4], which complements 

the descriptor with a keypoint locator that is not sensitive to rotation and scale 

changes. SIFT has proven to be very effective in terms of matching or finding 

objects in images, yet, Bay et al. [5] found room for improvement by means of 

using integral image to propose SURF (Speeded Up Robust Features). Binary 

Robust Independent Elementary Features (BRIEF) [6] was proposed for choosing 

key areas in the image through a simple binary comparison between the pixel 

intensity values in a image patch.  

With the appearance of convolutional networks, the descriptors provided 

by them were used more and more often. Due to the increased ability of CNNs to 

find relevant features, pre-trained models on completely different data than those 

that had to be retrieved were also tried. Zhou et al. [7] used a pre-trained network 

on a different task for extracting effective embeddings for image retrieval. In 

addition, they proposed a novel small CNN which provides more relevant 

descriptors and reduces dimensionality at the same time. In [8] a method is 

presented that combines several local features from convolutional layers with the 

help of VLAD [9] encoding to obtain a unique descriptor vector per image. It was 

showed that intermediate layers can be, under certain conditions, more effective 

than the last fully-connected (FC) layer.  

The paper is organized as follows: in the next section we emphasize the 

main steps of the proposed method, including large margin loss functionality and 

the framework used; Section 3 is dedicated to experimental results; Section 4 

outlines the main conclusions of the paper. 

2. Method 

This article's main topic is a large margin loss, inspired by Center [10] and 

Island Loss [11]. For the best final classification using a convolutional network, 

the FC features should form a sparse descriptive space. This makes adjusting the 

separation boundary easier without confusing network decisions. Unfortunately, 

perfect data separation is not always possible, so methods to improve it were 

sought. Wen et al. [10] introduced Center Loss to reduce embedding density. 

Reducing intra-class compactness improves delimitation. The algorithm assigns 

each class a center and reduces the distance between samples and their own 

center. Unlike Center Loss, Island Loss forces a greater distance between 

descriptive space clusters. Thus, overlapping classes are more separated. Fisher 

loss [12] was defined as a combination of the 2 previously mentioned losses. In 

this case, the distance between the centroids, and not the angle measurement 

(island loss), is taken into account. More recently, Sun et al. [13] improved the 
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triplet loss [14] by weighting the positive and negative examples differently in 

relation to the distance of the anchor(reference). 
 

2.1. Large Margin Loss 

Center Loss [10] can be useful but does not affect other classes. Even with 

more compact data, there may be overlaps. The proposed loss should create a 

large gap between embeddings clusters which could lead to improved results. 

The large margin loss can be defined as:  
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where xi  is the embedding belonging to class j and cj  is the centroid 

associated to this class. Basically, left term describes the Center Loss effect of 

gathering the data samples around the centroids. N represents the batch size, C is 

the number of classes and implicitly the number of centers and ck  is a different 

centroid compared to the belonging prototype to each sample cj . The second term 

considers the Euclidian distance between the current sample and other cluster 

centers, imposing large margin effect between embeddings. 

If we denote the normalized vector  𝑥̂𝑖 =  
𝑥𝑖

||𝑥𝑖||
 , the loss can be rewritten 

as:  
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Large margins enforce cluster sparseness compared to Center Loss. 

Normalizing the data and using the Euclidian distance for the second term differs 

for Island Loss. Normalizing the data improves numerical stability during 

training, while using a Euclidian distance emphasizes magnitude. In large margin 

loss, the focus is on embedding location relative to other classes. 

The overall system is trained with a combined loss defined in eq. (3), 

where 𝐿𝐶𝐸 is the classical cross entropy classification loss and 𝐿𝐿𝑀 denotes the 

large margin loss. The parameter 𝛽 is a weighting constant to balance the 

influence of the two terms in the total loss. In the experiments 𝛽 was set to 0.01. 
 

𝐿𝑇𝑂𝑇 = 𝐿𝐶𝐸 + 𝛽𝐿𝐿𝑀               (3) 

Fig. 1 depicts large margin loss behavior more intuitively. The figure 

depicts network descriptors provided by the network. Red and green dots 

represent the class centers. Given 2 new images and their embeddings X1 and X2, 

the principle of the loss should minimize the distance from the data sample to its 

own centroid (red and green double continuous arrow) and enlarge the distance 

from the data sample to the other class centers (red and green double dash arrow). 
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Thus, the two pictures should approach the centers of the classes to which they 

belong, while the clusters move apart simultaneously. 

 
Fig.1. Behavior of Large Margin Loss 

2.2. Framework and Dataset 

Dataset. Due to the diversity of classes, image retrieval tasks increasingly 

use datasets with images of places or scenes. SUN [15] contains 130,519 images 

in 397 categories for scene recognition. The number of training samples is 

insufficient for deep learning. Inspired by the SUN work [15], Zhou et al. 

proposed a new more consistent dataset called Places [16] to cover the data needs 

of convolutional networks. Images were acquired using search engines, while 

Amazon Mechanical Turk was used to label the pictures. Each annotator was 

given 750 pictures from various categories and had to determine which belonged 

to the actual tag. They also checked 60 annotated examples by other persons [16].  

Automatic classifiers were used to label images to increase the number of 

samples. The final dataset contains over 10 million images from 434 place 

categories and was divided into several subsets. Places365-Standard contains 1.8 

million samples and 365 classes. Each class has 3,068 to 5,000 training images. 

The validation set has 100 images per class, while the test split has 900. Only 

images from the validation set were used [16]. Fig.2 shows Places365-Standard 

images. 

 
Fig.2. Images from Places365-Standard 

  

Framework. The ResNet-18 architecture trained using the ADAM 

optimizer was used for experiments. Fig. 3 shows the framework. The penultimate 

fully connected layer (orange in Fig. 3) before the output provided image retrieval 

embeddings. Every image was represented by 512 features. The output layer 
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(yellow in Fig. 3) had 365 neurons, one for each class. On the 512-neuron fully-

connected layer, the large margin principle was used to improve embedding 

separation for retrieval. The last output layer's cross-entropy loss was applied 

using the Softmax activation function.  

Two scenarios tested the large margin method. First, a ResNet-18 network 

was fine-tuned on Places 365 and all convolutional layers were frozen (red arrows 

in Fig. 3) and only the connections with the descriptive layer (512 FC layer) were 

kept. Freezing convolutional layers may prevent the large margin loss from 

changing weights, leading to a better descriptive space representation. For the 

second part, the entire network was retrained. The second scenario consisted of 

testing the large margin loss in a different situation: a problem with non-separable 

data where classes are easily confused. The choice of classes to simulate these 

situations was a problem. The easiest solution was to use a pre-trained network on 

the Places dataset to check if subjectively chosen classes met the imposed 

conditions. These classes were extracted from the total 365 places from the 

dataset and were organized as followed: roof garden, tree farm, vegetable garden, 

yard and zen garden.  
 

 
Fig.3. Framework of the method proposed 

 

Fig. 4 displays the embedding space for the proposed situation to 

demonstrate the efficient choice of labels for the scenario. In addition, a figure 

with separable classes was created to highlight the differences. The points 

represented in the figure are the embeddings provided by the orange FC layer 

(Fig.3.) with the pre-trained ResNet-18 architecture on Places365. To address the 

major challenge of representing the descriptive vectors with 512 features in a 

human-perceivable map (2-3D), we used the t-SNE model [17] which is a 

dimensionality reduction technique mostly used for visualizing data in 2D and 3D 

spaces. Although the figures below were built with a pre-trained model on 

Places365, the embeddings for the scenario with 5 difficult classes are completely 

tangled as if the network was not really trained.  
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Fig.4.  t-SNE representation of the 2 different situations. a – Non separable data scenario; b- 

Separable data scenario 

 

3. Experimental results 

As previously mentioned, 2 scenarios were tested. First, a ResNet-18 was 

trained on the Places365 training set. In the first phase, the pre-trained network 

was used to determine retrieval performance. mAP, top 1 and 5 error rate were 

used as performance metrics. mAP is based on average precision, another 

common retrieval metric (AP). The AP for an independent class can be defined as 

in the left-hand part of eq. (4). There, NTP   is the number of true positive images or 

the returned images with class of the query images. NQ represents the number of 

retrieved images and NIC is the number of same-class test images. In this manner, 

it is computed an average precision per every class. Finally, to determine mAP, all 

APs are divided by the number of classes (left hand part of eq. 4).  
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The other performance metric is the error rate of the system, not its ability 

to return relevant images. Top 1 error rate is only measured for the system's first 

image. It measures the percentage of first retrieved images that are not the test 

image's class. Top 5 error rate measures the same thing, but for the first five 

returned photos. The Top 1 error rate formula, where NT is the number of test 

images: 

𝑇𝑜𝑝_1𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑇 − ∑ (𝑁𝑇𝑃)𝑖
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𝑁𝑇

        (5) 

Table 1 shows the first scenario results. The first row shows the results 

with the pre-trained ResNet-18 on Places365. The second row presents the values 

achieved with the fine-tuned pre-trained model only on the FC layers weights 

(convolutional part frozen), while the third row brings into consideration the 

results when a new model is trained from scratch. The network was trained for 90 
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epochs with the ADAM optimizer and a starting learning rate of 10-4 which was 

decreased at every 30 epochs with a factor of 10.  

The performance metrics were computed for a considerable part of the 

Places365 validation set. The validation set contains 36500 images from 365 

classes. 29200 images were randomly chosen for the references database 

(80/class) and 2920 for the query dataset (8/class). mAP was computed for 5 and 

8 retrieved images, but error rates were only used for 5. In addition to retrieval 

statistics, the table also includes accuracy. The accuracy was determined using the 

entire validation set. 

Discussing the results, in the first 2 cases, retrieval metrics are similar. 

Freezing convolutional layers limits the contribution of the large margin loss to a 

more efficient descriptive space structuring. However, the accuracy is about 1.5% 

better and comparable with [16], despite using a ResNet-152 architecture instead 

of a ResNet-18. It must be highlighted that a better accuracy does not necessarily 

bring the optimal performance on the retrieval side because the retrieval task 

performance is usually measured on more images compared to a classification 

problem. Instead, the model trained from scratch increased mAP by 1.5%, despite 

being less accurate.   

The area under the Precision-Recall curve was also calculated to evaluate 

the large margin loss retrieval performance. The curve was created by calculating 

precision and recall for each retrieval (starting from 1 to the entire reference 

database). Even in this case, when the large margin was used, an improvement of 

approximately 2% was achieved. Even though the fine-tuned model was more 

accurate, the AUC measure was not improved, confirming that due to frozen 

convolutional layers, the dominant factor in changing weights is still the cross 

entropy loss.  

Apart from the objective performance measures, a visual analysis of the 

retrieval images provided by the 2 methods (CE-baseline vs LM from scratch) is 

also important. Fig. 5 exposes the first 5 images retrieved for CE and LM. 

Visually, the returned images are usually related to the query image, even if they 

have a different label (red bullet). CE and LM commit image class errors 

depending on the picture. Considering the high probability of a major overlap in a 

problem with 365 classes, the results are not surprising. Many similar classes in 

Places365 make retrieval difficult as is seen in Fig. 5. The first image in the CE 

case looks like a bedroom, but it is in the hotel room class which is not the only 

similar category with bedroom. For the ruin image the LM method gathers 5 

consecutive mistakes, but the classes of wrong images are quite similar with the 

one requested (cemetery, temple-asia, castle or amphitheater). . It was crucial to 

provide a metric that measures performance for any amount of retrieved pictures 

to prove the utility of large margin loss because for a particular number of queries, 
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the classical CE trained network could have better results. But what matters is the 

retrieval capacity on the entire data set. 
Table 1 

Experimental results on Places365 (mAP-mean average precision; AUC – area under curve; 

CE- cross entropy, LM- large margin) 

Scenario/Metric 

[%] 

mAP-5-

query 

mAP-8-

query 

Top-1-

err-rate 

Top-5-

err-rate 
Accuracy 

AUC – PR 

curve 

CE-pre-trained-

baseline 
29.93 28.35 66.74 37.53 53.10 9.17 

LM-fine-tuned 29.89 28.56 66.99 37.95 54.69 9.23 

LM-from-scratch 31.35 29.98 66.18 37.79 53.51 11.18 

Resnet-152 [16] - - - - 54.74 - 
 

Even with powerful tools like t-SNE, it is difficult to visually represent a 

problem with so many categories. Having so many classes may cause overlap. 

Even though the principle of large margin loss should better spread the 

descriptors, for difficult problems with many similar classes, it is obvious that its 

potential is limited. Even if a large margin effect is forced, many data samples 

will move away from certain classes and overlap with others. This is the reason 

why one more particular scenario with fewer classes was proposed. In this way, 

the impact of a large margin loss on situations involving a different data 

separation could be studied. 

Having less data and classes available, the t-SNE technique was used 

again to visualize what happens to the embeddings during training. For this 

particular scenario the same ResNet-18 architecture was used, trained from 

scratch with the ADAM optimizer and constant learning rate of 10-4, for 25 

epochs. The weighting constant β for large margin loss had the same value 1/100. 

The training set was created by randomly selecting 1000 images from Places365 

for each class. Images from Places365 validation set were used to create test data. 

The search (reference) database was another 1000 random images from 

Places365's training set, while the query data was all the validation set images. 

Each class was represented by 1000 examples in the training and reference set and 

100 instances in the validation and query set, which were identical. 

Figures 6 provide a comparison regarding the change in descriptive space 

between training with large margin loss case versus training with cross entropy 

only. Cross entropy loss gathers the data to some extent but does not increase 

cluster distances. In contrast, large margin loss increases data class compactness 

and cluster space. The impact increases with the degree of initial class overlap. 
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Fig.5. Examples of first 5 images retrieved with CE and LM. Red bullets mark retrieved images 

with a different class compared to query image. Green bullets describe correctly retrieved images 

 

When problems are more difficult due to easier to confuse classes, the 

spacing is improved sometimes by large margin leading to results superior to 

cross entropy.  Yet the results is not guaranteed as for instance in Fig 6 (which 

shows samples from the validation/query dataset), where the dark orange and dark 

blue classes are too similar even for large margin. The results obtained are 

presented in Table 2. LM outperformed CE in all metrics except Top 5 error rate 

for easily confused classes. Now, mAP is up 4%, accuracy is up 3%, and AUC is 

up over 7%. A graphic representation of the precision-recall curves for LM and 

CE for the case with inseparable data and initial case with the entire Places dataset 

can be seen in Fig. 7. 
Table 2 

Experimental results on (mAP-mean average precision; AUC – area under curve; CE- cross 

entropy, LM- large margin, Acc- Accuracy) 

Scenario/Metric 

[%] 

mAP-5-

query 

mAP-10-

query 

Top-1-

err-rate 

Top-5-

err-rate 
Acc 

AUC – 

PR curve 

CE-non-separable data 55.83 56.00 43.61 12.69 67.20 37.25 

LM-non-separable data 59.75 58.97 40.60 13.45 70.08 44.75 

 Even if the data are overlapping, the proposed method describes the 

embeddings space more efficiently, though it can't reach the ideal delimitation. 

Figure 8 shows the difference in reference set descriptor representation (the one in 

which the retrieval results are sought). Large margin loss samples are more 

compact and farther apart. Border examples (between classes) have a lower risk of 

being misclassified. Large margin loss reduces the cluster of overlapping points in 

the left figure. Dark blue and orange classes that almost completely overlap 

remain difficult to separate. 
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Fig.6. The modification of the descriptive space during the training process for the case with non-

separable data (LM –up, CE- bottom) 

 

 The experiments were run on a Nvidia GeForce GTX 1080 video card. For 

the entire dataset and a batch of 128 images, the training time for an epoch with 

Cross Entropy only, is about 50 minutes. Adding the Large Margin loss increases 

the training time per epoch by 35 seconds. Referring only to a single batch, the 

temporal addition is approximately 2.5 ms due to the forward and backward step 

for the Large Margin. 

 The centers are trainable parameters of the network and change directly 

through the gradients provided by the large margin component. However, if the 

position of the centroids is explicitly computed for each given batch the time for 

an iteration can increase with 10ms or even more in comparison with Cross 

Entropy, which can lead to an increase of 4-5 hours in the total training time (90 

epochs). It should be mentioned that the previously specified times were obtained 

when the network was trained from scratch. 
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Fig.7. PR- curves for LM and CE. a- non separable data scenario; b- initial scenario with the entire 

Places365 database 

 

Fig. 8. The descriptors representation associated with the reference set with CE (left) and LM 

(right) for non-separable data scenario 

4.  Conclusions 

The field of convolutional networks contributed to obtaining some useful 

descriptors for image retrieval problems. In the experiments presented throughout 

the paper, the use of a large margin type loss for a more efficient representation of 

the embeddings space was demonstrated. Introduced during training, this loss 

improves accuracy and retrieval.  

The method was tested in several scenarios, but the best improvement was 

with non-separable classes. In this scenario, accuracy gained 3% and retrieval 

metrics such as mean average precision and area under precision-recall curve 

doubled. Performance gains on retrieval tasks can be much higher even if 

accuracy gains are weak or nonexistent. Due to the data complexity, there are still 

limitations. Some separable features in a first phase may move to other classes or 

overlap with other samples, but the large margin loss is more efficient overall. 

Considering these factors, the proposed method is a good retrieval alternative. 
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