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A MODEL OF DYNAMIC VIBRATIONS ABSORBER FOR A 
HELICOPTER  

Félix TIPHAINE1, Mihai Valentin PREDOI2 

Reducing helicopter vibrations is a constant preoccupation of the last decades. 
Most important is to reduce the vibrations produced by the main rotor rear in the 
cabin. The use of vibrations dampers is a possible solution, but a vibration absorber 
is more efficient by the vibrations of a secondary system close to its resonance. In this 
way, vibration energy from the principal system, the helicopter in this case, is partly 
absorbed by the vibration damper.  

In this paper is investigated a special kinematic link for a vibration absorber. 
The mechanical model, Lagrange equations of the non-holonomic system are deduced 
and the numerical results are validated by experimental tests on a laboratory model.  

Keywords: Dynamic Vibration Absorber, non-holonomic system. 

1. Introduction 

High level of vibrations and associated noise, represent a constant 
preoccupation in helicopter design, just to mention one of many technical domains 
in which vibration reduction is very important. The principal source of vibrations 
in the helicopter case is the transmission gearbox which reduces the rotation speed 
of about (3 – 20)·103 rot/min from the free turbine of the engine, to 300 - 1000 
rot/min of the main rotor, providing power to the main rotor propeller, ranging from 
hundreds to thousands of kilowatts. 

The main gearbox vibrations are transmitted to the helicopter cabin through 
the connection joints, which must be sufficiently stiff to carry the helicopter weight 
and payload. Reducing these vibrations, preferably near their source, is a constant 
preoccupation in modern design of helicopters. Two theoretical directions of study 
can be distinguished: one consisting in adding vibrations dampers and the other 
considers the vibrations absorbers. The two degrees of freedom forced and damped 
vibrations are extensively presented in classical textbooks e.g. [1], [2], [3], etc. A 
dynamic vibration absorber is a tuned spring-mass system, which reduces or 
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eliminates the vibration of a harmonically excited system. Fundamental aspects 
concerning the vibrations absorbers can be found in textbooks e.g. [2], [4], [5], etc. 

More recently Yuen et al. [6] are focusing on the design and implementation 
of passive vibration absorbers for machines with a known vibration frequency close 
to one of the system resonance frequencies, taken as example a cantilever beam. 
The limits of the added device when the vibration absorber is not tuned are clearly 
shown. Piccirillo et al. [7] are proposing a new procedure to determine the optimal 
parameters of a Dynamic Vibration Absorber (DVA), considering both damped and 
undamped primary system. Shen et al [8] studied in detail a novel DVA with 
grounded stiffness element and amplifying mechanism. Some helicopter specific 
vibrations problems are presented by C. -Rivera and T. -Rodriguez in ref. [9] and 
in the dedicated chapter in the textbook [10] edited by Concilio et al. Simpler 
mechanisms have been studied in many papers, citing here only Ji et al. [11] and 
Nguyen et al. [12]. 

The present work is investigating a mathematical model of helicopter 
dynamic structure, simplified to a mechanical system with a small number of 
degrees of freedom. The DVA is considered as a beam connecting the cabin 
structure to the main gearbox, a beam which can have a relative motion and a mass 
positioned near its free end. The energy loss is caused by two mechanisms: a) 
structural loss in the elastic parts or viscous dampers and b) friction in the slider 
connecting the beam to the gearbox. The work is organized as follows: a) the 
mathematical model deduced from Lagrange equations, b) numerical simulation of 
the dynamic response of the structure, c) preliminary experimental validation.  

2. Mechanical model 

The mechanical model is intended to capture only the vertical translations  
of the cabin and main gear, including also a simplified model of the DVA (Fig. 1).  

The mass of the fuselage (cabin and landing gear) are represented by the 
mass Mf  positioned by zf, small amplitude vibrations about the equilibrium position. 
The contact with the ground (suspension and wheels) are modeled by the spring 
elastic constant kf and damper cf. The gear box and main rotor are represented by 
the mass Mg positioned by the absolute coordinate zg, from its equilibrium position. 
Between the cabin and the gearbox, are the mechanical links represented by the 
elastic spring of constant kg and viscous damper of constant cg. The DVA is 
represented by the beam CB of length L and negligible mass, passing through a 
slider which is hinged in A to the gearbox. At point B is attached a mass Mb. The 
beam is inclined at an angle α0 at equilibrium and small variations of this angle are 
denoted by α(t). Of course in reality, for equilibrium reasons, several DVAs will be 
symmetrically distributed around the main rotor, as well as the springs and dampers 
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included in this model, meaning a sum of masses and an equivalent spring, to be 
updated. 

Fig. 1 Mechanical model of the cabin-gearbox assembly with the DVA included (a). Kinematic 
physical parameters (b). Equivalent velocities in a translating frame (c).  

 
  
 The beam CB is in a planar motion. The position of the DVA mass Mb can 
be deduced from the following kinematic analysis (Fig. 1 b). Points C and A have 
absolute velocities fz  and gz respectively, along the vertical direction Oz. The 
segment CA(t) has a constant projection on the horizontal direction Ox (Fig. 1): 

( ) ( ) ( ) ( )0 0cos cosd CA t t CA tα α α= ⋅  +  ≅ ⋅  . Considering the entire system as in a 

moving frame of velocity fz , the problem is reduced to the relative motion of the 
slider A (Fig. 1c). In this frame: 

 ( ) ( ) ( )0
0

cos
cos

a
A g f

t a
A A

v z z

dv v CA tα α α α
α α

= −

= + = ⋅ = ⋅
+

 

 
  (1) 

Consequently, the angular velocity of the beam, could be written by keeping 
terms up of order ( )2O α  in a series development around α0, but a simpler 
approximation will be used in the following, to avoid non-linear terms: 

 ( )( )2 2 2
0 0 0cos sin 2 cosg f g fz z z z

O
d d

α α α α α α
− −

= + + ≅
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The point B has an absolute velocity in the fixed frame, given by the rotation 
in the translating frame and by the overall translation velocity fz : 
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( )
( )
0 0

0 0
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cos cos
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Bz f f
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Using the notation: 

 ( ) ( )0 0cos cosCB d L dλ α α= = , (4) 

the velocity becomes a linear combination of the two absolute velocities and 
L dλ =  if the beam’s inclination angle α0 is small, can be obtained the preliminary 

results from ref. [13]: 

 
( ) ( ) ( )

0

1
Bx

Bz f g f g f

v

v z t z z z zλ λ λ

≅

≅ + − = + −    
  (5) 

In the general case of angle ( )0 0, 2α π∈  and small angles α, one can limit the 2
Bv  

from (3), to only the first two terms of the series development : 
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  (6) 

The kinetic energy of the mechanical system is, for small angle α, neglecting the 
last term of the velocity (6), or directly from the approximate form of (3): 

 
( ) ( )

2 2 2

2 2
0

1 1 1
2 2 2

1 2 cos .
2

f f g g b B

f b f g g b f

E M z M z M v

M M z M z M L L zα α α

= + +

 = + + + + 

 

   

  (7) 

Apparently, there are three generalized velocities involved in this formula. 
However there is a relationship (2) between them, meaning that the mechanical 
system has only two degrees of freedom. Being a relationship expressed in 
velocities, the system can be treated as non-holonomic. The forces considered as 
acting on the mechanical system are the weights, elastic forces in the springs for 
which there is a force function, defined up to an additive constant C: 

 ( )( ) ( )22
0

1 1sin
2 2f f g g b f f f g g fU M gz M gz M g z L k z k z z Cα α= − − − + + − − − + . (8) 

For small α angles, a Taylor series development can be written up to terms in α of 
second order:  
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( )22 20 0
0

cos sin 1sin
1! 2! 2f f g g b f f f g g fU g M z M z M z L k z k z z Cα α

α α α
     = − + + + + − − + − +         

 

 (9)   
By derivation of this force function about the generalized coordinates zf, zg, α will 
result constant forces and forces depending on coordinates. The first group: 

 0
0

cossin
1!s f f g g b fU M gz M gz M g z L α

α α
  = − − − + +  

  
.  (10) 

leads to particular solutions of the Lagrange equations, corresponding to the 
equilibrium position, which do not influence the vibrations. Consequently, only the 
dynamic force function will be considered in the following: 

 ( )22 20sin1 1
2 2 2f f g g f bU k z k z z M gL Cα

α= − − − + + .  (11) 

 Also, the viscous damping forces defined by damping coefficients cf , cg and the 
external applied forces e.g. F(t) produce generalized forces : 

 ( ) ( );f f f g g g fQ c z Q c z z F t= − = − − +   .  (12) 

3. The Lagrange equations 

In the case of non-holonomic Lagrange equations, the equation (2) relating 
the three generalized velocities ( , ,f gz z α  ) will be included, by using the Lagrange 
multiplier β for the single kinematic constraint: 

 

1 2 32 2
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d E E U Q a k
dt q q q

d dz z a a a

β

α
α α
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− + − = ⇒ = − = = −


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  (13) 

Consequently, the Lagrange equations and associated kinematic condition, are in 
this case: 
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 (14) 

The derivative of the kinematic condition with respect to time, permit the 
elimination of the angular generalized coordinate and from the third equation is 
deduced β, injected then in the first and second equation:   
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  (15) 

Since only the vertical vibrations are of interest in this analysis, eq. (15) will be 
used to express the system of differential equations (14) to one only two . The 
resulting Lagrange equations in matrix form, including the action of an external 
force F(t) acting on the gear-box are: 
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  (16) 

The notation 2
0 0cosλ λ α= has been used. The above differential equation are 

extending the results from ref. [13] to the case of arbitrary inclination α0 of the 
DVA.  
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4. Natural frequencies 

The resonance in real conditions occurs as high vibration amplitudes at 
some particular frequencies of the damped system. Since in laboratory conditions, 
the damping coefficients are a priori unknown, the next step is to determine the 
natural frequencies using the measured physical quantities of an experimental 
model. The angular frequencies ω1,2 (rad/s) can be obtained numerically by solving 
the following eigenvalue problem: 

 11 12 11 122

21 22 21 22

0
0

g g

f f

z zm m k k
m m k kz z

ω
           − + =        

          
 . (17) 

The resonant frequencies depend on the design parameters L/d =1… 10 and 
α0 = 0 … π/3 from which are deduced the parameters (λ, λ0) used in the previous 
paragraph. The input values were determined on the reduced scale model used in 
laboratory (Table 1). In Fig. 2 are shown these dependencies.  

 

 
Fig. 2 Natural frequencies as functions of L/d and α0 = 26 ° (a) and as functions of α0 for L/d=5 

 
In the absence of added mass (Mb=0) the computed natural frequencies are f1=24.05 
Hz and f2=120.22 Hz. The essence of the DVA is to add the Mb masses indicated 
in Table 1. The experimental α0 = 26° and this value was kept constant while 
changing the ratio L/d with the results shown on Fig. 2a. Placing the mass farther 
from the hinge, reduces considerably the fundamental frequency from 24.05 Hz to 
9.7 Hz, approaching it to usual rotation frequencies of real main helicopter rotors. 
This means that the DVA is tunable to the frequency of the rotor. The second 
frequency increases from 112.5 Hz at L/d=0, up to 118.6 Hz for L/d=1 and 
diminishes to 80 Hz for L/d=10.  
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5. Dynamic response of the DVA 

The most intense vibrations in a helicopter are produced by the main rotor and 
these can be considered as harmonic excitations as shown by the equations (16). In 
our case, the harmonic excitation is produced by two variable speed electric motors, 
up to 170 rot/min. Consequently the excitation force can be written as 
( ) 2 2

u uF t m r u= Ω = Ω  in which the unbalance coupled with periodic plateau 
motion along the vertical direction are denoted u, which in our experimental model 
would correspond to the product of the unbalanced mass mu and the radial position 
of this unbalance ru. The value for u can only be estimated and after computations, 
can be adjusted to fit the experimental results. However, acceptable values depend 
on the mass of the wheels and their possible eccentricity, and is estimated to a 
maximum value of 100 g.mm. The dynamic response system of equations resulting 
form eq. (16) is thus written in displacements amplitudes Ag and Af respectively: 

 
2 2

11 11 12 12 2
2 2

21 21 22 22
0

g g g

ff

k i c m k i c m A u
Ak m k i c m

ω ω ω ω

ω ω ω

 + − − −       = Ω       − + −   
  (18) 

 The damping coefficients cg, cf are estimated parameters of the dynamic 
response, remaining to be corrected after experimental tests. The influence of the 
L/d ratio for low damping cg= cf = 10 Ns/m is shown for α0 = 26° on Fig. 3. 

 
Fig. 3 Displacement amplitude of the gearbox (a) and of the fuselage (b) for low damping. (*) : 

without DVA. 
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The weak damping leads to expected high amplitudes at the “quasi-resonances” for 
both the gearbox and the fuselage, compared to the static deformations. Even in this 
case however, the DVA effect is obvious for the fuselage, as shown by the 
frequencies at which the vibration amplitude drops to zero and remains very low at 
higher frequencies. The lowest DVA active frequency is at 70 rad/s (11.1Hz) for 
L/d =10.  Usually in such configurations are installed more efficient dampers, e.g.  
cg= cf = 150 Ns/m. 

 
Fig. 4 Displacement amplitude of the gearbox (a) and of the fuselage (b) for cg= cf = 150 Ns/m 

and α0 = 26°. (*) : without DVA. 

 
Fig. 5 Displacement amplitude of the gearbox (a) and of the fuselage (b) for cg= cf = 150 Ns/m 

and α0 = 0°. 
 
The resulting dynamic response is shown on Fig. 4. The improvement is obvious 
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Reducing the angle α0 = 0° in the same conditions generates the results shown on 
Fig. 5.  In this position, the DVA has maximum efficiency at lower frequencies for 
the fuselage, but the maximum amplitude of the gearbox increases from 0.27mm to 
0.31mm at 50 rad/s. The case without DVA is represented by red stars, proving the 
efficacy of this device. 
 

5. Experimental results 

 The experimental model was designed and manufactured according to the 
mechanical model shown on Fig. 1. The two masses Mf and Mg are represented by 
two aluminum plates, interconnected by four identical elastic springs (Fig. 6).  
The base plate is supported by four rubber supports. The elastic constants of the 
springs were determined from the geometry of the springs (length Ls=21.4 mm, 
wire diameter: d=0.9 mm, coil diameter D=7.5 mm, N=5 active coils, shear 
modulus for steel: G = 77.2 GPa) and applying the formula from ref. [3]: 

4

3 3000 /
8
Gdk N m
ND

= =  . The elastic constants of the rubber supports as well as 

their damping coefficients were determined by the ping impact method, analyzing 
with a Fast Fourier Transform (FFT) the dynamic response of the base plate 
separately. The beam CB and the mass Mb (Fig. 1) are in fact in duplicate for 
symmetry reasons. The slider A had to be designed and manufactured using a 3D 
printer. The cylindrical hinges C are made from commercially available kinematic 
components. The excitation representing the vibrations produced by the main rotor 
and gearbox are simulated by two symmetrically placed DC motors, with variable 
rotation speed (30 – 170 rot/min) and using their intrinsic mass unbalance. The 
effective rotation speed was measured using a UNI-T UT373 mini digital Laser 
Tachometer. 

Table 1 
Main parameters of the mechanical model at small scale 

d (mm) L (mm) Mg (g) Mf (g) Mb (g) α0 (°) 
20 50-130 487 296.5 20.92 26 

 
The experimental model was placed horizontally on a table under the vertical 

laser beam from a Polytec OFV-5000 velocimeter with an OFV-505 sensor head, 
frequency bandwidth 1 Hz to 1 MHz (Fig. 6).  The signals from the vibrating 
reflecting surfaces were acquired on a Tektronix DPO4102B oscilloscope and 
offline analyzed using a proprietary software developed in Octave open-source 
high-level programming language [14].  
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Fig. 6 Experimental model (a) and experimental setup (b) 

 
The “ping” test on the model has led to the free vibrations spectrum (Fig. 7a) 
validating f1=24 Hz and f2=120Hz. The small peaks at 5; 33.5 Hz remain to be 
explained by further experiments.  

 
 Fig. 7 Free vibrations spectrum (a) and recorded vibrations velocities up=no DVA, down = with 

DVA (b) 
 
The influence of the DVA is represented on (Fig. 7b) for L/d=2.5 and 110 rot/min. 
The standard deviation (RMS) of the two signals is 0.09 V (no DVA) and 0.113 V 
(with DVA), in good agreement with Fig. 3b. The full range DVA effects are 
difficult to ascertain at this stage, the experiment being at low excitation 
frequencies.  

6. Conclusions 

A DVA capable of reducing the transmitted vibrations was investigated in 
this work. The mechanical model was studied as a non-holonomic 2-DOF 
mechanical system. A parametric study of DVA’s position and inclination of the 
beam, was done using software elaborated by the authors. 
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An experimental stand was built to validate the numerical results. Some 
components were 3D printed. Using a Laser vibrometer, the vibrations velocities 
were determined on the two plates representing the gearbox and the fuselage. The 
influence of the DVA design parameters on the vibrations amplitudes were 
investigated, indicating optimization possibilities in practical cases. As future work, 
the present model could be extended, with faster motors and including mass and the 
flexibility of the beam used in the DVA.   
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