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NUMERICAL PRECISION AND TRAJECTORY
DEGRADATION IN THE CHAOTIC SKEW TENT MAP

Alexandru George Vaduva!, Adriana Vlad?, Bogdan Badea?

The research investigates the degradation of the chaotic skew tent
map dynamics, specifically, the impact of numerical precision on iterating
the chaotic signal, which is commonly referred to as trajectory degradation.
In the first part of the study, we determine the minimum precision necessary
to iterate the chaotic signal K times without degradation and investigate
possible optimized solutions to this problem.

In the second part, the experimental findings indicate a correlation be-
tween the control parameter of the skew tent map and the minimum number
of bits required to perform the iterative calculations without experiencing
trajectory degradation. We assess the trajectory degradation phenomenon
under the scenario of double precision.

Keywords: numerical precision, tent map chaotic systems, trajectory degra-
dation, arbitrary precision

1. Introduction

In the field of chaos-based applications, a chaotic signal’s defining formula
is initialized with an initial condition and then iterated step by step. This paper
analyzes the effects of using different numerical precisions when iterating the
chaotic skew tent map signal. The problem of accurately reproducing chaotic
processes is well documented in literature [1-6] and a few specific solutions
have been previously explored |7, 8]. This study focuses on the skew tent map
chaotic signal and explores the connection between trajectory degradation and
the control parameter p, as well determining the minimum numerical precision
required to iterate a given number of times accurately.
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The skew tent map signal is a chaotic system in discrete time with a
one-dimensional structure, widely used in various fields such as [9-13]. The
definition of the skew tent map signal under consideration is as follows:

k.

— p
R+l = 1—2g
1-p

where p represents the control parameter defined in interval (0;1) \ 0.5. The
generated values denoted as zj, k denotes iteration, belong in the (0;1) do-
main. Given a fixed value for the control parameter p and initial conditions
chosen uniformly in (0;1), the system 1 generates an ensemble of trajectories
which represent the ergodic random process that is assigned to skew tent map
function. Each trajectory is identified by its initial condition and represents a
particular sample of the random process.

The first order probability law that governs this random process is a
uniform law in the (0;1) range. Given an initial condition z; and a control
parameter p, the value z;, at iteration £ can be computed with the precision
given by the data format used. However, the chosen precision can significantly
alter a trajectory as rounding errors accumulate in the iteration process. Fig.
1 illustrates two trajectories computed using p=0.35 for the control parameter
and starting from the same initial condition zy=0.7, but iterated using two

different data formats and thus with two numerical precisions.
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FIGURE 1. Iterating a tent map trajectory using an initial con-
dition 2y = 0.7 and control parameter p=0.35 with double and

float precision.
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The two trajectories seem to visually overlap for the first few iterations,
but if they are compared numerically, they start to diverge sooner than it
appears visually. In our study we define two trajectories as having diverged
when the difference between their respective values at the same k iteration is
greater than € = 107°. The chosen threshold ensures a balance between the
visual differences when comparing two or more trajectories as shown in Fig.
1 and the numerical differences between trajectories, which we consider to be
negligible below this value for practical purposes. In the current paper we
want to evaluate the numerical precision required to iterate K times without
being practically affected by the trajectory degradation phenomenon.

2. Background

The operands’ data format precision is given by the used representation
format. The IEEE 754 standard [14] is used for storing floating point numbers
in the memory of modern computers. The most popular representation formats
are float and double which use a total of 32 bits and 64 bits respectively. The
number representations defined by the IEEE 754 standard are shown in Table
1.

In strongly typed programming languages, like C+-, the type of a vari-
able must be declared (e.g., float or double). In contrast, in loosely typed
languages, such as Matlab or Python (which use double or float, respectively),
the type of a variable is inferred. Not declaring the type of variables when
working with chaotic signals can result in differing outcomes on different ma-
chines or even on the same machine.

In order to evaluate the minimum number of precision bits required to
iterate without degradation K times, we have used an arbitrary precision li-
brary [15]. For the internal representation of numbers, this library employs a
fixed number of 64 bits for the exponent and a variable number of bits for the
mantissa, allowing for virtually arbitrary precision. Note that the highest pre-
cision defined by the IEEE 754 format, Binary256, cannot be used to iterate
accurately for more than a few hundred iterations.

TABLE 1
[EEE 754 number representation formats.

| Name | Popular name | Mantisa (bits) | Exponent (bits) |

Binary16 Half precision 11 5
Binary32 Single precision 24 8
Binary64 Double precision 53 11
Binary128 | Quadruple precision 113 15
Binary256 | Octuple precision 237 19
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With the help of [15] we can iterate any chaotic signal with sufficient
precision and generate an arbitrary long trajectory for our chaotic signal with-
out degradation, given a sufficient number of bits for the mantissa. However,
this library has some drawbacks, such as increased memory usage and runtime
that grows exponentially as precision increases.

The simulations performed for this study were done using an Intel Xeon
W with 16 cores and 32 threads running at 3.5 GHz on system having 32 GB
of RAM.

3. Methodology and experimental results
3.1. Algorithm for detecting trajectory degradation

In this study, our primary objective is to determine the minimum number
of mantissa bits, b, that allow us to iterate K times without trajectory degrada-
tion. To do this, we start by generating an initial trajectory, za%, 215, ... 235 |
using (1) and a given control parameter, p, an initial condition 2y, and 4K bits
of precision for the iterative calculation. This trajectory serves as our reference
trajectory. Empirically, we have found that using 4K bits of precision is well
beyond what is necessary to iterate K times without degrading the trajectory.

We then iterate the same initial zy condition using M bits of precision,
where M < K and obtain a second trajectory with samples 27, 27, ... 2 .
If we compare the two trajectories sample by sample and [2}% — zM| < € for
alli € {0,1,... K — 1}, then we consider the 2 trajectories to be identical and
iterating K times using M bits of precision starting from z, is done without
degradation.

We define b as the value for which |25 — 2| < eforalli € {1,2,..., K—1}
and |35 | — 251 | > € for at least one value of i in the same range {1,2, ..., K —
1}. Usually the error cascades and checking the previous conditions at i =
K — 1 is a strong condition. For a given p control parameter and a set of
K iterations, the minimum number of mantissa bits, b, varies with different
initial conditions zy. For each combination of (p, K), we evaluate a value b
for each initial condition out of all 1000000 and retain the largest value for
b. The p control parameter can take any value between (0;1) \ 0.5. In this
paper we analyzed the following values for p: {0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.45, 0.55, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. Regarding the K number
of iterations, i.e. the length of the trajectory unaffected by degradation, we
studied the following values: {100, 200, 300, 500, 1000, 5000}.

In order to determine b for each combination of (p, K') values we perform
the following:

(1) We choose the next unused (p, K') combination.
(2) We generate 1000000 2 initial conditions uniformly distributed in (0;1).
For each initial condition we perform the following steps:
(a) We compute the reference trajectory of the skew tent map signal
from (1) using 4K mantissa bits of precision.
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TABLE 2
Minimum number of mantissa bits used to iterate without tra-
jectory degradation for a given (p, K) pair.

Control parameter p Number of iterations K

100 \ 200 \ 300 \ 500 \ 1000 \ 5000
0.05 91 | 153 | 170 | 257 | 439 | 1766
0.1 110 | 175 | 224 | 349 | 626 | 2666
0.15 120 | 200 | 260 | 412 | 773 | 3335
0.2 101 | 157 | 208 | 329 | 596 | 2701
0.25 129 | 221 | 305 | 496 | 927 | 4263
0.3 129 | 229 | 324 | 520 | 979 | 4578
0.35 130 | 231 | 324 | 529 | 1016 | 4824
0.45 123 | 225 | 325 | 526 | 1030 | 5025
0.55 123 1 225 | 326 | 529 | 1030 | 5025
0.65 130 | 229 | 331 | 536 | 1006 | 4810
0.7 1311233 324 | 509 | 977 | 4594
0.75 128 | 221 | 302 | 494 | 921 | 4273
0.8 125 | 212 | 283 | 455 | 847 | 3877
0.85 1251 206 | 265 | 414 | 755 | 3364
0.9 110 | 174 | 226 | 346 | 618 | 2648
0.95 95 | 141 | 177 | 267 | 443 | 1737

(b) We determine b, the minimum number of precision bits for which
the trajectory does not degrade as when compared to its reference
trajectory.

(3) From all 1000000 b values for the current (p, K) pair, we retain the
maximum value then return to step 1 until all pairs have been analyzed.

The results in Table 2 show that the necessary minimum precision to
perform K iterations accurately varies with p. As a general rule, to avoid
trajectory degradation, it is recommended to use at least K+100 bits of pre-
cision in the mantissa as this empirically determined precision covers all cases
tested. If we want to use slightly less bits of precision, then Table 2 should be
consulted.

According with Table 2, for a given control parameter p=0.55 and K =200
iterations we must use 225 bits for the mantissa in order to avoid the phenom-
enon of trajectory degradation. For the same p parameter but for K=5000
iterations, we need 5025 bits of precision for the mantissa to iterate correctly
and avoid trajectory degradations.

Table 2 demonstrates that when the p control parameter is closer to the limits
of (0;1), fewer precision bits are needed to perform K iterations without loss
of precision compared to when p is closer to 0.5.

One way to optimize the above algorithm is to use a binary search between
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values 1 and /K for step 2b from above instead of looking at each value
i € {1,2..., K — 1}. This makes sense given that we did not encounter any
repeating values / cyclic trajectories for the number of iterating steps we have
considered. Also, once a trajectory has diverged from its reference counterpart
at iteration ¢ < K —1 the outcome of bouncing back to the reference trajectory
is highly unlikely, especially at iteration j where 1 < j < K — 1.

The histograms of b values for various (p, K) combinations from Table
2 can be seen in Fig. 2. These histograms were created using the b values
obtained in steps 1-3, which were computed using 1000 000 initial conditions.
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FIGURE 2. Histogram for b at different (p, K) values.

3.2. Double precision vs extended arbitrary precision

The most used numerical precision in the field of chaotic signals is the
double precision [16-19] and we want to evaluate the degradation of the skew
tent map signal when iterated using double precision and with a variable con-
trol parameter p which takes values in the (0;1) \ 0.5 interval. We study
the same values for the control parameter p proposed in the previous section:
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.45, 0.55, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9,
0.95}. For all proposed values of p, we observed that the degradation happens
before iteration K=300. In order to iterate without degradation for K=300
iterations, we used a precision of 512 bits for the mantissa, which is consider-
ably higher than the minimum required precision to avoid degradation, as it
can be verified in Table 2.
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For evaluating the degradation of the skew tent map signal when using
double precision, we applied the following steps:
a) We choose a value for the control parameter p.
b) We generate 1000000 z initial conditions uniformly distributed in (0;1).
For each initial condition we perform the following steps:

i

1

il

Compute the trajectory starting from zy seed by iterating (1) us-
ing double precision for K=300 iterations, resulting in trajectory
double precision -

Compute a reference trajectory by iterating (1) starting from 2z
seed with an extended precision of 512 bits for K=300 iterations,
resulting in trajectoryecytended precision-

We compare trajeCtorydouble precision with trajeCtOTyextendedprecision
element-wise and check if the difference is larger than the estab-
lished threshold e. If the difference is larger than € we store 1 and 0
otherwise. We obtain a sequence of 300 binary values with as many
leading zeros as the number of iterations for which the two trajec-
tories are overlapping, then followed by ones until iteration 300 as
the trajectories have diverged.

c) For the current control parameter p, we count how many trajectories
among all 1000000 have diverged from their corresponding reference tra-
jectory at each K € {0,1,...,300} and store these proportions. We plot
the recorded proportions at each k for the respective p value in Fig. 3
and Fig. 4.

We repeat starting with step a) until all control parameters have been

analyzed.

Degraded Trajectories(%)

100

80

60

20 40

0

0 20 40 60 80 100 120 140 160 180 200
Iteration (k)

FIGURE 3. Trajectory degradation (%) at iteration K when us-
ing double precision for p < 0.5.
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FIGURE 4. Trajectory degradation (%) at iteration K when us-
ing double precision for p > 0.5.

Fig. 3 and Fig. 4 show that for all p parameters tested there is no visible

degradation until iteration K = 30. After this value the degradation manifests
different depending on the control parameter p. For example, in Fig 3 for a
control parameter p = 0.1 we can observe that after k& = 100 iterations 80% of
all tested trajectories have degraded.
We also observe that trajectories iterated using a control parameter p closer to
0.5 degrade much faster than trajectories iterated with a control parameter p
that is much closer to the extremities of the (0;1) interval. This observation is
closely related to the dependency between b and p observed in Table 2, where
b represents the minimum number of mantissa bits required to iterate K times
without precision loss and p is the control parameter for the skew tent map
signal. All trajectories studied degraded after at most 200 iterations.

The potential use of this technique extends to several communication
fields, especially cryptography, where chaotic system’s dynamic state changes
and/or control parameters are leveraged. Knowing the duration K in which
trajectories remain unaffected by degradation can help identify the best mo-
ments to intervene with dynamic changes of the system [20, 21].

For the chaotic system under study, regardless of its parameter p and the
initial conditions used, digital degradation when using the double data format
occurs after approximately 30 iterations. This means that, for the first 30 iter-
ations of the skew tent map signal, the first 5 decimals of the values computed
by using double precision coincide with those computed theoretically.

4. Conclusions

We have proposed an algorithm for evaluating the trajectory degradation
then applied it to the skew tent map chaotic signal described by (1) and we
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have determined that, in order to iterate K times without encountering the tra-
jectory degradation phenomenon, the rule of thumb proposed is to use K+100
bits of precision for the mantissa of the number representation, by using the
arbitrary precision library. Table 2 offers a better result for the number of
precision bits that should be used to avoid trajectory degradation, depending
on the control parameter p of the skew tent map chaotic signal and the number
of iterations K.

We have determined that the required precision to iterate K times with-
out trajectory degradation varies with the control parameter p and the tra-
jectories start to degrade after approximately K = 30 iterations. Moreover,
trajectories iterated with a control parameter closer to the limits of (0;1) inter-
val require using less bits of precision than trajectories iterated with a control
parameter p which is closer to the middle of the (0;1) interval, for the same
number of iterations K.

The findings from this research could be utilized in situations where
chaotic signals are used to exchange shared secrets, or in scenarios where in-
troducing randomness at optimal points can offset the degradation effect by
altering the system’s dynamic state |20, 21].
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