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BRANCHES IN BUCKET RECURSIVE TREES WITH VARIABLE
CAPACITIES OF BUCKETS

Ramin KAZEMI!

Bucket recursive trees with variable capacities of buckets (BRT-VCB) in-
troduced by Kazemi (2012). In this paper, we study the random variable which counts
the number of branches of size a attached to the bucket containing label j in a BRT-VCB
of size n (the number of subtrees of size a rooted at the children of bucket containing
label j).
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1. Introduction

Trees are defined as connected graphs without cycles, and their properties are basics
of graph theory. A tree on n nodes labeled 1, 2,..., n is a recursive tree if the node labeled
1 is distinguished as the root, and for each 2 < k < n, the labels of the nodes in the unique
path from the root to the node labeled k form an increasing sequence [6]. Bucket trees are
a generalization of the ordinary trees where buckets (or nodes) can hold up to b > 1 labels.
Mahmoud and Smythe [5] introduced bucket recursive trees as a generalization of ordinary
recursive trees. In this model the capacity of buckets is fixed. They applied a probabilistic
analysis for studying the height and depth of the largest label in these trees and Kuba and
Panholzer [4] analyzed these trees as a special instance of bucket increasing trees which is
a family of some combinatorial objects. Kazemi [2] introduced a new version of bucket
recursive trees where the nodes are buckets with variable capacities labelled with integers
1,2,...,n. In fact, the capacity of buckets is a random variable in these models. He studied
the depth quantity and the first Zagreb index in these models [3]. A bucket recursive tree
with variable capacities of buckets (BRT-VCB) starts with the root labelled by 1 that has
r > 0 descendants each of them making a subtree. The nodes in the subtrees have capacities
¢ < bor c=1>. The nodes with capacities ¢ < b are connected together with 1 edge and
the nodes with capacities b have descendants > 0 again each of them making a subtree such
that the labels within these nodes are arranged in increasing order. The tree is completed
when the label n is inserted in the tree. Figure 1 illustrates such a tree of size 19 with b = 3.
For constructing a tree of size n+ 1 (attracting label n+ 1 to a tree of size n), if a leaf v has
the capacity ¢ < b, then we add the label n + 1 to this node and make a node with capacity
¢+ 1 or produce a node n+ 1. But for a node with capacity b, we only produce a new node
n + 1. The last nodes with ¢ < b labels at the end of subtrees are called leaves and other
nodes are called non-leaves. The probability p, which gives the probability that label n + 1

is attracted by node v in the model is nCETZyI’

vy={veT; c=c(v)=k<b, and v is a non-leaf}.

where

This model can be considered as a generalization of random recursive trees [1]. A sequence
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FIGURE 1. A BRT-VCB of size 19 with b = 3.

of non-negative numbers (ag)r>o with ap > 0 and a sequence of non-negative numbers
B1, B2, -y Pp—1 is used to define the weight w(T') of any ordered tree T by w(T') := I, w(v),
where v ranges over all nodes of T'. The weight w(v) of a bucket v is given as follows:

w(v) = Qq(v), v is Toot or complete (c(v) = b)
’ Be(wy, v is incomplete (c(v) < b).

Let £(T') denotes the set of different increasing labelings of the tree T with distinct integers
{1,2,...,|T|}, where L(T') := |£(T')| denotes its cardinality. Then the family T consists of all
trees T' together with their weights w(7T) and the set of increasing labelings £(T). For a given
degree-weight sequence (av)x>0 With a degree-weight generating function ¢(t) := >, < axt®
and a bucket-weight sequence 31, Ba, ..., By—1, we define the exponential generating function

n,b( ) . / n,b ’fl' ’

where T} p 1= 3\, w(T') - L(T) is the total weights. Kazemi [2] showed
(n — 1)!(b))r(I =izt [Pni])

Ty = b n=h
1 )
Tup(z) = —ylog (1- bl Pulz),
- (b—1)!
P& = sy Y

where |P,,| denotes the size of the set of all trees of size n;( = 1,2,...,r). In the equation
(1), if 4-th subtree starts with a bucket with capacity ¢ = 1, then we set |P,,| = 0.

The motivation for studying the bucket recursive trees with variable capacities of
buckets is multifold. For example, if n atoms in a branching molecular structure (such
as dendrimer) are stochastically labelled with integers 1,2,...,n, then atoms in different
functional groups can be considered as the labels of different buckets of a bucket recursive
tree.

2. Number of Branches of Size a

Let Sy j,o counts the number of branches of size a attached to the bucket containing
label j in our model of size n (or in other words, the number of subtrees of size a rooted
at the children of node containing label j, in a random grown tree of size n). We use a
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combinatorial approach to find the differential equation corresponds to the random variable
Sn,j,« and give a closed formula for the probability distribution and the factorial moments
of Sy j.a. Furthermore limiting distribution result of S, ;o is given, not only for j fixed,
but a full characterization dependent on the growth j = j(n) compared to n is presented.
Moreover, the joint distribution of Sy 1,1, Sn,1,2, -y Sn,1,n—; is computed for all grown trees.

Let Sy 1,4 be the number of branches of size a attached to the root node (label 1) in
our model of size n. For encoding the behavior of this quantity we introduce the bivariate

generating function
Z’ﬂ
=2 > P8 =m)Tnp o™
n!
n>1m2>0
By definition of the model one gets the following explicit result for the probabilities P(Sy, 1.4 =
m):
T*

— J— r Tllb ’I’LT,b n_l
BSua=m) = Yao) ¥ i (o, ) @

r>m ni+--+n,=n—1
where for 1 <i <m, n; =a and for m+1<j <r, n; #a. Also T;i,b is the total weights
of the ith subtree. Since T}y ,--- T , =bl~ XicaPnil T, 4Ty, (cf [2]) by multiplying
with T}, pz" '™ /(n —1)! and summlng up over n > 1,m > 0, the equation (2) yields to an
explicit formula for é‘?z M (z,v), which is given below:

i Ta a
e e )

b—1)! bTup o
= 1_51523)19’w|ze}(p{ o c (v—l)}. (3)

For describing the behavior of arbitrary label j > 1 we introduce the trivariate generating
function

0
&M(Z )

j—1 k

J
(z,u,v) ZZZPS’HHGZ )Tkﬂb(jz )'1;' o™

k>03j>1m>0

For our model of size n with root-degree r and subtrees with sizes nq,...,n,, enumerated
from left to right, where the bucket containing label j lies in the leftmost subtree and is the
i-th bucket in this subtree, we can reduce the computation of the probabilities P(S,, j o = m)
to the probabilities P(Sy,, ; « = m), when the parameter does only depend on the subtree of
bucket containing label j. We get as factor the total weight of the r subtrees and the root
node «,.b!~ 2i=1 |fP"i|Tnhb -+ Ty, b, divided by the total weight T,, ; of trees of size n and
multiplied by the number of order preserving relabellings of the r subtrees, which are given

here by
j—2\(n—3j n—1—-—ng
(i — 1) (m — z) (ng,ng, ...,nT>'
Due to symmetry arguments we obtain a factor r, if the bucket containing label j is the i-th
bucket in the second, third, ..., r-th subtree. Summing up over all choices for the rank i of
bucket containing label j in its subtree, the subtree sizes nq,...,n,, and the degree r of the
root node gives for n > j > 2 the following recurrence:
T*
P(Sy ja=m)= T 7n1 b firs
(5 ) ; n1+---+zm:n71 T
min{nq,j—1}

j—2 n—j n—1—n
P(Sp, 0 = . 4
8 z:zl (Sniia = m) <z — 1) (nl — z) (ng,ng, ...,nr> )
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With the same method of [2],

%N(z, w,v) = bl 2i=1 Pril (T, (2 4+ u) )N (2, u, v)

with the initial condition
uP 0
MO = 30 3 St = mTians o = 2 ar(u
E>0m>0
Thus )
Tn b(z =+ U))B*M(U, U)

N(z,u,v zbl—Z?:llﬂ’n,;l‘P( 2
| ) (T p(u))

3. The Main Results

In the following theorem we show that the marginal probabilities P(S,, ;, = m) are
independent of b.

Theorem 3.1. The probability that there are m branches of size a attached to bucket con-

taining label j is given as follows:

n— _] am

1) /n—1-a(m
PlSnia =m) = ooy 2 (QZZ!( L) ©)

ama'<j 1) =0 ‘7_1

Proof. Let [2"]f(z) denote the operation of extracting the coefficient of 2™ in the formal
power series f(z) = > fn2z". Thus

G = Dln — j)!

P(Sy jo=m) = T—'[ijlunfjvm]N(z,u,v)
n,b
=Y P, 9
B bb! rEpll 1,|_ R 8“{\4(:%1,})
bl”(l—zmﬂﬂ’m‘)(n 1) 1 b1t 2= [Py
’ i1 IR YT S o
bT bT
N+G—1) (=7 [P, artut o= —artul
_ b!—ZLl |3>ni|b' J T i=1 . [un—jvm] ev T U(i T U |
prn(1=327 |T'ﬂz|)(" 11) (]_ — =i |T"z:|u)]
j—
pl=(=i—em) (=T, Pa) o ot ye
I v B R T Y

|z —Ja— am |

B 1 (1) (n—1—a(m+1)
B ama'(" 1) Z atl! ( Jj—1 >7

1 =0
since[z"]f(¢z) = ¢"[z"]f(2). 0

Theorem 3.2. Let m& = m(m —1)---(m —s+1). The factorial moments of the random
variable Sy, j o n our model of size n are given as follows:

S (S =) = L) ©)
Sne) P o (72)

Proof. Let D, be the differential operator with respect to x, and E, be the evaluation
operator at x = 1. Thus

s 0 B s (b—1)! bTop o
E, D”@ M(z,v) = EUD”1_b!1231Tw26Xp{ o z%v—1)

- (b—1)! A
o 1— b!1_2:2'=1 |?ni|z al
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Now
. Dl -4 .
B(s,,) = SOty g, Dy e )
2> T
‘ ) (b_l)!%b!as(hz{:l 1P, 1)y as
— - >, IT":“ bb!(jfl)(lfzizl |T"12|) [un*j] 1—pIt =201 [Pnly,

pin (=327 [Pn, 1) (?:11) (1 — b 2imn [Pnily)i—1
_ pli+G—1=ntas)(1=327_, [P, D+, [P, | . 1
() (=BT
LY

a ("))

O

. d . C .
We use notation — to denote convergence in distribution. The standard random
variable Poi(\) appears in the following theorem for the Poisson distributed with parameter
A>0.

Theorem 3.3. A) For n — 00,5 = o(n) and a fized: Sy jq 4 Sq ~ Poi(%).

B) Forn — 00,j = pn with 0 < p <1 and a fized: Sy, j.q iSp,a ~ Poi(l%lp)

C) For n — oo,n —j =o(n) and a fized: Sy ja —d>Sa ~P(S,=0)=1.

Proof. The proof is quite similar to increasing trees [1]. |

Theorem 3.4. The joint distribution of Sp.11, Sn1,2; -5 Sn,1n—1 1S given as follows:

Qgn-t, (Z?;f mi) L prmi (i(1=327_; [Pn,1))
pin(1=0_y [Pni) (bi)™mim;! ’

) (7)

P(Sp11=m1,....; % 1,n-1=My_1) =b

for all sequences of non-negative integers satisfying Z?:_ll im; =n— 1.

Proof. We have the factor (1 19 Tff12 o _1) to the choices for the labels, the factor
) ) 3 3

my mo
n—1
Qgn—t corresponds to the root degree and the factor (”g:’ff}";jﬁl) to the different positions
of the subtrees. Thus

Tn,bP<Sn,1,1 =my,..., Sn,l,nfl = mnfl)

—1 n—1
— ens n—1 Z?:l m; HTWM
2o ma 1,...,1,2,...,2,...,7’77,”_1 M1y .o, Mp_1 i) Bb

Since the total weights of BRT-VCB with n vertices is [2]:
Top = bt (n — 1)1(p))" I Ziza [PD)
proof is completed. U

4. Conclusion

In this paper we studied the branches of size a attached to the bucket containing label
j for investigating the effect of bucketing on random recursive trees. All results obtained
for bucket recursive trees introduced by Mahmoud and Smythe are independent of b since
for these models T, ;, = (n — 1)! [4]. For bucket recursive trees with variable capacities of
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buckets, although T,,, = b~*(n — 1)!(b1)*(1=2i=1 Pn: ) but only the joint distribution of
Sn1,1s Sn1,2s «oy Sn,1,n—1 is dependent on b.
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