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BENCHMARKING A SMART FRAMEWORK FOR
REDUCING THE COVERAGE CLOSURE TIME IN ASIC
FUNCTIONAL VERIFICATION

Mihai-Corneliu CRISTESCU?

This paper outlines a solution that estimates and reduces the functional
coverage closure time in integrated circuit verification by leveraging the power of
artificial neural networks. This way, the process time cost is minimized by driving
novel scenarios and discarding redundant test sequences. Practically, the article
highlights a proof of concept by evaluating a smart framework that reduces stimuli
redundancy. Some of the most common functional coverage models are considered
for benchmarking the proposed framework and the results indicate a significant
reduction in the total number of stimuli packets applied to the inputs of the integrated
circuit.
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1. Introduction

Since the creation of the first transistor in 1947, the semiconductor industry
continuously faced ever-growing demands for faster, more power-efficient, and
even smaller-sized integrated circuits. These improved product requirements have
always brought new challenges when addressing the complexity of the resulting
systems-on-chip (SoC). In addition, the needed functions of the integrated circuits
have become even more complicated and interdependent [1]. These aspects keep
increasing the chances of inserting unintentional errors when designing the circuits.

The pre-silicon functional verification phase of the SoC development
process is required to point out the existing functional errors. These faults can
emerge as either register-transfer level (RTL) implementation bugs or even
architectural bugs that are traced back to the specification document [2]. As the
functional verification tasks require a remarkably high degree of execution quality,
the resources needed for identifying all design errors have increased dramatically.
At one point, such tedious tasks cannot be further parallelized by involving more
verification engineers. Thus, the closure time of the verification phase will continue
to increase and push the product tape-out date even further. In many cases, this
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delivery delay determines a considerable cost to reach the market expectations, and,
in some instances, the market opportunity is even lost.

Within the artificial intelligence (Al) family of process optimization
methods, the subdomain of machine learning (ML) algorithms underwent
outstanding research that provided breakthrough achievements across many
industries during the past decade [3]. Artificial neural networks (ANN) form a set
of supervised ML techniques that are suitable for minimizing and automating a
large variety of processes [4]. Because the ANNSs can model some complex or even
unknown functions, they can be found at the center of many expert systems [5].

During the past decade, the research community devised several techniques
to alleviate the scalability and reusability challenges brought by the latest
application-specific integrated circuit (ASIC) functional verification tasks [6], [7].
However, for complex and heterogeneous SoC verification objectives, these
improvements seem not to effectively reduce the overall verification effort, whereas
the functional coverage closure time remains lengthy and resource costly. In
consequence, this kind of challenge requires process minimization techniques that
should optimally reduce the time cost with similar resource allocation efforts. Thus,
different research groups tackled this problem and developed concepts to harness
the synergy points between functional verification and Al. These are widely
recognized as intelligent verification (IV) strategies [8]. Besides, a discrepancy is
that the former requires exact computations that ensure design correctness, whilst
the latter provides results with unideal accuracy and precision. However, synergism
proves possible because both functional verification and ML algorithms do not rely
on deterministic models, but rather on probabilistic methods that harvest the
highlights of randomness in discrete computational mathematics.

2. Previous Work

The IV strategy that outlined the most promising research interest in article
[8] is Automated Directed Test Generation using Scenario Coverage Feedback. The
core idea to intelligently optimize the regression runtime has a significant and direct
impact on reducing the time costs for many types of functional verification tasks.
In this sense, Cristescu and Bob [9] propose an ML-assisted flexible framework that
can perform stimuli redundancy reduction (SRR) by harnessing the power of
ANNSs. The main goal of this new paper is to benchmark the SRR-based smart
framework (SF) by evaluating different coverage models and measuring the
performance of the stimuli reduction engine.

Cristescu and Bob [9] describe in detail the concept of reducing stimuli
redundancy for successfully optimizing the test regression runtime. The solution
features a supervised-learning algorithm that comprehends the ASIC’s transfer
functions between the input stimuli packets and the target coverage items. This way,



Benchmarking a Smart Framework for Reducing the Coverage Closure Time in ASIC... 211

the smart tool can model and use the ASIC’s inverse sampling functions on the
coverage feedback loop. Even so, the smart engine can interpret the current
coverage result and then predict a novel stimuli sequence that covers a missing
scenario [10]. From an implementation point of view, during both learning phases,
the coverage data is used as input for the ANN, while stimuli data is collected from
the output layer neurons. In terms of scenario modeling, the stimuli sequences
contain a single item field that represents the 32-bit address data of the target ASIC.

Practically, feed-forward multilayer perceptrons (MLP) are considered for
undergoing initial evaluations of the SF [9]. Depending on the number of bins that
establish the coverage item, the input layer of the ANN is sized so that each input
neuron corresponds to a separate coverage bin.

Moreover, regardless of the target verification task, the SF is configured to
deploy the learning steps with some fixed hyperparameter values. Therefore, during
the training phase, the SF uses 400 learning epochs that provide sufficient iterations
to optimally adjust the synaptic weights. In addition, each batch is sized at 10
training examples/batch which provides the best tradeoff between the execution
runtime and the final learning accuracy.

During the inference phase, all performance metrics are computed and
carefully monitored. Once the coverage rate reaches 100%, the learning process is
suspended, and the final performance results are logged.

A great advantage of the SF introduced in article [9] is the usage of the
powerful Keras APl within the TensorFlow library [11] that features many user-
friendly hooks that enable design exploration. Another important advantage is the
stand-alone learning process that is performed in an offline approach without the
need of an ASIC logic simulator [12], [13]. This way, the learning exploration is
run seamlessly without having to interrupt the simulator for costly data collection.

3. The Leveraged Artificial Neural Networks

For assessing the SRR proof of concept, the proposed SF is evaluated for
reaching some of the most common functional coverage goals. For the target ASIC,
which is a sequential de-multiplexer, the objective is to verify the addressing logic
by collecting interesting addresses sent on the design under test (DUT) input.

An exhaustive verification approach is to cover all possible address values
that can be driven on the data bus. Nevertheless, because the bus width is 32 bits,
the number of possible address values is very large and is computed in (1). Reaching
coverage closure for a coverpoint that has individual bins for each address value is
unfeasible and is avoided in almost all verification processes. However, a common
approach is to define a relatively small list of interesting address values that need

bin,oi ,i€[0:232—-1]nN (1)
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to be captured. Therefore, the following representative functional coverpoints are
proposed and implemented using the SRR-based SF:

e Linear coverpoint with “N” equally distributed intervals.

e Nonlinear coverpoint with “power-of-two” distributed intervals.

¢ Nonlinear coverpoint with individual “min” and “max” bins.

The learning metrics obtained for each of these case studies are depicted and
interpreted in the articles [9] and [14]. To obtain a learning configuration that
optimally solves each of the aforementioned coverage tasks, the learning algorithm
undergoes a consistent phase for design space exploration. This is achieved by
deploying several hyperparameter combinations until the learning performance
metrics indicate an optimal solution.

The hyperparameters and their value ranges are outlined in article [9] and
after finishing the hyperparameter analysis step, the optimum results are manually
identified and depicted in figure 1 for each of the three coverpoint distributions.

For the linear coverpoint, one can observe that only 20 epochs are needed
for reaching coverage closure. However, for the nonlinear coverpoint with “power-
of-two” distribution, after 312 learning epochs, the model’s accuracy reaches 100%,
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but the coverage rate significantly increases from 34.38% to 100% in just 17
epochs. Compared to the linear coverpoint with 1000 distributed intervals, this
nonlinear coverage item has only 32 bins, which requires a smaller number of
learning epochs to reach coverage closure.

For the nonlinear coverpoint with “min” and “max” bins, the performance
results are similar to those of the linear coverpoint with 1000 equally distributed
intervals. Practically, the model’s accuracy reaches 99.8% after 251 learning
epochs, but the coverage rate increases from 63.77% to 99.9% after only 26 epochs.
This indicates that one of the two bins with low probability was not hit during any
of the inference phase iterations.

In all cases, the intention is to use an ANN to learn the inverse sampling
function of the respective coverage model. Since the structure of the ANN depends
on the coverpoint size, each of these three use cases features singly different ANN
layouts. Precisely, the input layer of the ANN has a number of neurons equal to the
number of coverpoint bins. An ANN with an input layer size of 32 is depicted in
figure 2. Before listing the learning performance results in articles [9] and [14],
several ANN structures were evaluated, and the analysis pointed out that ANNSs
with a hidden layer size of at least 5 neurons can emulate the inverse sampling
function with learning accuracies of at least 90%.

The ANNSs used in these case studies are designed as sequential models
using the Keras API. Practically, for leveraging best learning capabilities using the
backpropagation methodology, an implementation decision is to have fully
connected neurons [5]. To achieve this, the hidden and the output layers are
implemented using the “dense layer” Keras model. Thus, as illustrated in figure 2,

Input Layer

Wy, where i € [0, 31]
and j € [0, 4]

Hidden Layer

W, o, Wherei€ [0, 4]

Output Layer

address

Fig. 2. The structure of the artificial neural network used for performing SRR within the SF
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for a coverpoint with a size of 32 bins, the corresponding ANN features 160
synaptic weight, denoted wo,ij, between the input layer and the hidden layer and 5
synaptic weights, denoted wy;j, between the hidden layer and the output layer.

Regarding the learning process, the objective is to reduce the complexity
when designing the ANN for each case study without impacting the learning
accuracy results. Practically, during the design exploration phase, | measured the
learning metrics for different hidden layer configurations. The most stable
activation function proved to be the Rectified Linear Unit (ReLU) compared to
other options like the SoftMax or the Sigmoid functions. Moreover, the analysis
showed that the most efficient learning optimizer is the Adaptive Moment
Estimation (Adam) since it provides better accuracy and faster convergence
compared to the Stochastic Gradient Descent (SGD) model.

4. Benchmarking Results

To demonstrate the SRR effect and how the coverage closure time is
significantly reduced, the paper introduces a benchmarking model that compares
the number of driven stimuli packets between the typical constraint-driven
verification (CDV) approach and the novel SRR-based SF.

A. Benchmarking Model

The benchmarking model does not use any third-party component and it is
fully designed as a feature of the Python-based SF. The goal is to leverage this tool
to achieve at least the same functional coverage rate as in the typical CDV
methodology, but with driving less stimuli packets on the DUT’s inputs.

For benchmarking purposes, it is sufficient to emulate the DUT’s sampling
function using a dedicated Python module. Practically, the target functional
coverage task is isolated from the rest of the complex verification environment and
replicated inside the pure Python environment. Thus, no logic simulation is required
as this would create a significant processing penalty during each learning epoch.

For emulating the CDV approach, as over-constraining stimuli is typically
a bad practice, the SF model uses a pure random-number generator with a uniform
probability distribution. The intention is to have a Python coarse model that
emulates the randomization behavior within the Universal Verification
Methodology (UVM).

For the proposed novel approach, the SF replaces the pure random-number
generator with an ANN that is trained using an initial data set. This training set is
also generated using a dedicated Python module that leverages the emulated DUT
sampling function.
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Regarding the testing scenario configuration, the benchmark runs many
coverpoint types and sizes and it also compares cases with initial coverage rates of
33%, 50%, or 75%.

Because the learning process did not provide 100% coverage for the
nonlinear coverpoint with individual “min” and “max” bins, this type of coverage
distribution will not be included in the benchmarking process. For each coverpoint
configuration, the benchmarking process averages out the results on 15 complete
learning sessions because the learning processes can provide statistical variance.

For reducing the time cost of reaching coverage closure, it is important to
have as few simulation cycles as possible. Therefore, an important metric used in
the benchmarking process is the Number of Stimuli packets that go Through the
DUT (NSTD). Moreover, the tool also measures the Number of Stimuli packets
Generated by the ANN (NSGA). Because the main objective is to reduce the costly
DUT simulation cycles, the main priority of this benchmarking process is to identify
the coverpoint configurations that minimize the values for the NSTD performance
metric.

B. Benchmarking the Linear Coverpoint with “N” Equally Distributed
Intervals

For this type of coverage item, the SF benchmarking process covers many
coverpoint configurations with different values for “N”, ranging from 64 bins up
to 8192 bins. After all the coverpoint configurations are deployed, the
benchmarking results depicted in figure 3 point to a considerable reduction of the
total NSTD for this use case. Focusing on the SF results, chart ‘(a)’ indicates how
the total NSTD values increase together with the size of the coverpoint. This is an
expected behavior since a larger coverpoint size requires covering a larger number
of scenarios. Also, the NSTD values are usually smaller when the initial coverage
rate is at 33%. On the one hand, when the initial training set is obtained using the
inefficient CDV technique for an initial 33% coverage, the majority of 66% bins
that remain are addressed using the efficient SRR-based SF. On the other hand,
when the initial coverage rate of 75% is inefficiently reached using the CDV
approach, the minority of 25% bins that remain are covered using the SF.

As the configurations with an initial coverage rate of 33% generate the best
NSTD results, a comparison between the CDV approach and the SF solution is
captured in chart ‘(b)’. It can be observed that the NSTD values obtained with the
SF are significantly smaller than the corresponding NSTD values obtained with the
classic CDV approach. In addition, the difference increases together with the size
of the coverpoint.

Chart ‘(c)’ indicates how many times the SF NSTD is smaller compared to
the CDV NSTD and the configurations with a higher coverpoint size provide better
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Fig. 3. A comparison of the benchmarking results for several coverpoint configurations with “N”
equally distributed intervals.
(a) — The total NSTD values obtained using the SF
(b) — Comparison between CDV and SF with 33% initial coverage
(c) — NSTD performance results of the SF compared to CDV
(d) — NSGA performance results of the SF

NSTD improvements. Moreover, the performance variances across different initial
coverage rates also increase together with the size of the coverage item.

Since the SF NSGA is larger compared to the CDV NSGA, chart ‘(d)’
indicates only negative performance results. Like the NSTD metric, the NSGA ratio
improves together with the size of the coverpoint. Practically, the NSGA overhead
decreases, as the size of the coverage item increases. Still, configurations that have
higher initial coverage ratios have better NSGA ratios.

Consequently, the best NSTD ratio is obtained when the initial coverage
rate is at 33% because the SF is involved more in generating novel scenarios that
reduce stimuli redundancy. Despite that, the best NSGA ratio is captured when the
initial coverage rate is at 75% because the ANN gets involved only for the
remaining 25% uncovered bins. Thus, this analysis uncovers a tradeoff between the
main two performance metrics, and it can be observed that when the NSTD ratio is
best, the NSGA metric is worst, and vice versa.
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C. Benchmarking the Nonlinear Coverpoint with “Power-of-Two’
Distributed Intervals

For this nonlinear coverpoint, the SF benchmarking process compares
several configurations with coverage item sizes ranging from 8 bins to 32 bins.
After measuring the performance metrics, the evaluation outcome also indicates a
significant reduction of the total NSTD. The results are depicted in figure 4, which
points at least 5 times and up to 15000 times less NSTD required for reaching the
same verification goal using the proposed SRR-based SF compared to the typical
CDV approach.

In chart ‘(a)’, the total NSTD values increase together with the size of the
coverpoint, and this behavior is like the one observed in the previous use case.
Another similarity is that the NSTD values decrease together with the initial
coverage rate. However, the differences between the NSTD values across different
initial coverage rates are significantly higher for this type of coverpoint. The
differences vary under a nonlinear characteristic that is close to the power-of-two

33% initial cov.

Total NSTD (SF) ! Solution Improvm. NSTD | 33%initial cov.
1E+6] 77 50% initial cov. - P 77 50% initial cov
SR 75% initial cov. 3 1E+4 [ 75% initial cov.
_1E+5] . @ I
0 1Y @ ]
3 - A B1Es3 L,
§ 1E+; N 2 7l
%. ) A /z §1E+2 : |
1E+3 N 8 z i
g Fl / /\\ 2 i Z
@ N g v =11
1E+24 2 E1EHTY N N 7
Al = A N
1 e N N
1E+1 4l T f T f T T r 1E+0 +-5 T . Ly t T T
8 10 12 14 16 20 24 32 8 10 12 14 16 20 24 32
Coverpoint size [bins] Coverpoint size [bins]
@ (c)
33% initial cov. ___|NSTD (CDV) Solution Impravm. NSTD 33% initial cov.
1E+7] ‘:7 | Total NSGA (SF) —3.3E+3 P .77 50% initial cov
2 Total NSTD (SF) E [ 76% initial cov.
_1E+6 — = P
i) B 8.4E+14 i
£ 1E+54 o -
g g B G2
S E+4] B £ N
= = S [
£ 7 v 3 A dIAlN
£ 1E+3] 7 A : Pl -
P ~ E A
1E+2 4 2 N :A\ ";‘:c;
1E+1] =17 A & L
8 10 12 14 18 20 24 32 8 10 12 14 16 20 24 32

Caverpol n;bs)ize [bins] Coverpoint size [bins]

Fig. 4. A comparison of the benchmarking results for several coverpoint configurations with
“power-of-two” equally distributed intervals.
(a) — The total NSTD values obtained using the SF
(b) — Comparison between CDV and SF with 33% initial coverage
(c) — NSTD performance results of the SF compared to CDV
(d) — NSGA performance results of the SF
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distribution. Thus, for such a nonlinear coverpoint, it is important to carefully
choose a small initial coverage rate. Similarly, the configurations with an initial
coverage rate of 33% generate the best NSTD results. Therefore, chart ‘(b)’ outlines
a comparison between the CDV approach and the SF solution. The great
nonlinearity of the item distribution creates a heavy penalty for the CDV approach
when analyzing larger coverpoints.

Like the previous use case, the NSTD differences increase together with the size of
the coverpoint.

Chart ‘(c)’ depicts the NSTD performance results that increase together with
the coverpoint size. In addition, the performance variances across different initial
coverage rates are much larger compared to the ones obtained for the coverpoint
with a linear distribution.

Chart ‘(d)’ indicates the NSGA performance results and positive results are
obtained starting with a coverpoint size of 14 bins. For nonlinear coverpoints with
small sizes, the ANNSs have an implicit process overhead during the training epochs,
which makes them less effective than the CDV approaches. Still, the variances of
these NSGA results indicate a strong nonlinear behavior that increases together with
the coverpoint size and decreases together with the initial coverage rate. Practically,
the NSGA overhead decreases, as the size of the coverage item increases. Compared
with the previous use case, a difference is that the power-of-two distributed
coverpoint obtains better NSGA ratios for configurations that have lower initial
coverage ratios.

Like the results obtained for the coverpoint with linear distribution, the best
NSTD ratio is obtained when the initial coverage rate is at 33%. In contrast with
the previous use case, the best NSGA ratio is also captured when the initial coverage
rate is at 33%. Thus, for this type of coverage item, the recommendation is to deploy
tasks on the SF that have large coverpoints sizes and low initial coverage rates.

5. Conclusions and Future Research

Within the CDV approach, functional coverage models with complex
nonlinear bin distributions remain some of today’s major bottlenecks that drag the
ASIC tape-out milestone. The proposed novel ML-based framework addresses this
problem and significantly diminishes redundant scenario deployment. In other
words, the test regression is optimized by dropping ineffective simulation cycles.
This leads to faster functional coverage closure with a relatively smaller
engineering overhead.

The most beneficial advantages of the smart framework are its support for
process parallelization, which enables the execution of multiple ANNs at the same
time, as well as its flexibility in deploying models for almost any user-defined
verification task. The obtained performance results indicate great prospects for
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developing expert systems that can aid the electronic design automation (EDA)
tools during future ASIC verification processes. This way, the demand for resources
is reduced and the cost surge is mitigated.

As mentioned in chapter 4.A, the current implementation of the SF learning
engine cannot provide full coverage rate for the use cases in which the coverpoint
PMF has outliers. Thus, further investigation is planned for exploring different
activation functions on the output perceptron of the ANN.

Another limitation is the implementation cost required for modeling the
transfer function of the target DUT. This is an initial overhead that should be
addressed before verifying an ASIC candidate using the proposed SF.

Future research directions are set on deploying the smart framework during
the complete verification phase of an industry-level project. Before achieving this,
further exploration of more complex ANN architectures, as well as wielding more
sophisticated Keras optimizers, might be needed. Even more interesting
benchmarking results could be uncovered for a larger set of coverpoints using data
sets generated by industrial production settings.

Another interesting future work is to deploy nonlinear verification use cases
on the AMIQ’s ECTB framework [16]. Specifically, investigations are currently
being held into integrating the ANN-based learning core of the SF tool into the
AMIQ ECTB architecture.

One more investigation direction is to combine the strong points of both
genetic algorithms (GA) [17] and inductive logic programming (ILP) [18]
algorithms within a hybrid-like framework. The GA is suitable for improving the
quality of the training set, while ILP could be involved in modeling complex
coverage models [18]. Also, a support-vector machine (SVM) [19] engine could
assist the SF with high-quality classification tasks.
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