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ON SOME RATIONAL ZETA SERIES INVOLVING ζ(2n) AND 
BINOMIAL COEFFICIENTS

Cezar LUPU1, Vlad MATEI2

In this note, we give an exact formula for a general family of rational zeta

series involving the coefficient ζ(2n) in terms of Hurwitz zeta values. This formula gen-

eralizes two previous formulas from a paper in [5]. Our method will involve derivatives
polynomials for the cotangent function.
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1. Introduction

The Riemann zeta function is defined by the absolutely convergent series

ζ(s) =

∞∑
n=1

1

ns
,Re s > 1.

In 1882, Hurwitz defined the following ”shifted” zeta function,

ζ(s; a) =
∞∑

n=0

1

(n+ a)s
,Re s > 1, 0 < a ≤ 1.

Both of them have similar properties in many aspects. For example, both of them are
analytic and they have analytic continuation to the whole complex plane except for the pole

s = 1. Some particular values include ζ(−n; a) = −Bn+1(a)

n+ 1
, where Bk(a) is the Bernoulli

polynomial which is defined by the power series

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
.

Also, as a special case, we have ζ(0; a) = 1
2−a. Other obvious values include ζ

(
s; 1

2

)
=

(2s − 1)ζ(s) and ζ(s; a+ 1) = ζ(s, a)− as. For more details, one can consult [1, 3, 7].
A classical problem which goes back to Goldbach and Bernoulli asserts that∑

ω∈S

(ω − 1)−1 = 1,

where S = {nk : n, k ∈ Z≥0 − {1}}. In terms of the Riemann zeta function ζ(s), the above

problem reads as,
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∞∑
n=2

(ζ(n)− 1) = 1.

Also, there are other representations for log 2 and γ (Euler-Mascheroni constant) such
as,

∞∑
n=1

ζ(2n)− 1

n
= log 2,

and

∞∑
n=2

ζ(n)− 1

n
= 1− γ.

For instance, one way to generate rational zeta series involving ζ(2n) is by looking at
the cotangent power series formula in the form:

∞∑
n=1

ζ(2n)x2n =
1

2
(1− πx cot(πx)), |x| < 1.

Dividing by x and integrating once, we have

∞∑
n=1

ζ(2n)

n
x2n = log

(
πx

sin(πx)

)
, |x| < 1.

For x = 1
2 and x = 1

4 in the above formulas, we obtain the following representations:

∞∑
n=1

ζ(2n)

22n
=

1

2
(1)

∞∑
n=1

ζ(2n)

24n
=

4− π

8
(2)

∞∑
n=1

ζ(2n)

n22n
= log π − log 2 (3)

∞∑
n=1

ζ(2n)

n24n
= log π − 3

2
log 2 (4)

Moreover, integrating from 0 to 1
2 the last power series equality, we derive

∞∑
n=1

ζ(2n)

n(2n+ 1)22n
= log π − 1 (5)

which can be found in [6].
This type of rational zeta series and many others are treated in [2]. In [5] there are

given exact formulas for the following rational zeta series

∞∑
n=1

ζ(2n)

n4n

(
2n

m

)
(6)

and
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∞∑
n=1

ζ(2n)

n16n

(
2n

m

)
(7)

in terms of zeta values. In this note, we give an exact formula for a more general
rational zeta series which encompasses the two series above.

The main result of this note is the following

Theorem 1.1. Let ζ(s) and ζ(s; r) be the Riemann and Hurwitz zeta functions. For a ∈
(0, 1) we have

∞∑
n=1

a2nζ(2n)

n

(
2n

m

)
=
am

m

(
(−1)mζ(m; a) + ζ(m; 1− a)

)
+

(−1)m−1

m
. (8)

The main idea of the proof is a combination of expressing the rational zeta series from
the left-hand side as the nth derivative of the cotangent function (a polynomial Pn(cotπx))
and a surprising result of Hoffman [4] which relates this polynomial Pn(cotx) in terms of
Hurwitz zeta values.

Acknowledgement. The second author was supported by the project “Group
schemes, root systems, and related representations” founded by the European Union -
NextGenerationEU through Romania’s National Recovery and Resilience Plan (PNRR) call
no. PNRR-III-C9-2023- I8, Project CF159/31.07.2023, and coordinated by the Ministry of
Research, Innovation and Digitalization (MCID) of Romania.

2. The proof of Theorem 1.1

First proof. Before we dive into the proof of the main result, let us recall a result of
Hoffman [4] which will be an essential ingredient for our purpose.

Lemma 2.1 (M.E. Hoffman, 1995). For real 0 < a < 1 and integer n ≥ 0,
(a)

∞∑
k=0

[
1

(k + a)n+1
+

(−1)n+1

(k + 1− a)n+1

]
=
πn+1

n!
Pn(cot aπ).

and
(b)

∞∑
k=0

(−1)k

(k + a)n+1
+ (−1)n

∞∑
k=0

(−1)k

(k + 1− a)n+1
=
πn+1

n!
csc aπPn(cot aπ)

For a function α we will denote by α(k) its kth derivative. Our purpose is to explore
sums of the type

g(a) =

∞∑
n=1

a2nζ(2n)

n

(
2n

m

)
where a ∈ (0, 1) is a general real parameter.

We start with the following well known cotangent power series expansion written in
the form

π cot(πx) =
1

x
− 2

∞∑
k=1

ζ(2k)x2k−1.
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To connect the above with this expansion, note that

1

n

(
2n

m

)
=

2 · (2n− 1) . . . (2n−m+ 1)

m!
.

Thus g(a) can be computed as

am

m!
h(m−1)(a)

where h(x) = −π cot(πx) +
1

x
.

In [4], Hoffman computes the nth derivative of − cotx in terms of a polynomial Pn.
More precisely

dn

dxn
cotx = (−1)nPn(cotx).

For our problem we have
dn

dxn
cot(πx) = (−1)nπnPn(cot(πx)). Moreover for 0 < a < 1 by

Lemma 2.1 (part (a)), we have

∞∑
k=0

[
1

(k + a)n+1
+

(−1)n+1

(k + 1− a)n+1

]
=

πn+1

(n+ 1)!
Pn(cot(πa)).

Putting everything together we get the following expression for g(a) , which is valid
for 0 < a < 1

g(a) =
am

m

∞∑
k=0

[
(−1)m

(k + a)m
+

1

(k + 1− a)m

]
+

(−1)m−1

m
.

Note that we can compactly write the above in terms of Hurwitz zeta function,

g(a) =
am

m

(
(−1)mζ(m, a) + ζ(m, 1− a)

)
+

(−1)m−1

m
.

Second proof. This is more direct proof without using Lemma 2.1. In fact, we prove
our equality in the following form,

∞∑
n=1

a2nζ(2n)

n

(
2n

m

)
−

(−1)m−1

m
=
am

m

(
(−1)mζ(m; a) + ζ(m; 1− a)

)
. (9)

The strategy is the following. We start with the power series formula of cotangent in
the form

2
∞∑

n=1

ζ(2n)x2n−1 − 1

x
= −π cot(πx). (10)

Afterwards, we take on both sides of (10) the (m − 1)-st derivative, evaluating at

x = a, and multiplying both sides of the resulting equality by
am

m!
immediately leads to the

left-hand side of (9). On the other hand, we are left to show that the (m− 1)-st derivative

of −π cot(πx) (after evaluation at x = a and multiplication by
am

m!
) equals

am

m

(
(−1)mζ(m, a) + ζ(m, 1− a)

)
+

(−1)m−1

m
.
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Now, denote the functions ψ(x) = 2

∞∑
n=1

ζ(2n)x2n−1 − 1

x
and θ(x) = −π cot(πx),

respectively. As it was outlined in the strategy above, by taking the (m − 1)-st derivative
of ψ(x) and evaluating at x = a yelds

dm−1

dxm−1
ψ(x)|x=a = 2

∞∑
n=1

ζ(2n)a2n−m(2n− 1) · . . . · (2n−m+ 1)− (−1)m−1(m− 1)!

am

=

∞∑
n=1

a2n−mζ(2n)

n
· 2n(2n− 1) · . . . · (2n−m+ 1)

m!
·m!− (−1)m−1(m− 1)!

am

=

∞∑
n=1

a2n−mζ(2n)

n

(
2n

m

)
m!− (−1)m−1(m− 1)!

am

which gives us the claimed left-hand side after multiplication by am

m! . On the other
hand, we compute the (m−1)-st derivative of θ(x). For this purpose, we employ the following
partial fraction expansion of the cotangent function,

−π cot(πx) = − 1

x
−

∞∑
n=1

(
1

x+ n
+

1

x− n

)
(11)

Again, taking the (m− 1)-st derivative of θ(x) at evaluating at x = a we have

dm−1

dxm−1
θ(x)|x=a =

(−1)m−1(m− 1)!

am
−

∞∑
n=1

(
(−1)m−1(m− 1)!

(a+ n)m
+

(−1)m−1(m− 1)!

(a− n)m

)
.

Assuming from now on that m ≥ 2, the latter formula can be rewritten as

dm−1

dxm−1
θ(x)|x=a = (−1)m(m− 1)!

∞∑
n=0

1

(n+ a)m
+ (−1)m(m− 1)!

∞∑
n=1

(−1)m

((n− 1) + (1− a))m

= (−1)m(m− 1)!ζ(m; a) + (m− 1)!ζ(m; 1− a).

After multiplying the latter quantity by am

m! , we arrive at the claimed right-hand side
of (9). □

Remark 1. Let us start by pointing out that in the case m = 1 the individual terms
on the right-hand side of formula are not well-defined, since the Hurwitz zeta functions
ζ(s; a) and ζ(s; 1 − a) each have a pole of order one with residue one at s = 1. However,
from this we conclude that the difference −ζ(1; a) + ζ(1; 1 − a) is indeed a well-defined
quantity.

Remark 2. Using Wikipedia for the Hurwitz zeta functions [7] one can express for
0 < p < q and gcd(p, q) = 1

ζ

(
s,
p

q

)
=

qs

φ(q)

∑
χ

χ(p)L(s, χ)

where the sum runs over all Dirichlet characters mod q.
Thus one can express concretely g(pq ) in terms of Dirichlet’s L-functions. Dirichlet

L-functions [1, 3] are defined as follows. First, consider χ to be a homomorphism from the
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units of Z/kZ to C∗. Now, we can extend χ to a function on Z called Dirichlet character
modulo q as follows

χ(n) =

 χ(qZ+ n) gcd(n, k) = 1,

0 otherwise .

Then for s ∈ C, the Dirichlet L-series corresponding to the character χ is given by

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

.

As corollaries of the main theorem (Theorem 1.1), we have the following representa-
tions from [5].

Corollary 2.1.

∞∑
n=1

ζ(2n)

n4n

(
2n

m

)
=


1

m
m odd,

1

m

(
2ζ(m)

(
1− 1

2m

)
− 1

)
m even .

(12)

and

Corollary 2.2. We have the following series representation

∞∑
n=1

ζ(2n)

n16n

(
2n

m

)
=


1

m
(1− β(m)) m odd,

1

m

(
ζ(m)

(
1− 1

2m

)
− 1

)
m even,

(13)

where β(s) =

∞∑
n=0

(−1)n

(2n+ 1)s
is the Dirichlet’s beta function.

As it has been showed in [5], many well-known rational zeta series can be obtained
from the last two corollaries which are similar with (1), (2), (3), (4), (5). We refer the readers
to [5] for more details.
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