

ON SOME RATIONAL ZETA SERIES INVOLVING $\zeta(2n)$ AND BINOMIAL COEFFICIENTS

Cezar LUPU¹, Vlad MATEI²

In this note, we give an exact formula for a general family of rational zeta series involving the coefficient $\zeta(2n)$ in terms of Hurwitz zeta values. This formula generalizes two previous formulas from a paper in [5]. Our method will involve derivatives polynomials for the cotangent function.

Keywords: Riemann zeta function, Hurwitz zeta values, rational zeta series
MSC2020: Primary 11M06, 11M35, 40A05.

1. Introduction

The Riemann zeta function is defined by the absolutely convergent series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \operatorname{Re} s > 1.$$

In 1882, Hurwitz defined the following "shifted" zeta function,

$$\zeta(s; a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}, \operatorname{Re} s > 1, 0 < a \leq 1.$$

Both of them have similar properties in many aspects. For example, both of them are analytic and they have analytic continuation to the whole complex plane except for the pole $s = 1$. Some particular values include $\zeta(-n; a) = -\frac{B_{n+1}(a)}{n+1}$, where $B_k(a)$ is the Bernoulli polynomial which is defined by the power series

$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.$$

Also, as a special case, we have $\zeta(0; a) = \frac{1}{2} - a$. Other obvious values include $\zeta(s; \frac{1}{2}) = (2^s - 1)\zeta(s)$ and $\zeta(s; a+1) = \zeta(s, a) - a^s$. For more details, one can consult [1, 3, 7].

A classical problem which goes back to Goldbach and Bernoulli asserts that

$$\sum_{\omega \in S} (\omega - 1)^{-1} = 1,$$

where $S = \{n^k : n, k \in \mathbb{Z}_{\geq 0} - \{1\}\}$. In terms of the Riemann zeta function $\zeta(s)$, the above problem reads as,

Assistant Professor, Beijing Institute of Mathematical Sciences and Applications (BIMSA), Yau Mathematical Sciences Center (YMSC), Tsinghua University, Beijing, People's Republic of China, e-mail: lupucezar@gmail.com, lupucezar@bimsa.cn (corresponding author)

Scientific Researcher III, Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania, e-mail: vmatei@imar.ro

$$\sum_{n=2}^{\infty} (\zeta(n) - 1) = 1.$$

Also, there are other representations for $\log 2$ and γ (Euler-Mascheroni constant) such as,

$$\sum_{n=1}^{\infty} \frac{\zeta(2n) - 1}{n} = \log 2,$$

and

$$\sum_{n=2}^{\infty} \frac{\zeta(n) - 1}{n} = 1 - \gamma.$$

For instance, one way to generate rational zeta series involving $\zeta(2n)$ is by looking at the cotangent power series formula in the form:

$$\sum_{n=1}^{\infty} \zeta(2n) x^{2n} = \frac{1}{2} (1 - \pi x \cot(\pi x)), |x| < 1.$$

Dividing by x and integrating once, we have

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n} x^{2n} = \log \left(\frac{\pi x}{\sin(\pi x)} \right), |x| < 1.$$

For $x = \frac{1}{2}$ and $x = \frac{1}{4}$ in the above formulas, we obtain the following representations:

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{2^{2n}} = \frac{1}{2} \tag{1}$$

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{2^{4n}} = \frac{4 - \pi}{8} \tag{2}$$

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n 2^{2n}} = \log \pi - \log 2 \tag{3}$$

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n 2^{4n}} = \log \pi - \frac{3}{2} \log 2 \tag{4}$$

Moreover, integrating from 0 to $\frac{1}{2}$ the last power series equality, we derive

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n(2n+1)2^{2n}} = \log \pi - 1 \tag{5}$$

which can be found in [6].

This type of rational zeta series and many others are treated in [2]. In [5] there are given exact formulas for the following rational zeta series

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n 4^n} \binom{2n}{m} \tag{6}$$

and

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n 16^n} \binom{2n}{m} \quad (7)$$

in terms of zeta values. In this note, we give an exact formula for a more general rational zeta series which encompasses the two series above.

The main result of this note is the following

Theorem 1.1. *Let $\zeta(s)$ and $\zeta(s; r)$ be the Riemann and Hurwitz zeta functions. For $a \in (0, 1)$ we have*

$$\sum_{n=1}^{\infty} \frac{a^{2n} \zeta(2n)}{n} \binom{2n}{m} = \frac{a^m}{m} \left((-1)^m \zeta(m; a) + \zeta(m; 1-a) \right) + \frac{(-1)^{m-1}}{m}. \quad (8)$$

The main idea of the proof is a combination of expressing the rational zeta series from the left-hand side as the n th derivative of the cotangent function (a polynomial $P_n(\cot \pi x)$) and a surprising result of Hoffman [4] which relates this polynomial $P_n(\cot x)$ in terms of Hurwitz zeta values.

Acknowledgement. The second author was supported by the project “Group schemes, root systems, and related representations” founded by the European Union - NextGenerationEU through Romania’s National Recovery and Resilience Plan (PNRR) call no. PNRR-III-C9-2023- 18, Project CF159/31.07.2023, and coordinated by the Ministry of Research, Innovation and Digitalization (MCID) of Romania.

2. The proof of Theorem 1.1

First proof. Before we dive into the proof of the main result, let us recall a result of Hoffman [4] which will be an essential ingredient for our purpose.

Lemma 2.1 (M.E. Hoffman, 1995). *For real $0 < a < 1$ and integer $n \geq 0$,*

(a)

$$\sum_{k=0}^{\infty} \left[\frac{1}{(k+a)^{n+1}} + \frac{(-1)^{n+1}}{(k+1-a)^{n+1}} \right] = \frac{\pi^{n+1}}{n!} P_n(\cot a\pi).$$

and

(b)

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(k+a)^{n+1}} + (-1)^n \sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1-a)^{n+1}} = \frac{\pi^{n+1}}{n!} \csc a\pi P_n(\cot a\pi)$$

For a function α we will denote by $\alpha^{(k)}$ its k th derivative. Our purpose is to explore sums of the type

$$g(a) = \sum_{n=1}^{\infty} \frac{a^{2n} \zeta(2n)}{n} \binom{2n}{m}$$

where $a \in (0, 1)$ is a general real parameter.

We start with the following well known cotangent power series expansion written in the form

$$\pi \cot(\pi x) = \frac{1}{x} - 2 \sum_{k=1}^{\infty} \zeta(2k) x^{2k-1}.$$

To connect the above with this expansion, note that

$$\frac{1}{n} \binom{2n}{m} = \frac{2 \cdot (2n-1) \dots (2n-m+1)}{m!}.$$

Thus $g(a)$ can be computed as

$$\frac{a^m}{m!} h^{(m-1)}(a)$$

where $h(x) = -\pi \cot(\pi x) + \frac{1}{x}$.

In [4], Hoffman computes the n th derivative of $-\cot x$ in terms of a polynomial P_n . More precisely

$$\frac{d^n}{dx^n} \cot x = (-1)^n P_n(\cot x).$$

For our problem we have $\frac{d^n}{dx^n} \cot(\pi x) = (-1)^n \pi^n P_n(\cot(\pi x))$. Moreover for $0 < a < 1$ by Lemma 2.1 (part (a)), we have

$$\sum_{k=0}^{\infty} \left[\frac{1}{(k+a)^{n+1}} + \frac{(-1)^{n+1}}{(k+1-a)^{n+1}} \right] = \frac{\pi^{n+1}}{(n+1)!} P_n(\cot(\pi a)).$$

Putting everything together we get the following expression for $g(a)$, which is valid for $0 < a < 1$

$$g(a) = \frac{a^m}{m} \sum_{k=0}^{\infty} \left[\frac{(-1)^m}{(k+a)^m} + \frac{1}{(k+1-a)^m} \right] + \frac{(-1)^{m-1}}{m}.$$

Note that we can compactly write the above in terms of Hurwitz zeta function,

$$g(a) = \frac{a^m}{m} \left((-1)^m \zeta(m, a) + \zeta(m, 1-a) \right) + \frac{(-1)^{m-1}}{m}.$$

Second proof. This is more direct proof without using Lemma 2.1. In fact, we prove our equality in the following form,

$$\sum_{n=1}^{\infty} \frac{a^{2n} \zeta(2n)}{n} \binom{2n}{m} - \frac{(-1)^{m-1}}{m} = \frac{a^m}{m} \left((-1)^m \zeta(m, a) + \zeta(m, 1-a) \right). \quad (9)$$

The strategy is the following. We start with the power series formula of cotangent in the form

$$2 \sum_{n=1}^{\infty} \zeta(2n) x^{2n-1} - \frac{1}{x} = -\pi \cot(\pi x). \quad (10)$$

Afterwards, we take on both sides of (10) the $(m-1)$ -st derivative, evaluating at $x = a$, and multiplying both sides of the resulting equality by $\frac{a^m}{m!}$ immediately leads to the left-hand side of (9). On the other hand, we are left to show that the $(m-1)$ -st derivative of $-\pi \cot(\pi x)$ (after evaluation at $x = a$ and multiplication by $\frac{a^m}{m!}$) equals

$$\frac{a^m}{m} \left((-1)^m \zeta(m, a) + \zeta(m, 1-a) \right) + \frac{(-1)^{m-1}}{m}.$$

Now, denote the functions $\psi(x) = 2 \sum_{n=1}^{\infty} \zeta(2n)x^{2n-1} - \frac{1}{x}$ and $\theta(x) = -\pi \cot(\pi x)$, respectively. As it was outlined in the strategy above, by taking the $(m-1)$ -st derivative of $\psi(x)$ and evaluating at $x = a$ yields

$$\begin{aligned} \frac{d^{m-1}}{dx^{m-1}} \psi(x)|_{x=a} &= 2 \sum_{n=1}^{\infty} \zeta(2n)a^{2n-m}(2n-1) \cdot \dots \cdot (2n-m+1) - \frac{(-1)^{m-1}(m-1)!}{a^m} \\ &= \sum_{n=1}^{\infty} \frac{a^{2n-m}\zeta(2n)}{n} \cdot \frac{2n(2n-1) \cdot \dots \cdot (2n-m+1)}{m!} \cdot m! - \frac{(-1)^{m-1}(m-1)!}{a^m} \\ &= \sum_{n=1}^{\infty} \frac{a^{2n-m}\zeta(2n)}{n} \binom{2n}{m} m! - \frac{(-1)^{m-1}(m-1)!}{a^m} \end{aligned}$$

which gives us the claimed left-hand side after multiplication by $\frac{a^m}{m!}$. On the other hand, we compute the $(m-1)$ -st derivative of $\theta(x)$. For this purpose, we employ the following partial fraction expansion of the cotangent function,

$$-\pi \cot(\pi x) = -\frac{1}{x} - \sum_{n=1}^{\infty} \left(\frac{1}{x+n} + \frac{1}{x-n} \right) \quad (11)$$

Again, taking the $(m-1)$ -st derivative of $\theta(x)$ at evaluating at $x = a$ we have

$$\frac{d^{m-1}}{dx^{m-1}} \theta(x)|_{x=a} = \frac{(-1)^{m-1}(m-1)!}{a^m} - \sum_{n=1}^{\infty} \left(\frac{(-1)^{m-1}(m-1)!}{(a+n)^m} + \frac{(-1)^{m-1}(m-1)!}{(a-n)^m} \right).$$

Assuming from now on that $m \geq 2$, the latter formula can be rewritten as

$$\begin{aligned} \frac{d^{m-1}}{dx^{m-1}} \theta(x)|_{x=a} &= (-1)^m(m-1)! \sum_{n=0}^{\infty} \frac{1}{(n+a)^m} + (-1)^m(m-1)! \sum_{n=1}^{\infty} \frac{(-1)^m}{((n-1)+(1-a))^m} \\ &= (-1)^m(m-1)!\zeta(m; a) + (m-1)!\zeta(m; 1-a). \end{aligned}$$

After multiplying the latter quantity by $\frac{a^m}{m!}$, we arrive at the claimed right-hand side of (9). \square

Remark 1. Let us start by pointing out that in the case $m = 1$ the individual terms on the right-hand side of formula are not well-defined, since the Hurwitz zeta functions $\zeta(s; a)$ and $\zeta(s; 1-a)$ each have a pole of order one with residue one at $s = 1$. However, from this we conclude that the difference $-\zeta(1; a) + \zeta(1; 1-a)$ is indeed a well-defined quantity.

Remark 2. Using Wikipedia for the Hurwitz zeta functions [7] one can express for $0 < p < q$ and $\gcd(p, q) = 1$

$$\zeta\left(s, \frac{p}{q}\right) = \frac{q^s}{\varphi(q)} \sum_{\chi} \bar{\chi}(p) L(s, \chi)$$

where the sum runs over all Dirichlet characters mod q .

Thus one can express concretely $g\left(\frac{p}{q}\right)$ in terms of Dirichlet's L -functions. Dirichlet L -functions [1, 3] are defined as follows. First, consider χ to be a homomorphism from the

units of $\mathbb{Z}/k\mathbb{Z}$ to \mathbb{C}^* . Now, we can extend χ to a function on \mathbb{Z} called Dirichlet character modulo q as follows

$$\chi(n) = \begin{cases} \chi(q\mathbb{Z} + n) & \gcd(n, k) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then for $s \in \mathbb{C}$, the Dirichlet L -series corresponding to the character χ is given by

$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_p \left(1 - \frac{\chi(p)}{p^s}\right)^{-1}.$$

As corollaries of the main theorem (Theorem 1.1), we have the following representations from [5].

Corollary 2.1.

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n^{4n}} \binom{2n}{m} = \begin{cases} \frac{1}{m} & m \text{ odd,} \\ \frac{1}{m} \left(2\zeta(m) \left(1 - \frac{1}{2^m}\right) - 1\right) & m \text{ even.} \end{cases} \quad (12)$$

and

Corollary 2.2. *We have the following series representation*

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)}{n^{16n}} \binom{2n}{m} = \begin{cases} \frac{1}{m} (1 - \beta(m)) & m \text{ odd,} \\ \frac{1}{m} \left(\zeta(m) \left(1 - \frac{1}{2^m}\right) - 1\right) & m \text{ even,} \end{cases} \quad (13)$$

where $\beta(s) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^s}$ is the Dirichlet's beta function.

As it has been showed in [5], many well-known rational zeta series can be obtained from the last two corollaries which are similar with (1), (2), (3), (4), (5). We refer the readers to [5] for more details.

REFERENCES

- [1] T. Apostol, *Introduction to Analytic Number Theory*, 3rd ed., Springer-Verlag, New York, 1986.
- [2] Jonathan M. Borwein, David M. Bradley, Richard E. Crandall, Computational Strategies for the Riemann Zeta Function, *J. Comput. Appl. Math.* **121** (2000), 247–296.
- [3] G.H. Hardy, E.M. Wright, *An Introduction to the Theory of Numbers*, 4th edn. Oxford University Press, London (1960).
- [4] M. E. Hoffman, Derivative polynomials for tangent and secant, *Amer. Math. Monthly* **102** (1995), 23–30.
- [5] C. Lupu, D. Orr, Series representations for the Apery constant $\zeta(3)$ involving the values $\zeta(2n)$, *Ramanujan J.* **45** (2019), 477–494.
- [6] D. Tyler, P. R. Chernoff, An old sum reappears-Elementary problem 3103, *Amer. Math. Monthly* **92** (1985), 507.
- [7] Wikipedia-Hurwitz zeta function, https://en.wikipedia.org/wiki/Hurwitz_zeta_function