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CHARACTERISTIC MESH GRID METHOD FOR 

TRANSIENT ANALYSIS OF NATURAL GAS FLOW IN 

PIPELINES NETWORKS 

Zahreddine HAFSI1, Lazhar AYED1, Sami ELAOUD1 

Through this paper, transient flow of natural gas in pipeline network is 

numerically modeled. Transient analysis of gas flow in a single duct is performed 

reposing on the characteristic mesh grid method. The use of the latter method is also 

extended for analyzing transient behavior of gas flow in looped network. The used 

mathematical model considers the compressibility criterion of the gas. The 

efficiency of the proposed model is proved by comparing the obtained results to 

experimental and numerical ones issued from literature. Unlike previous research 

works on transient gas flow, the use of the numerical characteristic scheme has 

allowed following up the wave propagation path in the space-time plane by 

illustrating the characteristic curves. 
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1. Introduction 

The analysis of gas flow through networks of pipelines is a major 

preoccupation for many workers. Nowadays, engineers and researchers become 

more and more interested in simulating gas flow in pipelines systems [1, 2]. In 

fact, controlling transient gas behaviors is of crucial importance to avoid pipelines 

destruction or any other damage caused by a sudden change of the gas flow 

characteristics (compressor failure, sudden closure of a valve, etc.). Mathematical 

modeling of transient gas flow reposes basically on a set of two non-linear first 

order hyperbolic Partial Differential Equations (PDEs), namely mass and 

momentum equations. Added to these governing PDEs, gas equation of state is 

commonly used to consider the real behavior of the gas molecules. To solve the 

latter equations, several numerical methods are encountered in literature. The 

reliability of each method is well related to the case study. Thus, resolution 

techniques of governing gas flow equations are still gaining the interest of many 

researchers. To simulate transient flow through pipes, the governing equations 

were solved using diverse numerical schemes. 
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The method of characteristics was used to simulate transient behavior of 

compressible fluids [3, 4]. An adaptive method of lines was also utilized to 

simulate the transient gas flow in pipelines [5]. Furthermore, an analysis of the 

isothermal transient gas flow in pipelines networks was performed using an 

electrical analogy based model [6]. An implicit finite difference scheme was also 

used to investigate transient gas flow in pipelines [7]. Then, more recently, 

commercial CFD software have served for gas flow modeling. Finite element 

based solver of COMSOL Multiphysics software was employed to analyze 

transient flow of hydrogen-natural gas mixture in steel pipeline networks and to 

emphasize its effect on the structural integrity of the pipeline material [8]. The 

compressibility criterion of the gas makes many conventional numerical schemes 

time consuming. Thus, in literature there are encountered workers who analyzed 

transient isothermal gas flow assuming a constant compressibility factor [9]. Also, 

transient flow simulation of gas in pipelines networks was performed using semi 

implicit finite volume method and basing on Dranchuk-Purvis-Robinson 

correlation for compressibility factor [10]. Reposing on the transfer functions 

approach, MATLAB-Simulink library was also used for gas flow modeling [11]. 

Although being a classical method, the method of characteristics is still 

giving accurate results in predicting transient gas behavior in pipelines. Indeed, 

the latter method permits following the wave propagation through the duct and so, 

once boundary conditions are properly adjusted, it allows a full description of the 

physical phenomenon leading to accurate results mainly when analyzing gas flow 

through one straight duct. Whereas, using the characteristics grid method to 

simulate gas flow systems that involve pipes junctions (a gas network or a 

junction between two pipes) is still not well developed and such problems were 

usually treated using characteristics method with specified time intervals. The 

latter technique permits to overcome the problem of wave propagation in the 

junction by assuming a constant celerity for pressure waves and then proceeding 

by correction of the result using, usually, linear interpolations. Indeed, specified 

characteristic grid method was used to simulate a binary gas mixture flow in a 

pipeline with presence of a leak assumed to be a junction between two pipes [12]. 

Unfortunately, the required use of the interpolation technique for the correction 

step is likely to affect the accuracy of obtained results mainly when simulating 

looped networks in which junction may connect two or more pipes. 

In this paper, considering a linear regression describing the evolution with 

pressure of the compressibility factor under isothermal conditions, the transient 

behavior of natural gas flow in a single pipe and then in a looped network is 

analyzed. The characteristic mesh grid method is used to solve the governing 

equations. For the gas network, the characteristic mesh is built by imposing a 

common pressure and time value in each junction between two pipes. Results 

obtained through a Matlab code are validated by comparison to experimental and 
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theoretical ones. Also, the mesh grid is illustrated and the wave propagation path 

in the space-time plane is emphasized. The used approach to adapt the 

characteristic mesh grid method to analyze flow in networks proves its efficiency 

in the studied case. Nevertheless, a generalized model has to be built. 

2. Mathematical formulations 

Under isothermal conditions, a one-dimensional compressible gas flow 

through an horizontal pipeline of diameter D is described by a set of two 

hyperbolic PDEs (mass and momentum equations) [8, 13]. To take into 

consideration the compressibility effect, gas equation of state =pM/(ZRT) is 

required, where  is the gas density, T is the temperature, M is the mole mass of 

the gas, R is the gas constant and Z is the gas compressibility factor. Assuming 

that gas velocity V is not close to the velocity of sound [10] and by writing the 

mass flow rate m=VA where A=D2/4 is the pipe section, governing equations of 

gas flow written versus pressure p and mass flow rate m are reduced to 
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where  stands for the friction factor between the gas and the pipeline wall. 

By assuming Z=p+ for pressure values up to 100 bars where  and  depend 

on the temperature and the gas composition [14], equations (1) and (2) yield  
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3. Transient model 

3.1. Characteristic grid method formulation 

In this section a matrix approach is adopted to convert the two PDEs (3) 

and (4) into four ordinary differential equations using the method of 

characteristics [15]. The time derivatives of the two variables m and p are written 
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Denoting =RT(p+)2/(MA) and J=RT(p+)m|m|/(2DAMp), under matrix 

form, equations (3), (4), (5) and (6) are written 
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The characteristics method permits transforming the PDEs into ordinary 

differential equations that are valid only across the characteristic curves called C+ 

and C-. These curves are defined through the characteristic directions dt/dx, 

solutions of the equation 
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The resolution of equation (8), yields two characteristic directions 
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 and  are functions of the pressure. Non-constant characteristic directions are 

explained by the fact that for compressible fluids flow, the characteristic lines are 

curved due to the variation of the wave speed a with pressure. In fact, a 

characteristic mesh grid is obtained in the (x, t) plane as shown in Fig. 1 

 
Fig. 1. Characteristics grid 
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The compatibility equations, describing the pressure and the mass flow rate 

variations along the characteristic curves are obtained by solving and then 

integrating the equation 
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Equation (11) is then written 
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The integration of equation (12) along the characteristic curves C+ (dt/dx=) and 

C- (dt/dx=) has been usually performed through a first order finite difference 

approximation. Under the study assumption (linear variation of Z factor versus 

pressure), this approximation is used only to integrate the 3rd term of equation (12) 

since an analytical integration of the other terms is possible. Thus, the dependent 

variables to consider are the mass flow rate m and the compressibility factor Z 

(instead of the pressure p). Equation (12) is then rewritten  
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In fact, the unknown values of (m, Z, x, t), at any point P can be determined by 

knowing their values at the points R and S lying on the two characteristics passing 

through P. It’s then obtained after integrating equation (13) 
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The two systems of equations (14) and (15) are rearranged to obtain the 

expression of the unknown variables following a characteristic mesh grid i.e. xP 

and tP are not assigned definite values but they are variables to compute in each 

iteration. It’s obtained 
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3.2. Boundary conditions 

For a regular mesh scheme using characteristics method with a specified 

time interval and since distance and time steps are assigned definite values, in the 

junction between two pipes or more the mesh scheme is continuous. Although, for 

a characteristic mesh grid in which time and distance variables (xP and tP) have to 

be calculated in each step, it may be encountered, in a junction, different time 

values (tP) between the inlet and the outlet sides. A discontinuity in the numerical 

scheme is then observed. Physically, this difference has not to occur. It’s due to 

numerical errors and it affects the convergence of the numerical scheme. The idea 

is to choose one value tP to be the common time value in which the waves coming 

from the upstream and the downstream reach the junction section. 

To determine the unknowns (m, Z, x, t) in a junction, the procedure to follow is: 

i) assign a value for xP: xP
u=Lu for the upstream side and xP

d=0 for the 

downstream side, where Lu is the length of the upstream pipe and exponents u and 

d refer, respectively, to upstream and downstream sides. 

ii) for both cases solve the characteristic equations (second equations of systems 

(14) and (15)) to determine tP
u and tP

d 

iii)  choose one time value tP and calculate the mass flow rate at the inlet and the 

outlet of the junction. Referring to the compatibility equations of the systems (14) 

and (15), mP
u and mP

d are expressed as follows 
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iv) assuming a common Z factor value ZP
u=ZP

d=ZP, write the continuity equation 

in the junction as function of ZP 
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where mP
c is the external supplied (negative sign) or demanded (positive sign) 

flow rate. 

v) solve equation (22), determine ZP and then using equations (20) and (21), 

calculate mP
u and mP

d 

For the above procedure, the most important step is to fix the time value that 

permits the convergence of the iterative process and ensures the accuracy of 

results. This step is emphasized in the studied case. 

4. Results and discussion 

To approve the efficiency of characteristic mesh grid method in analyzing 

transient behavior of looped network, a Matlab code is established following the 

developed formulation and tested for two gas networks which have been analyzed 

firstly by Osiadacz [9] and then by several researchers [6, 8, 10, 11, 13]. 

4.1. Test case 1 

The first test case is a straight gas pipeline with a periodic demand at the 

outlet as illustrated in Fig. 2. The pipeline length is 100 km and it has a diameter 

of 0.6 m. A constant upstream pressure value of 5 MPa is maintained. An 

isothermal condition is assumed (T=278 K) and the gas density is 0.73 kg/m3. 

 
Fig. 2. Varying demand at the outlet 

In the considered operational temperature, the values of  and  are 

calculated by solving gas equation of state and approximate linearly the Z factor 

evolution [14]. It’s obtained =−x−bar-1 and =. For a simple 

pipeline, the characteristic mesh grid method can be easily applied since there are 

no constraints of time value correction at the extreme sides. 

In Fig. 3 is depicted the obtained outlet pressure evolution versus time. The 

obtained result is compared to ones issued from different other models. The 
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presented model reproduces the same shape of the pressure curve with the same 

period of evolution despite the difference in the minimum pressure value reached 

during transients. The observed discrepancy of the obtained pressure evolution 

with respect to previous works that are, in turn, not in good concordance with 

each other can be essentially justified by the different correlations used to express 

Z factor evolution with pressure when solving motion equations. 

 
Fig. 3. Pressure evolution at the outlet 

4.2. Test case 2 

The second test case is a typical network containing a single mesh with 

three nodes and three branches as illustrated in Fig. 4. The geometrical data of the 

network are introduced in Table 1. The operational temperature is 278 K, the mole 

mass of natural gas is M=16.04 g/mol, the friction factor is considered to be equal 

to 0.001 and =−x−bar-1 and =. 

 
Fig. 4. Looped network topology 

 

 

Table 1 

Data of the single loop network 

Pipe Upstream 

node 

Downstream 

node  

Internal 

diameter 

[m] 

Length 

[m]  

1 1 3 0.6 80000 

2 1 2 0.6 90000 

3 2 3 0.6 100000 

 

 

Node 1 is the pressure source with a constant pressure of 5 MPa. The 

variations of the gas demand at the nodes 2 and 3 are depicted in Fig. 5.  

Once supplied from node 2 and 3, the gas is assumed to be at a standard 
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pressure value of 1.01325 bar. The density of gas is then equal to 0.7096 kg/m3. 

The steady state outlet discharges from node 2 and node 3 are respectively 14.192 

kg/s and 28.384 kg/s. 

The equilibrium of the network using Newton-Raphson method [16] leads 

to a steady state distribution of mass flow-rates as reported in Table 2. 

Prior to the simulation of the transient state, the important step of time 

value choice in junction points has to be achieved as mentioned in the previous 

section. For each junction between two pipes, one obtains two time values tP
u and 

tP
d and from which a judicious choice has to be done to adjust the characteristic 

scheme by fixing a common tP value for both pipes. In fact, numerous trials were 

made considering as values for tP the minimum, the maximum, the arithmetic 

mean and the geometric mean values between tP
u and tP

d. The judgment criterion 

was the steady state results. Indeed, the idea was to run the transient code under 

the steady state conditions i.e. without perturbations in node 2 and 3, and to 

compare obtained pressure evolutions in nodes 2 and 3 with those yet known 

through the steady state analysis (normally, a constant pressure values in nodes 

have to be obtained). Results have shown that considering the minimum time 

value in the junction gives pressure evolutions in agreement with steady state 

values although some minor fluctuations were observed. 

The above approach has to be tested for more complex networks 

containing junctions between more than two pipes in order to be generalized or to 

give another alternative instead. In fact, for the studied case, the proposed model 

gives results that compare very favorably to experimental and theoretical ones. 

Figs. 6 and 7 illustrate the outlet pressure evolutions in nodes 2 and 3 

respectively compared to experimental results and also to those obtained using 

other models. A good concordance is observed between results issued from the 

proposed model and previous works. Indeed, the characteristic mesh grid method 

proves its efficiency in transient analysis of looped gas network. Additionally, the 

method allows following up the wave propagation path in the (x, t) plane by 

illustrating the evolution of characteristic curves. 

 
Fig.5. Varying demands in nodes 2 and 3 

 

 
Table 2 

Steady state discharges 

Pipe Steady state flow rate [kg/s] 

1 22.4086 

2 20.1665 

3 5.9748 
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Fig. 6. The variation of pressure at node 2 

 
Fig. 7. The variation of pressure at node 3 

4.3 .Characteristic mesh grid scheme 

In this section, the numerical scheme is followed up. In Fig. 8 is plotted 

the characteristic mesh grid obtained numerically using the proposed model. In 

the latter figure, the mesh grid along pipes 2 and 3 is illustrated in the space-time 

plane and therefore the characteristic curves passing through the junction section 

(in node 2) are shown. Also, the irregularity as well as the continuity of the mesh 

grid in the junction is emphasized by a zoomed section of the junction zone. 

It's worth mentioning that the characteristic grid is built reposing on the 

relation between xP and tP given by equation (17). The latter shows a linear 

relation between time and space which is, actually, not the case. In fact, this 

linearity is due to the approximation in the integration of the characteristic 

equations using the implicit method (considering the value of the wave speed in 

https://forum.wordreference.com/threads/its-worth-to-mention-versus-its-worth-mentioning.2397643/
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the previous step). This approximation may be corrected using trapezoid rule [16], 

but even without correction and while the characteristic mesh is already refined; 

such approximation doesn’t affect significantly the accuracy of obtained results. 

 
Fig.8. The characteristic mesh grid of pipes 2 and 3 

5. Conclusions 

The efficiency of the characteristic mesh grid method in modeling natural 

gas flow through a single pipe or a looped network was proved. The numerical 

model reposed on the resolution of governing gas flow equations taking in 

consideration the compressibility criterion of the gas. In this paper, an assumption 

of a linear isothermal evolution of the compressibility factor versus pressure was 

considered. The last part of this work was devoted to illustrate the evolution of 

characteristic curves in the (x, t) plane and hence emphasizing the transient wave 

propagation and the numerical mesh grid scheme. 

Despite being time consuming, the characteristic grid technique with 

variable time and space step sizes is of major importance mainly when aiming to 

follow up the wave propagation path. Nevertheless, the use of the latter method is 

still not evident to simulate transient gas flow in networks. In fact, it’s highly 

dependent on the studied case; initial values (steady state results) and boundary 

conditions as well as the used technique to ensure the continuity of the mesh grid 

in the junction points. A generalized model is, then, needed to be built to allow the 
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use of the characteristic mesh grid method to simulate transient flow of highly 

compressible gas in which the wave speed (proportional to the Z factor) can reach 

significant values that may affect the stability of the mesh grid scheme. 
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