

BRANCHES IN BUCKET RECURSIVE TREES WITH VARIABLE CAPACITIES OF BUCKETS

Ramin KAZEMI¹

Bucket recursive trees with variable capacities of buckets (BRT-VCB) introduced by Kazemi (2012). In this paper, we study the random variable which counts the number of branches of size a attached to the bucket containing label j in a BRT-VCB of size n (the number of subtrees of size a rooted at the children of bucket containing label j).

Keywords: BRT-VCB, branches, limiting distribution, joint distribution.

MSC2010: 05C05, 60F05

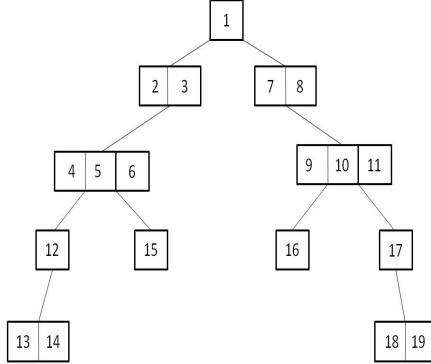
1. Introduction

Trees are defined as connected graphs without cycles, and their properties are basics of graph theory. A tree on n nodes labeled $1, 2, \dots, n$ is a recursive tree if the node labeled 1 is distinguished as the root, and for each $2 \leq k \leq n$, the labels of the nodes in the unique path from the root to the node labeled k form an increasing sequence [6]. Bucket trees are a generalization of the ordinary trees where buckets (or nodes) can hold up to $b \geq 1$ labels. Mahmoud and Smythe [5] introduced bucket recursive trees as a generalization of ordinary recursive trees. In this model the capacity of buckets is fixed. They applied a probabilistic analysis for studying the height and depth of the largest label in these trees and Kuba and Panholzer [4] analyzed these trees as a special instance of bucket increasing trees which is a family of some combinatorial objects. Kazemi [2] introduced a new version of bucket recursive trees where the nodes are buckets with variable capacities labelled with integers $1, 2, \dots, n$. In fact, the capacity of buckets is a random variable in these models. He studied the depth quantity and the first Zagreb index in these models [3]. A bucket recursive tree with variable capacities of buckets (BRT-VCB) starts with the root labelled by 1 that has $r \geq 0$ descendants each of them making a subtree. The nodes in the subtrees have capacities $c < b$ or $c = b$. The nodes with capacities $c < b$ are connected together with 1 edge and the nodes with capacities b have descendants ≥ 0 again each of them making a subtree such that the labels within these nodes are arranged in increasing order. The tree is completed when the label n is inserted in the tree. Figure 1 illustrates such a tree of size 19 with $b = 3$. For constructing a tree of size $n + 1$ (attracting label $n + 1$ to a tree of size n), if a leaf v has the capacity $c < b$, then we add the label $n + 1$ to this node and make a node with capacity $c + 1$ or produce a node $n + 1$. But for a node with capacity b , we only produce a new node $n + 1$. The last nodes with $c \leq b$ labels at the end of subtrees are called *leaves* and other nodes are called *non-leaves*. The probability p , which gives the probability that label $n + 1$ is attracted by node v in the model is $\frac{c(v)}{n - |\gamma|}$, where

$$\gamma = \{v \in T; c = c(v) = k < b, \text{ and } v \text{ is a non-leaf}\}.$$

This model can be considered as a generalization of random recursive trees [1]. A sequence

¹Assistant Professor, Department of Statistics, Imam Khomeini International University, Qazvin, Iran, e-mail: kazemi@ikiu.ac.ir

FIGURE 1. A BRT-VCB of size 19 with $b = 3$.

of non-negative numbers $(\alpha_k)_{k \geq 0}$ with $\alpha_0 > 0$ and a sequence of non-negative numbers $\beta_1, \beta_2, \dots, \beta_{b-1}$ is used to define the weight $w(T)$ of any ordered tree T by $w(T) := \prod_v w(v)$, where v ranges over all nodes of T . The weight $w(v)$ of a bucket v is given as follows:

$$w(v) := \begin{cases} \alpha_{d(v)}, & v \text{ is root or complete } (c(v) = b) \\ \beta_{c(v)}, & v \text{ is incomplete } (c(v) < b). \end{cases}$$

Let $\mathcal{L}(T)$ denotes the set of different increasing labelings of the tree T with distinct integers $\{1, 2, \dots, |T|\}$, where $L(T) := |\mathcal{L}(T)|$ denotes its cardinality. Then the family \mathcal{T} consists of all trees T together with their weights $w(T)$ and the set of increasing labelings $\mathcal{L}(T)$. For a given degree-weight sequence $(\alpha_k)_{k \geq 0}$ with a degree-weight generating function $\varphi(t) := \sum_{k \geq 0} \alpha_k t^k$ and a bucket-weight sequence $\beta_1, \beta_2, \dots, \beta_{b-1}$, we define the exponential generating function [1]

$$T_{n,b}(z) := \sum_{n=1}^{\infty} T_{n,b} \frac{z^n}{n!},$$

where $T_{n,b} := \sum_{|T|=n} w(T) \cdot L(T)$ is the total weights. Kazemi [2] showed

$$\begin{aligned} T_{n,b} &= \frac{(n-1)!(b!)^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}}{b}, \quad n \geq 1, \\ T_{n,b}(z) &= -\frac{1}{b} \log \left(1 - b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} z \right), \\ \varphi(T_{n,b}(z)) &= \frac{(b-1)!}{1 - b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} z}, \end{aligned} \tag{1}$$

where $|\mathcal{P}_{n_i}|$ denotes the size of the set of all trees of size n_i ($i = 1, 2, \dots, r$). In the equation (1), if i -th subtree starts with a bucket with capacity $c = 1$, then we set $|\mathcal{P}_{n_i}| = 0$.

The motivation for studying the bucket recursive trees with variable capacities of buckets is multifold. For example, if n atoms in a branching molecular structure (such as dendrimer) are stochastically labelled with integers $1, 2, \dots, n$, then atoms in different functional groups can be considered as the labels of different buckets of a bucket recursive tree.

2. Number of Branches of Size a

Let $S_{n,j,a}$ counts the number of branches of size a attached to the bucket containing label j in our model of size n (or in other words, the number of subtrees of size a rooted at the children of node containing label j , in a random grown tree of size n). We use a

combinatorial approach to find the differential equation corresponds to the random variable $S_{n,j,a}$ and give a closed formula for the probability distribution and the factorial moments of $S_{n,j,a}$. Furthermore limiting distribution result of $S_{n,j,a}$ is given, not only for j fixed, but a full characterization dependent on the growth $j = j(n)$ compared to n is presented. Moreover, the joint distribution of $S_{n,1,1}, S_{n,1,2}, \dots, S_{n,1,n-j}$ is computed for all grown trees.

Let $S_{n,1,a}$ be the number of branches of size a attached to the root node (label 1) in our model of size n . For encoding the behavior of this quantity we introduce the bivariate generating function

$$M(z, v) = \sum_{n \geq 1} \sum_{m \geq 0} \mathbb{P}(S_{n,1,a} = m) T_{n,b} \frac{z^n}{n!} v^m.$$

By definition of the model one gets the following explicit result for the probabilities $\mathbb{P}(S_{n,1,a} = m)$:

$$\mathbb{P}(S_{n,1,a} = m) = \sum_{r \geq m} \alpha_r \binom{r}{m} \sum_{n_1 + \dots + n_r = n-1} \frac{T_{n_1,b}^* \cdots T_{n_r,b}^*}{T_{n,b}} \binom{n-1}{n_1, \dots, n_r}, \quad (2)$$

where for $1 \leq i \leq m$, $n_i = a$ and for $m+1 \leq j \leq r$, $n_j \neq a$. Also $T_{n_i,b}^*$ is the total weights of the i th subtree. Since $T_{n_1,b}^* \cdots T_{n_r,b}^* = b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} T_{n_1,b} \cdots T_{n_r,b}$, (c.f [2]) by multiplying with $T_{n,b} z^{n-1} v^m / (n-1)!$ and summing up over $n \geq 1, m \geq 0$, the equation (2) yields to an explicit formula for $\frac{\partial}{\partial z} M(z, v)$, which is given below:

$$\begin{aligned} \frac{\partial}{\partial z} M(z, v) &= b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} \left\{ \varphi(T_{n,b}(z) + \frac{T_{a,b}}{a!} z^a (v-1)) \right\} \\ &= \frac{(b-1)!}{1 - b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} z} \exp \left\{ \frac{b T_{a,b}}{a!} z^a (v-1) \right\}. \end{aligned} \quad (3)$$

For describing the behavior of arbitrary label $j > 1$ we introduce the trivariate generating function

$$N(z, u, v) = \sum_{k \geq 0} \sum_{j \geq 1} \sum_{m \geq 0} \mathbb{P}(S_{k+j,j,a} = m) T_{k+j,b} \frac{z^{j-1}}{(j-1)!} \frac{u^k}{k!} v^m.$$

For our model of size n with root-degree r and subtrees with sizes n_1, \dots, n_r , enumerated from left to right, where the bucket containing label j lies in the leftmost subtree and is the i -th bucket in this subtree, we can reduce the computation of the probabilities $\mathbb{P}(S_{n,j,a} = m)$ to the probabilities $\mathbb{P}(S_{n_1,i,a} = m)$, when the parameter does only depend on the subtree of bucket containing label j . We get as factor the total weight of the r subtrees and the root node $\alpha_r b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} T_{n_1,b} \cdots T_{n_r,b}$, divided by the total weight $T_{n,b}$ of trees of size n and multiplied by the number of order preserving relabellings of the r subtrees, which are given here by

$$\binom{j-2}{i-1} \binom{n-j}{n_1-i} \binom{n-1-n_1}{n_2, n_3, \dots, n_r}.$$

Due to symmetry arguments we obtain a factor r , if the bucket containing label j is the i -th bucket in the second, third, ..., r -th subtree. Summing up over all choices for the rank i of bucket containing label j in its subtree, the subtree sizes n_1, \dots, n_r , and the degree r of the root node gives for $n \geq j \geq 2$ the following recurrence:

$$\begin{aligned} \mathbb{P}(S_{n,j,a} = m) &= \sum_{r \geq 1} r \alpha_r \sum_{n_1 + \dots + n_r = n-1} \frac{T_{n_1,b}^* \cdots T_{n_r,b}^*}{T_{n,b}} \\ &\times \sum_{i=1}^{\min\{n_1, j-1\}} \mathbb{P}(S_{n_1,i,a} = m) \binom{j-2}{i-1} \binom{n-j}{n_1-i} \binom{n-1-n_1}{n_2, n_3, \dots, n_r}. \end{aligned} \quad (4)$$

With the same method of [2],

$$\frac{\partial}{\partial z} N(z, u, v) = b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} \varphi'(T_{n,b}(z+u)) N(z, u, v)$$

with the initial condition

$$N(0, u, v) = \sum_{k \geq 0} \sum_{m \geq 0} \mathbb{P}(S_{k+1, 1, a} = m) T_{k+1, b} \frac{u^k}{k!} v^m = \frac{\partial}{\partial u} M(u, v).$$

Thus

$$N(z, u, v) = b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} \frac{\varphi(T_{n,b}(z+u)) \frac{\partial}{\partial u} M(u, v)}{\varphi(T_{n,b}(u))}.$$

3. The Main Results

In the following theorem we show that the marginal probabilities $\mathbb{P}(S_{n,j,a} = m)$ are independent of b .

Theorem 3.1. *The probability that there are m branches of size a attached to bucket containing label j is given as follows:*

$$\mathbb{P}(S_{n,j,a} = m) = \frac{1}{a^m a! \binom{n-1}{j-1}} \sum_{\ell=0}^{\lfloor \frac{n-j-am}{a} \rfloor} \frac{(-1)^\ell}{a^\ell \ell!} \binom{n-1-a(m+\ell)}{j-1}. \quad (5)$$

Proof. Let $[z^n]f(z)$ denote the operation of extracting the coefficient of z^n in the formal power series $f(z) = \sum f_n z^n$. Thus

$$\begin{aligned} \mathbb{P}(S_{n,j,a} = m) &= \frac{(j-1)!(n-j)!}{T_{n,b}} [z^{j-1} u^{n-j} v^m] N(z, u, v) \\ &= \frac{b b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|}}{b!^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)} \binom{n-1}{j-1}} [z^{j-1} u^{n-j} v^m] \frac{\frac{\partial}{\partial u} M(u, v)}{1 - \frac{b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|}}{1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|}} u} z \\ &= \frac{b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} b!^{1+(j-1)(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}}{b!^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)} \binom{n-1}{j-1}} [u^{n-j} v^m] \frac{e^{v \frac{b T_{a,b}}{a!} u^a} e^{-\frac{b T_{a,b}}{a!} u^a}}{(1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} u)^j} \\ &= \frac{b!^{-(n-j-am)(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}}{a^m m! \binom{n-1}{j-1}} [u^{n-j-am}] \frac{e^{-\frac{b T_{a,b}}{a!} u^a}}{(1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} u)^j} \\ &= \frac{1}{a^m a! \binom{n-1}{j-1}} \sum_{\ell=0}^{\lfloor \frac{n-j-am}{a} \rfloor} \frac{(-1)^\ell}{a^\ell \ell!} \binom{n-1-a(m+\ell)}{j-1}, \end{aligned}$$

since $[z^n]f(qz) = q^n [z^n]f(z)$. □

Theorem 3.2. *Let $m^s = m(m-1) \cdots (m-s+1)$. The factorial moments of the random variable $S_{n,j,a}$ in our model of size n are given as follows:*

$$\mathbb{E}(S_{n,j,a}^s) = \sum_{m \geq 0} m^s \mathbb{P}(S_{n,j,a} = m) = \frac{1}{a^s} \frac{\binom{n-as-1}{j-1}}{\binom{n-1}{j-1}}. \quad (6)$$

Proof. Let D_x be the differential operator with respect to x , and E_x be the evaluation operator at $x = 1$. Thus

$$\begin{aligned} E_v D_v^s \frac{\partial}{\partial z} M(z, v) &= E_v D_v^s \frac{(b-1)!}{1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} z} \exp \left\{ \frac{b T_{a,b}}{a!} z^a (v-1) \right\} \\ &= \frac{(b-1)!}{1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|} z} \left(\frac{b T_{a,b} z^a}{a!} \right)^s. \end{aligned}$$

Now

$$\begin{aligned}
\mathbb{E}(S_{n,j,a}^s) &= \frac{(j-1)!(n-j)!}{T_{n,b}} [z^{j-1}u^{n-j}] E_v D_v^s N(z, u, v) \\
&= b!^{-\sum_{i=1}^r |\mathcal{P}_{n_i}|} \frac{bb!(j-1)(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}{b!^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)} \binom{n-1}{j-1}} [u^{n-j}] \frac{\frac{(b-1)!\frac{1}{a^s}b!^{as(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}u^{as}}{1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|}u}}{(1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|}u)^{j-1}} \\
&= \frac{b!^{1+(j-1-n+as)(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)+\sum_{i=1}^r |\mathcal{P}_{n_i}|}}{a^s \binom{n-1}{j-1}} [u^{n-j-as}] \frac{1}{(1-b!^{1-\sum_{i=1}^r |\mathcal{P}_{n_i}|}u)^j} \\
&= \frac{1}{a^s} \frac{\binom{n-as-1}{j-1}}{\binom{n-1}{j-1}}.
\end{aligned}$$

□

We use notation \xrightarrow{d} to denote convergence in distribution. The standard random variable $\text{Poi}(\lambda)$ appears in the following theorem for the Poisson distributed with parameter $\lambda > 0$.

Theorem 3.3. *A) For $n \rightarrow \infty$, $j = o(n)$ and a fixed: $S_{n,j,a} \xrightarrow{d} S_a \sim \text{Poi}\left(\frac{1}{a}\right)$.
B) For $n \rightarrow \infty$, $j = \rho n$ with $0 < \rho < 1$ and a fixed: $S_{n,j,a} \xrightarrow{d} S_{\rho,a} \sim \text{Poi}\left(\frac{1-\rho}{a}\right)$.
C) For $n \rightarrow \infty$, $n-j = o(n)$ and a fixed: $S_{n,j,a} \xrightarrow{d} S_a \sim \mathbb{P}(S_a = 0) = 1$.*

Proof. The proof is quite similar to increasing trees [1]. □

Theorem 3.4. *The joint distribution of $S_{n,1,1}$, $S_{n,1,2}$, ..., $S_{n,1,n-1}$ is given as follows:*

$$\mathbb{P}(S_{n,1,1} = m_1, \dots, S_{n,1,n-1} = m_{n-1}) = b \frac{\alpha_{\sum_{i=1}^{n-1} m_i} \left(\sum_{i=1}^{n-1} m_i\right)!^{n-1} b!^{m_i(i(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|))}}{b!^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)} \prod_{i=1}^{n-1} \frac{(bi)^{m_i} m_i!}{(bi)^{m_i} m_i!}}, \quad (7)$$

for all sequences of non-negative integers satisfying $\sum_{i=1}^{n-1} im_i = n-1$.

Proof. We have the factor $\underbrace{1, \dots, 1}_{m_1} \underbrace{2, \dots, 2}_{m_2} \dots \underbrace{m_{n-1}}_{m_{n-1}}$ to the choices for the labels, the factor

$\alpha_{\sum_{i=1}^{n-1} m_i}$ corresponds to the root degree and the factor $\binom{\sum_{i=1}^{n-1} m_i}{m_1, \dots, m_{n-1}}$ to the different positions of the subtrees. Thus

$$\begin{aligned}
&T_{n,b} \mathbb{P}(S_{n,1,1} = m_1, \dots, S_{n,1,n-1} = m_{n-1}) \\
&= \alpha_{\sum_{i=1}^{n-1} m_i} \binom{n-1}{1, \dots, 1, 2, \dots, 2, \dots, m_{n-1}} \binom{\sum_{i=1}^{n-1} m_i}{m_1, \dots, m_{n-1}} \prod_{i=1}^{n-1} T_{i,b}^{m_i}.
\end{aligned}$$

Since the total weights of BRT-VCB with n vertices is [2]:

$$T_{n,b} = b^{-1}(n-1)!(b!)^{n(1-\sum_{i=1}^r |\mathcal{P}_{k_i}|)},$$

proof is completed. □

4. Conclusion

In this paper we studied the branches of size a attached to the bucket containing label j for investigating the effect of bucketing on random recursive trees. All results obtained for bucket recursive trees introduced by Mahmoud and Smythe are independent of b since for these models $T_{n,b} = (n-1)!$ [4]. For bucket recursive trees with variable capacities of

buckets, although $T_{n,b} = b^{-1}(n-1)!(b!)^{n(1-\sum_{i=1}^r |\mathcal{P}_{n_i}|)}$, but only the joint distribution of $S_{n,1,1}, S_{n,1,2}, \dots, S_{n,1,n-1}$ is dependent on b .

REFERENCES

- [1] *F. Bergeron, P. Flajolet and B. Salvy*, Varieties of increasing trees, Lecture Notes in Computer Science, **581** (1992), 24-48.
- [2] *R. Kazemi*, Depth in bucket recursive trees with variable capacities of buckets, Published online in Acta Mathematica Sinica, English Series, DOI: 10.1007/s10114-013-2115-2, 2013.
- [3] *R. Kazemi*, Probabilistic analysis of the first Zagreb index. *Trans. Comb.*, **2(2)** (2013), 35-40.
- [4] *M. Kuba and A. Panholzer*, Combinatorial approach to the analysis of bucket recursive trees, *Theor. Comput. Sci.*, **411** (2010), Issues 34-36, 3253-3273.
- [5] *H. Mahmoud and R. Smythe*, Probabilistic analysis of bucket recursive trees, *Theor. Comput. Sci.*, **144** (1995), 221-249.
- [6] *A. Meir, and J. W. Moon*, On the altitude of nodes in random trees. *Canadian J. Math.*, **80** (1978), 997-1015.