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APPROCHE INTELLIGENTE POUR LA COMMANDE EN
POSITION DE LA MACHINE A RELUCTANCE VARIABLE

Imed MAHMOUD!3*, Adel KHEDHER?3

SRMs are beginning to attract interest as a potential candidate for many
applications due to their simple and robust construction, fault tolerant operation,
insensitivity to high temperatures, extremely long constant power range and high-
speed operation. Unfortunately, the high distortion of the angular characteristics
hinders the use of this actuator for positioning purposes. Such an idea requires the
development of a control strategy to adequately adjust the excitation levels according
to both the desired position and the magnitude of the coupled load. By measuring the
electromagnetic torque and phase currents, the neural network is able to estimate the
rotor position, facilitating the elimination of the rotor position sensor. The training
data set of the neural network consists of magnetization data for the SRM with the
electromagnetic torque and current as inputs and the corresponding position as
outputs in this set. With a sufficiently large training data set, the ANN network can be
correlated for appropriate network architecture. This paper presents the design,
implementation and operation of an ANN-based position estimator for an SRM.

Les MRV commencent a susciter I'intérét comme candidat potentiel pour de
nombreuses applications en raison de leur construction simple et robuste, de leur
fonctionnement tolérant aux pannes, de leur insensibilité aux températures élevées,
de leur plage de puissance constante extrémement longue et de leur fonctionnement
a grande vitesse. Malheureusement, la forte distorsion des caractéristiques
angulaires empéche l'utilisation de cet actionneur a des fins de positionnement. Une
telle idée nécessite le développement d'une stratégie de contrble pour ajuster de
maniére adéquate les niveaux d'excitation en fonction a la fois de la position désirée
et de la magnitude de la charge couplée. En mesurant le couple électromagnétique
et les courants de phase, le réseau neuronal est capable d'estimer la position du rotor,
ce qui facilite I'élimination du capteur de position du rotor. L'ensemble de données
d'apprentissage du réseau neuronal se compose de données de magnétisation pour le
MRV le couple électromagnétique et le courant étant les entrées et la position
correspondante les sorties de cet ensemble. Avec un ensemble de données de
formation suffisamment grand, le réseau ANN peut &tre corrélé pour une architecture
de réseau appropriée. Cet article présente la conception, la mise en euvre et le
fonctionnement d'un estimateur de position basé sur un réseau ANN pour un MRV.
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Mots clés: machine a reluctance variable, couple, position rotorique, élément finis,
réseaux de neurones artificiels.

1. Introduction

Gréce a leurs multiples avantages qui leurs permettent d'étre exploitées dans
plusieurs domaines et s'imposent dans différentes applications [1,2], les machines
a reluctance variable a double saillance (MRVDS) ont occupé, récemment, une
place prépondérante dans le domaine de I'entrainement électrique a vitesse variable.
En effet, ce type de machine se distingue, en comparaison avec les autres familles
d'actionneurs, par leurs simplicités de construction mécanique qui leurs conferent
plusieurs avantages. Le rotor est constitué d'un simple empilage de t6le non colteux
ne contenant ni aimants, ni enroulements, ni cages ce qui les rends des machines
robustes et moins onéreux que les autres actionneurs conventionnels.

Pour aboutir a des caractéristiques plus précises que celles données par la
modélisation analytique, les méthodes d'analyse numérique constituent un moyen
d'efficacité potentielle et conduisent souvent a des résultats tres proches de la
réalité. Particulierement, dans le domaine de [I'étude des structures
électromagnétiques, le recourt aux éléments finis permet une caractérisation précise
des dispositifs électromagnétiques utilisant de matériaux de caractéristiques non
linaires et de géométrie complexe. Ces éléments finis sont a la base de logiciels
puissants de calcul électromagnétique dits de conception assistée par ordinateur.
Dans des récents travaux, ces méethodes sont souvent associées avec des techniques
de modélisation non conventionnelles. Parmi ces techniques de modélisations, on
distingue particulierement les réseaux de neurones artificiels qui ont montré leurs
puissances dans la modélisation des systemes non linéaires [3, 4]. Par ailleurs, les
travaux divulgués par la littérature récente proposent des contributions diverses
orientées principalement vers I'amélioration des performances des (MRV) utilisées
en mode d'entrainement et non de positionnement. Certes, la forte distorsion des
caractéristiques angulaires handicape I'utilisation de cet actionneur pour des besoins
de positionnement. Cette handicape est d'autant plus marqué que les exigences de
positionnement en terme de précision sont plus séveres. La commande en position
précise des machines électriques est un enjeu majeur pour de nombreuses
applications industrielles. Les machines a réluctance variable (MRV) présentent un
intérét croissant en raison de leur simplicité de construction, de leur robustesse et
de leur haute efficacité énergétique. Cependant, leur commande en position est
difficile en raison de la non-linéarité et de la variation paramétrique de leur modeéle
dynamique. C'est dans cette optique que nos travaux de recherche, développés dans
ce papier, sont situés. lls consistent principalement a proposer des approches de
commande pour l'exploitation de cet actionneur en positionnement.

Les principales contributions sont les suivantes :
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1. Un estimateur de position basé sur un ANN qui apprend la relation non
linéaire entre le courant du stator et la position du rotor du SRM. Cet ANN (ANN1)
est entrainé hors ligne a l'aide de données FEA et estime la position du rotor sur la
base du courant fourni.

2. Un contréleur basé sur un ANN qui génere le courant statorique optimal
nécessaire pour amener le rotor & la position souhaitée. Cet ANN (ANN2) est
entrainé en ligne pendant le fonctionnement du moteur afin de minimiser I'erreur
de position.

3. Une approche de contréle intégrée qui combine ANNL1 et ANN2 pour
obtenir un positionnement de haute précision du SRM. L'ANNL1 estime la position
actuelle en fonction du courant du stator, tandis que 'ANN2 génére la commande
de courant suivante en fonction de I'erreur de position.

Ce papier est divisé en deux parties distinctes. Dans la premiére partie, une
étude par eléments finis est réalisée pour caractériser le MRV afin de déterminer
ses propriétés électromagnétiques. Cette étude électromagnétique est basee sur
I'environnement CAO "Magnet 2D". La deuxiéme partie est consacrée au
développement d'une approche de controle, utilisant a la fois la base de données
générée par la méthode des éléments finis (FEM) et une cascade d'estimateurs basés
sur des réseaux neuronaux artificiels, afin de corriger I'asymétrie de la machine par
le contr6le et d'obtenir un positionnement précis de I'actionneur.

2. Discreétisation par éléments finis de la MRVDS étudiée :
caractéristiques électromagnétiques

La MRVDS considérée dans la présente étude est de puissance nominale
égalisant les 7.5 kKW. La structure géométrique de cette machine est décrite dans le
tableau 1.

Fig. 1- Définition des paramétres dimensionnels du prototype
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Tableau. 1.
Parametres géométriques de la MRVDS 8/6 considérée
Paramétres Valeur
Rayon de I’arbre R 18.3 mm
Rayon intérieur du rotor Riir 36.4 mm
Rayon extérieur du rotor i 58.2 mm
Entrefer e 0.3 mm
Rayon intérieur du stator Rins 87.9 mm
Rayon extérieur du stator " 102 mm
Longueur axiale L 170 mm
Arc polaire statorique B, 23.6°
Arc polaire rotorique B. 20.1°
Nombre de poles statoriques Ns 8
Nombre de pbles rotoriques N, 6
Nombre de spires par pole 70

Moyennant ’interface graphique de I’environnement "Magnet 2D", nous avons
procedé par la saisie de la structure de la machine a reluctance variable considérée.
La Fig.2 présente la structure de la MRV considérée. A, A’, B, B’,C,C’, Det D’
représentent les bobines d’excitation qui sont enroulées autour des 8 poles
statoriques. Suivant chaque mode d’alimentation, ces bobines doivent étre
connectées entre eux pour former les phases qui vont étre alimentées a travers le
convertisseur statique. Dans notre cas, Nous avons considéré que chaque bobine est
connectée en série avec la bobine qui lui est diamétralement opposée pour former
une phase unique.
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Fig. 2- Prototype de la MRV 8/6 considérée

La Fig.3 présente le maillage utilisé pour déterminer les caractéristiques
¢lectromagnétiques de la structure d’étude lorsque le rotor de celle-ci est en position
d’alignement. On remarque bien qu’il ya des zones dans lesquelles le maillage est
trés dense par rapport aux autres.

Fig. 3- Maillage de la MRV

Pour caractériser I’évolution du couple électromagnétique aussi bien en
fonction de la position du rotor que du niveau d’excitation des enroulements de la
machine considérée, nous avons déterminé dans la Fig.4, pour des incréments de
rotation d’un degré et pour des niveaux d’excitation de SA, 10A, 15A, 20A, 25A,
30A, les caractéristiques angulaires de la machine étudiée.

Les caracteristiques angulaires réelles déterminées par la méthode des
¢léments finis sont distordues et loin d’étre sinusoidales ce qui montre
I’insuffisance de la méthode analytique reposant sur les hypotheses simplificatrices
adoptées. Ainsi, dans la Fig.4 on distingue la présence de quelques oscillations aux
niveaux de ces caractéristiques. Ces oscillations peuvent étre a I'origine de la nature
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du matériau ferromagnétique choisi ou de la densité du maillage appliquée a la
discrétisation de la structure.

La Fig.5 présente la variation de I’inductance d’une phase statorique en
fonction de la position du rotor pour des incréments de rotation successifs de un
degré et pour différents niveaux d’excitation.

Les résultats illustrés dans la Fig.5, montre que I’inductance d’une phase
statorique varie inversement au courant d’excitation au voisinage de la position
d’alignement (30°), tandis qu’au voisinage de la position d’opposition (0°),
I’influence du courant sur cette inductance est trés limitée. Pour une position fixe,
on remarque que d'autant plus que le niveau de saturation augmente, I’influence sur
I’inductance est dégradée. Les différents résultats obtenus montrent que les
caractéristiques angulaires de la machine a réluctance variable a double saillance
sont fortement distordues et loin d’étre sinusoidales.

Evidemment, I’évolution du flux magnétique dépend essentiellement du
niveau de saturation du circuit magnétique, Fig.6. En effet, pour une position
constante, par exemple celle de conjonction, on vérifie que d'autant plus que le
courant d’excitation s'intensifie la variation du flux se limite.

Ces réseaux de courbes donnés par la Fig.6, sont limités par deux
caractéristiques extrémes obtenues pour la position d’alignement (30°) et la position
d’opposition (0°). En effet, pour une intensité¢ donnée, le flux est maximal pour la
position d’alignement des dents du mobile avec les dents statoriques et minimal
pour la position d’opposition. La position alignée correspond a un état d’équilibre
stable caractérisé par le fait que la partie mobile se maintient dans cette position
lorsqu’elle est soumise a une perturbation. Par ailleurs, la position de quinconce
correspond a un état d’équilibre instable, la partie mobile tend a quitter cette
position des qu’elle est soumise a une perturbation.
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Fig. 4-Caractéristiques angulaires de la MRVDS statorique en fonction des positions pour
différents courants
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Fig. 6-Caractéristiques du flux magnétique en fonction des courants pour différentes positions

3. Approche neuronale pour la commande en position de la
MRVDS

Les résultats obtenus, montrent que les caractéristiques angulaires décrivant
I'évolution du couple en fonction de la position rotorique de la machine a réluctance
variable sont nettement affectées par des distorsions. Ces caractéristiques de
couples électromagnétiques sont loin d’étre sinusoidales a cause des matériaux
employes. De ce fait, I'exploitation de ce type d'actionneur dans des applications de
positionnement ne peut étre envisagée sans le développement d'approches de
commande puissantes permettant d'ajuster adéquatement les excitations statoriques
en tenant compte aussi bien de la charge a positionner que du niveau de la distorsion
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qui affecte la caractéristique, [5-6-7]. Pour élaborer cette stratégie de commande et
apres avoir mené, par CAO, une caractérisation fine de la machine, nous avons fait
recourt aux techniques de commande non conventionnelles dites intelligentes pour
mettre au point une cascade de blocs de commande a base réseaux de neurones
artificiels.

Plusieurs travaux prouvent que les perceptrons multicouches sont les réseaux
neuronaux les plus utilisés aujourd'hui, [6-7-9] ils sont capables de réaliser des
associations non linéaires entre I'entrée et la sortie. L'architecture de ce type de
réseau neuronal est illustrée a la Fig. 7. Chaque neurone posséde une fonction
d'activation, qui peut étre sigmoide, sigmoide bipolaire, log-sigmoide, etc. Les
poids des connexions peuvent étre déterminés par I'algorithme de rétropropagation
au cours du processus d'apprentissage, puis utilisés pour calculer les sorties.

Couche

Couche de sortie

d’entrée

Fig. 7. Architecture d'un réseau multicouche

Le perceptron multicouche se structure comme suit: I’information entre par une
couche d’entrée et sort par une couche de sortie. A la différence du perceptron
simple, le perceptron multicouche dispose entre la couche en entrée et la couche en
sortie une ou plusieurs couches cachées responsables de la sommation pondérée.
Le nombre de couches correspond aux nombres de matrices de poids dont dispose
le réseau neuronal. Un perceptron multicouche est donc mieux adapté pour traiter
les types de fonctions non-linéaires.

La rétro-propagation de 1’erreur dans un réseau multicouche est un apprentissage
supervisé. On présente 1’entrée pour lequel on détermine la sortie. L’ensemble des
poids synaptiques détermine le fonctionnement du réseau de neurones. On compare
les sorties des neurones de la couche de sortie avec les valeurs modeles qui sont les
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sorties désirées et on calcule 1’erreur de chacun comme le montre clairement la
Fig.8.

sortie désirée
sortie désirée

Fig.8 Apprentissage d’un réseau multicouche avec détermination de I’erreur et rétro-
propagation

La fonction la plus couramment utilisée que nous avons adoptée dans ce
travail est la fonction d'erreur quadratique. Cette fonction est définie comme suit:

1 K
E(m) =3 2 [dm -y ] @
k=1
Pour tous les exemples, nous considérons I'erreur quadratique moyenne comme
1 N
suit: Emoy = WZ E(n) (2)
n=1

Laréalisation de la phase d’apprentissage est fortement liée au choix pertinent
et au nombre d’exemples qu’il faut mettre en disposition du réseau. Ces exemples
doivent étre suffisamment représentatifs de 1’évolution de ces caractéristiques
angulaires pour que la reconstitution puisse arriver a achever cette importante
phase, [8-9-10-11]. Pour cet objectif, nous avons exploité une technique numérique
d’interpolation disponible dans 1’environnement Matlab ce qui nous a conduit a
élaborer un programme informatisé reposant sur des bases d'interpolation cubique.
Ce programme a permis, a partir de la portion stable des caractéristiques angulaires
de la MRVDS considérée, définie avec des lignes solides dans Fig. 9, d'élaborer
pour différents niveaux d'excitation et différentes charges, une base de données
décrivant I'evolution du couple en fonction de la position rotorique pour tout le
domaine de fonctionnement de la machine. La surface de réponse illustrée par la
Fig.10 montre une représentation graphique de la base de données décrivant
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I'évolution du couple en fonction de la position rotorique pour tout le domaine de
fonctionnement de la machine.
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Fig.9 caractéristiques angulaire de la MRVDS considérée
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Fig.10 Surface de réponse illustrant la base de données d’apprentissage
3.1.Conception et mise au point du réseau d’estimation de la position

Dans le but d'estimer la position d'arrét de la MRVDS considérée lorsque la
charge accouplée et I'excitation statorique sont connues, nous avons procéde, en
exploitant des fonctions prédéfinies dans I’environnement MATLAB, par la
création d'un réseau neuronal multicouches (RMC1). Les entrées de ce réseau sont
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le couple exercé par la charge et le courant d'excitation alors que sa sortie est la
position angulaire du rotor. Ce réseau est composé d’une seule couche cachée
renfermant 13 neurones et une couche de sortie composée d’un seul neurone. La
fonction d’activation choisie pour les neurones de la couche cachée est celle de la
tangente hyperbolique du sigmoide, tandis que pour le neurone de la couche de
sortie, I'activation est assurée par la fonction linéaire. L'architecture de ce réseau est
portée par la Fig.11. Par apprentissage réitéré et moyennant la base de données
précédemment élaborée, nous avons fait de sorte que ce réseau soit capable
d'estimer la position d'arrét sur tout le domaine d'utilisation de la machine quelque
soient le niveau de I'excitation statorique et I'ampleur du couple imposée par la
charge accouplée, [12-13-14-15-16]..

Couche cachée Couche de sortie

A A
f \ f \

Cem [Nm]

. LWI[1,1] > Lw[2,1] \
0 [deg]
I [A] /
— b [1] b[2]

13 1

Fonction tangente hyperbolique du sigmoide Fonction linéaire

v

O |

Fig.11 Architecture du RMCL1 utilisé

L’¢évolution de cette derniére en fonction du nombre d’itérations est
consignée dans la Fig. 12. Les performances atteintes par ce réseau sont égale a 1.9
104,
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Fig.13-Evaluation de I'efficacité du RMC1 pour des réponses non apprises

Pour Vvérifier que I'estimation fournie par le réseau neuronal développe est
efficace sur tout le domaine de fonctionnement de la MRVDS considérée, on a
procédé par effectuer un test d'apprentissage consistant a reconstituer plusieurs
autres exemples qui ne figurent pas dans la base de données présentée au réseau
lors de la phase d'apprentissage, et de comparer les résultats calculés par le réseau
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avec les résultats attendus, Fig.13. Pour tous ces exemples, I'erreur n'a pas dépassé
le 0.8 %.

3.2.Conception et mise au point du réseau d’estimation du courant (RMC?2)

Pour conférer au rotor une position d'arrét bien déterminée, il est nécessaire,
pour une MRVDS de caractéristique angulaire donnée, de moduler I'excitation
statorique suivant I'effort résistant imposé par la charge attelée. De ce fait vient
I'idée de base de concevoir le second réseau neuronal multicouches RMC2 dont
l'objectif est de déterminer 1’amplitude du courant d'excitation nécessaire pour
atteindre la position cible. Par conséquent, les entrées ou les attributs pour ce réseau,
ne peuvent étre que le couple de charge et la position de consigne alors que la sortie
ou bien la classe n'est autre que le courant d'excitation. Le réseau congu, dont
I’architecture est portée par la Fig.14, est composé d’une seule couche cachée
structurée autour de 14 neurones et une couche de sortie composée d’un seul
neurone. Nous avons choisi la fonction tangente hyperbolique du sigmoide comme
pour I’activation de tous les neurones de cette couche cachée, tandis que I'activation
du neurone de la couche de sortie est assurée par la fonction linéaire.

Couche cachée Couche de sortie
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N

Fig. 14. Architecture du second réseau neuronal multicouche

D’une fagon similaire au réseau d’estimation de la position RMCI1
precédemment congu et afin de montrer que le réseau a bien appris les
caractéristiques présentées dans la base d’apprentissage et que la performance
atteinte est satisfaisante, nous avons présenté dans la méme Fig. 16, pour différentes
positions stables, 1’évolution du couple en fonction des courants cibles et des
courants calculés par le réseau RMC2. En effet, pour plusieurs positions
considérées par successions de pas de 0.75° et délimitées par les bornes 15° et 30°,
sont tracées les évolutions du couple, par des motifs triangulaires, en fonction des
intensités cibles et par des motifs étoilés, en fonction des intensités estimées par le
RMC2. Ces caractéristiques sont déterminées avec une variation graduelle du
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courant de 1A. Les résultats trouvés prouvent une coincidence satisfaisante dont
I'erreur entre les valeurs des intensités cibles et des intensités calculées par le réseau
RMC2 congu ne dépasse pas les 0.16 %.

La Fig. 15 montre I’évolution de cette derniére en fonction du nombre
d’itérations et confirme que pour ce réseau la performance atteinte est égale 4.9 10
4
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Fig.15. Performance du RMC2
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Fig.16- Comparaison des intensités cibles et des intensités calculées par le réseau RMC2
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Ces résultats montrent que le RMC2 élaboré est capable d’estimer avec précision
le niveau adéquat des excitations statoriques permettant ainsi, tout en prenant en
considération la charge accouplée, de conférer au rotor la position cible.

3.3.Validation par simulation de ’approche de commande proposée

On se propose dans ce paragraphe de mener des essais de simulation
numérique pour tester 1’efficacité de I’approche de commande proposée. Pour cet
objectif, nous avons utilisé le premier réseau RMC1 pour simuler le comportement
de la machine a réluctance variable a travers ses caractéristiques angulaires et nous
avons inséré le réseau RMC2 pour calibrer les excitations statoriques aussi bien en
fonction de la position de consigne que de I’ampleur de la charge attelée, Fig.17.

Cem [Nm]
——— | BN
0 es [deq]
RMC2 ., RMC1I =
0 ref [deg] —(

Fig.17- Synoptique général de I’utilisation de la MRVDS en positionneur par application de
I’approche de commande proposée

Les essais effectués consistent a charger a chaque fois la machine par une
couple résistant bien déterminé et de faire varier successivement la consigne de
positon. Le réseau neuronal RMC2 estime alors le niveau du courant statorique avec
lequel il alimente la machine pour que son rotor s'immobilise & la position ciblée.
Pour vérifier, par simulation cette position cible, nous avons représenté la machine
par le réseau neuronal RMC1 qui décrit le comportement électromagnétique de
celle-ci via ses caractéristiques angulaires.
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Fig.19-Evolution des positions calculées en fonction des positions désirées

Les résultats, Figs.18 et 19, mettent en relief I'efficacité de I'approche de
commande proposée quant a l'utilisation des machines a reluctance variable a
double saillance et montrent que la commande peut apporter des solutions efficaces
pour atténuer considerablement les imperfections naturelles de la machine.
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4. Conclusion:

Le choix de MRV repose sur ses nombreux avantages, a savoir: excellentes
performances dans des environnements extrémes, structure simple du rotor,
robustesse, sans bobines, ni aimants permanents, ni balais, ni étincelles sous les
balais, capacité de surcharge élevée, faibles colts de fabrication, réparation et
maintenance et fonctionnement dans une large gamme de puissance.

Dans ce papier, nous avons proposé une approche de commande pour
I'exploitation de la machine a reluctance variable a double saillance en qualité
d'actionneur de positionnement. Cette approche est basée sur les techniques de
commande d’intelligence artificielle et particulierement les réseaux de neurone
artificiel. Les résultats obtenus témoignent du pouvoir potentiel que caractérise
I'approche de commande proposée quant a I'exploitation des machines a réluctance
variable dans le domaine de positionnement.
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