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BENCHMARKING A SMART FRAMEWORK FOR 

REDUCING THE COVERAGE CLOSURE TIME IN ASIC 

FUNCTIONAL VERIFICATION 

Mihai-Corneliu CRISTESCU1 

This paper outlines a solution that estimates and reduces the functional 

coverage closure time in integrated circuit verification by leveraging the power of 

artificial neural networks. This way, the process time cost is minimized by driving 

novel scenarios and discarding redundant test sequences. Practically, the article 

highlights a proof of concept by evaluating a smart framework that reduces stimuli 

redundancy. Some of the most common functional coverage models are considered 

for benchmarking the proposed framework and the results indicate a significant 

reduction in the total number of stimuli packets applied to the inputs of the integrated 

circuit. 
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1. Introduction 

Since the creation of the first transistor in 1947, the semiconductor industry 

continuously faced ever-growing demands for faster, more power-efficient, and 

even smaller-sized integrated circuits. These improved product requirements have 

always brought new challenges when addressing the complexity of the resulting 

systems-on-chip (SoC). In addition, the needed functions of the integrated circuits 

have become even more complicated and interdependent [1]. These aspects keep 

increasing the chances of inserting unintentional errors when designing the circuits. 

The pre-silicon functional verification phase of the SoC development 

process is required to point out the existing functional errors. These faults can 

emerge as either register-transfer level (RTL) implementation bugs or even 

architectural bugs that are traced back to the specification document [2]. As the 

functional verification tasks require a remarkably high degree of execution quality, 

the resources needed for identifying all design errors have increased dramatically. 

At one point, such tedious tasks cannot be further parallelized by involving more 

verification engineers. Thus, the closure time of the verification phase will continue 

to increase and push the product tape-out date even further. In many cases, this 
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delivery delay determines a considerable cost to reach the market expectations, and, 

in some instances, the market opportunity is even lost. 

Within the artificial intelligence (AI) family of process optimization 

methods, the subdomain of machine learning (ML) algorithms underwent 

outstanding research that provided breakthrough achievements across many 

industries during the past decade [3]. Artificial neural networks (ANN) form a set 

of supervised ML techniques that are suitable for minimizing and automating a 

large variety of processes [4]. Because the ANNs can model some complex or even 

unknown functions, they can be found at the center of many expert systems [5]. 

During the past decade, the research community devised several techniques 

to alleviate the scalability and reusability challenges brought by the latest 

application-specific integrated circuit (ASIC) functional verification tasks [6], [7]. 

However, for complex and heterogeneous SoC verification objectives, these 

improvements seem not to effectively reduce the overall verification effort, whereas 

the functional coverage closure time remains lengthy and resource costly. In 

consequence, this kind of challenge requires process minimization techniques that 

should optimally reduce the time cost with similar resource allocation efforts. Thus, 

different research groups tackled this problem and developed concepts to harness 

the synergy points between functional verification and AI. These are widely 

recognized as intelligent verification (IV) strategies [8]. Besides, a discrepancy is 

that the former requires exact computations that ensure design correctness, whilst 

the latter provides results with unideal accuracy and precision. However, synergism 

proves possible because both functional verification and ML algorithms do not rely 

on deterministic models, but rather on probabilistic methods that harvest the 

highlights of randomness in discrete computational mathematics. 

2. Previous Work 

The IV strategy that outlined the most promising research interest in article 

[8] is Automated Directed Test Generation using Scenario Coverage Feedback. The 

core idea to intelligently optimize the regression runtime has a significant and direct 

impact on reducing the time costs for many types of functional verification tasks. 

In this sense, Cristescu and Bob [9] propose an ML-assisted flexible framework that 

can perform stimuli redundancy reduction (SRR) by harnessing the power of 

ANNs. The main goal of this new paper is to benchmark the SRR-based smart 

framework (SF) by evaluating different coverage models and measuring the 

performance of the stimuli reduction engine. 

Cristescu and Bob [9] describe in detail the concept of reducing stimuli 

redundancy for successfully optimizing the test regression runtime. The solution 

features a supervised-learning algorithm that comprehends the ASIC’s transfer 

functions between the input stimuli packets and the target coverage items. This way, 



Benchmarking a Smart Framework for Reducing the Coverage Closure Time in ASIC…  211 

the smart tool can model and use the ASIC’s inverse sampling functions on the 

coverage feedback loop. Even so, the smart engine can interpret the current 

coverage result and then predict a novel stimuli sequence that covers a missing 

scenario [10]. From an implementation point of view, during both learning phases, 

the coverage data is used as input for the ANN, while stimuli data is collected from 

the output layer neurons. In terms of scenario modeling, the stimuli sequences 

contain a single item field that represents the 32-bit address data of the target ASIC. 

Practically, feed-forward multilayer perceptrons (MLP) are considered for 

undergoing initial evaluations of the SF [9]. Depending on the number of bins that 

establish the coverage item, the input layer of the ANN is sized so that each input 

neuron corresponds to a separate coverage bin. 

Moreover, regardless of the target verification task, the SF is configured to 

deploy the learning steps with some fixed hyperparameter values. Therefore, during 

the training phase, the SF uses 400 learning epochs that provide sufficient iterations 

to optimally adjust the synaptic weights. In addition, each batch is sized at 10 

training examples/batch which provides the best tradeoff between the execution 

runtime and the final learning accuracy. 

During the inference phase, all performance metrics are computed and 

carefully monitored. Once the coverage rate reaches 100%, the learning process is 

suspended, and the final performance results are logged. 

A great advantage of the SF introduced in article [9] is the usage of the 

powerful Keras API within the TensorFlow library [11] that features many user-

friendly hooks that enable design exploration. Another important advantage is the 

stand-alone learning process that is performed in an offline approach without the 

need of an ASIC logic simulator [12], [13]. This way, the learning exploration is 

run seamlessly without having to interrupt the simulator for costly data collection. 

3. The Leveraged Artificial Neural Networks 

For assessing the SRR proof of concept, the proposed SF is evaluated for 

reaching some of the most common functional coverage goals. For the target ASIC, 

which is a sequential de-multiplexer, the objective is to verify the addressing logic 

by collecting interesting addresses sent on the design under test (DUT) input. 

An exhaustive verification approach is to cover all possible address values 

that can be driven on the data bus. Nevertheless, because the bus width is 32 bits, 

the number of possible address values is very large and is computed in (1). Reaching 

coverage closure for a coverpoint that has individual bins for each address value is 

unfeasible and is avoided in almost all verification processes. However, a common 

approach is to define a relatively small list of interesting address values that need 

 

 𝑏𝑖𝑛𝑖 ↔ 𝑖     , 𝑖 ∈ [0 ∶ 232 − 1] ∩ ℕ (1) 
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to be captured. Therefore, the following representative functional coverpoints are 

proposed and implemented using the SRR-based SF: 

• Linear coverpoint with “N” equally distributed intervals. 

• Nonlinear coverpoint with “power-of-two” distributed intervals. 

• Nonlinear coverpoint with individual “min” and “max” bins. 

The learning metrics obtained for each of these case studies are depicted and 

interpreted in the articles [9] and [14]. To obtain a learning configuration that 

optimally solves each of the aforementioned coverage tasks, the learning algorithm 

undergoes a consistent phase for design space exploration. This is achieved by 

deploying several hyperparameter combinations until the learning performance 

metrics indicate an optimal solution. 

The hyperparameters and their value ranges are outlined in article [9] and 

after finishing the hyperparameter analysis step, the optimum results are manually 

identified and depicted in figure 1 for each of the three coverpoint distributions. 

For the linear coverpoint, one can observe that only 20 epochs are needed 

for reaching coverage closure. However, for the nonlinear coverpoint with “power-

of-two” distribution, after 312 learning epochs, the model’s accuracy reaches 100%,  

 

 
Fig. 1. The optimal solutions obtained for all three coverpoint types [9], [14]. 

(a) The learning accuracy of hitting novel coverage bins 

(b) The coverage percentage (the verification goal) 

(c) The learning loss function 
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but the coverage rate significantly increases from 34.38% to 100% in just 17 

epochs. Compared to the linear coverpoint with 1000 distributed intervals, this 

nonlinear coverage item has only 32 bins, which requires a smaller number of 

learning epochs to reach coverage closure.  

For the nonlinear coverpoint with “min” and “max” bins, the performance 

results are similar to those of the linear coverpoint with 1000 equally distributed 

intervals. Practically, the model’s accuracy reaches 99.8% after 251 learning 

epochs, but the coverage rate increases from 63.77% to 99.9% after only 26 epochs. 

This indicates that one of the two bins with low probability was not hit during any 

of the inference phase iterations. 

In all cases, the intention is to use an ANN to learn the inverse sampling 

function of the respective coverage model. Since the structure of the ANN depends 

on the coverpoint size, each of these three use cases features singly different ANN 

layouts. Precisely, the input layer of the ANN has a number of neurons equal to the 

number of coverpoint bins. An ANN with an input layer size of 32 is depicted in 

figure 2. Before listing the learning performance results in articles [9] and [14], 

several ANN structures were evaluated, and the analysis pointed out that ANNs 

with a hidden layer size of at least 5 neurons can emulate the inverse sampling 

function with learning accuracies of at least 90%. 

The ANNs used in these case studies are designed as sequential models 

using the Keras API. Practically, for leveraging best learning capabilities using the 

backpropagation methodology, an implementation decision is to have fully 

connected neurons [5]. To achieve this, the hidden and the output layers are 

implemented using the “dense layer” Keras model. Thus, as illustrated in figure 2,  

 

 
Fig. 2. The structure of the artificial neural network used for performing SRR within the SF 
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for a coverpoint with a size of 32 bins, the corresponding ANN features 160 

synaptic weight, denoted w0,i,j, between the input layer and the hidden layer and 5 

synaptic weights, denoted w1,i,j, between the hidden layer and the output layer. 

Regarding the learning process, the objective is to reduce the complexity 

when designing the ANN for each case study without impacting the learning 

accuracy results. Practically, during the design exploration phase, I measured the 

learning metrics for different hidden layer configurations. The most stable 

activation function proved to be the Rectified Linear Unit (ReLU) compared to 

other options like the SoftMax or the Sigmoid functions. Moreover, the analysis 

showed that the most efficient learning optimizer is the Adaptive Moment 

Estimation (Adam) since it provides better accuracy and faster convergence 

compared to the Stochastic Gradient Descent (SGD) model. 

4. Benchmarking Results 

To demonstrate the SRR effect and how the coverage closure time is 

significantly reduced, the paper introduces a benchmarking model that compares 

the number of driven stimuli packets between the typical constraint-driven 

verification (CDV) approach and the novel SRR-based SF. 

 

A. Benchmarking Model 
 

The benchmarking model does not use any third-party component and it is 

fully designed as a feature of the Python-based SF. The goal is to leverage this tool 

to achieve at least the same functional coverage rate as in the typical CDV 

methodology, but with driving less stimuli packets on the DUT’s inputs. 

For benchmarking purposes, it is sufficient to emulate the DUT’s sampling 

function using a dedicated Python module. Practically, the target functional 

coverage task is isolated from the rest of the complex verification environment and 

replicated inside the pure Python environment. Thus, no logic simulation is required 

as this would create a significant processing penalty during each learning epoch. 

For emulating the CDV approach, as over-constraining stimuli is typically 

a bad practice, the SF model uses a pure random-number generator with a uniform 

probability distribution. The intention is to have a Python coarse model that 

emulates the randomization behavior within the Universal Verification 

Methodology (UVM). 

For the proposed novel approach, the SF replaces the pure random-number 

generator with an ANN that is trained using an initial data set. This training set is 

also generated using a dedicated Python module that leverages the emulated DUT 

sampling function. 
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Regarding the testing scenario configuration, the benchmark runs many 

coverpoint types and sizes and it also compares cases with initial coverage rates of 

33%, 50%, or 75%. 

Because the learning process did not provide 100% coverage for the 

nonlinear coverpoint with individual “min” and “max” bins, this type of coverage 

distribution will not be included in the benchmarking process. For each coverpoint 

configuration, the benchmarking process averages out the results on 15 complete 

learning sessions because the learning processes can provide statistical variance. 

For reducing the time cost of reaching coverage closure, it is important to 

have as few simulation cycles as possible. Therefore, an important metric used in 

the benchmarking process is the Number of Stimuli packets that go Through the 

DUT (NSTD). Moreover, the tool also measures the Number of Stimuli packets 

Generated by the ANN (NSGA). Because the main objective is to reduce the costly 

DUT simulation cycles, the main priority of this benchmarking process is to identify 

the coverpoint configurations that minimize the values for the NSTD performance 

metric. 

 

B. Benchmarking the Linear Coverpoint with “N” Equally Distributed 

Intervals 

 

For this type of coverage item, the SF benchmarking process covers many 

coverpoint configurations with different values for “N”, ranging from 64 bins up 

to 8192 bins. After all the coverpoint configurations are deployed, the 

benchmarking results depicted in figure 3 point to a considerable reduction of the 

total NSTD for this use case. Focusing on the SF results, chart ‘(a)’ indicates how 

the total NSTD values increase together with the size of the coverpoint. This is an 

expected behavior since a larger coverpoint size requires covering a larger number 

of scenarios. Also, the NSTD values are usually smaller when the initial coverage 

rate is at 33%. On the one hand, when the initial training set is obtained using the 

inefficient CDV technique for an initial 33% coverage, the majority of 66% bins 

that remain are addressed using the efficient SRR-based SF. On the other hand, 

when the initial coverage rate of 75% is inefficiently reached using the CDV 

approach, the minority of 25% bins that remain are covered using the SF. 

As the configurations with an initial coverage rate of 33% generate the best 

NSTD results, a comparison between the CDV approach and the SF solution is 

captured in chart ‘(b)’. It can be observed that the NSTD values obtained with the 

SF are significantly smaller than the corresponding NSTD values obtained with the 

classic CDV approach. In addition, the difference increases together with the size 

of the coverpoint. 

Chart ‘(c)’ indicates how many times the SF NSTD is smaller compared to 

the CDV NSTD and the configurations with a higher coverpoint size provide better  
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Fig. 3. A comparison of the benchmarking results for several coverpoint configurations with “N” 

equally distributed intervals. 

(a) – The total NSTD values obtained using the SF 

(b) – Comparison between CDV and SF with 33% initial coverage 

(c) – NSTD performance results of the SF compared to CDV 

(d) – NSGA performance results of the SF 

 

NSTD improvements. Moreover, the performance variances across different initial 

coverage rates also increase together with the size of the coverage item. 

Since the SF NSGA is larger compared to the CDV NSGA, chart ‘(d)’ 

indicates only negative performance results. Like the NSTD metric, the NSGA ratio 

improves together with the size of the coverpoint. Practically, the NSGA overhead 

decreases, as the size of the coverage item increases. Still, configurations that have 

higher initial coverage ratios have better NSGA ratios. 

Consequently, the best NSTD ratio is obtained when the initial coverage 

rate is at 33% because the SF is involved more in generating novel scenarios that 

reduce stimuli redundancy. Despite that, the best NSGA ratio is captured when the 

initial coverage rate is at 75% because the ANN gets involved only for the 

remaining 25% uncovered bins. Thus, this analysis uncovers a tradeoff between the 

main two performance metrics, and it can be observed that when the NSTD ratio is 

best, the NSGA metric is worst, and vice versa. 
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C. Benchmarking the Nonlinear Coverpoint with “Power-of-Two” 

Distributed Intervals 
 

For this nonlinear coverpoint, the SF benchmarking process compares 

several configurations with coverage item sizes ranging from 8 bins to 32 bins. 

After measuring the performance metrics, the evaluation outcome also indicates a 

significant reduction of the total NSTD. The results are depicted in figure 4, which 

points at least 5 times and up to 15000 times less NSTD required for reaching the 

same verification goal using the proposed SRR-based SF compared to the typical 

CDV approach. 

In chart ‘(a)’, the total NSTD values increase together with the size of the 

coverpoint, and this behavior is like the one observed in the previous use case. 

Another similarity is that the NSTD values decrease together with the initial 

coverage rate. However, the differences between the NSTD values across different 

initial coverage rates are significantly higher for this type of coverpoint. The 

differences vary under a nonlinear characteristic that is close to the power-of-two  

 

 
Fig. 4. A comparison of the benchmarking results for several coverpoint configurations with 

“power-of-two” equally distributed intervals. 

(a) – The total NSTD values obtained using the SF 

(b) – Comparison between CDV and SF with 33% initial coverage 

(c) – NSTD performance results of the SF compared to CDV 

(d) – NSGA performance results of the SF 
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distribution. Thus, for such a nonlinear coverpoint, it is important to carefully 

choose a small initial coverage rate. Similarly, the configurations with an initial 

coverage rate of 33% generate the best NSTD results. Therefore, chart ‘(b)’ outlines 

a comparison between the CDV approach and the SF solution. The great 

nonlinearity of the item distribution creates a heavy penalty for the CDV approach 

when analyzing larger coverpoints. 

Like the previous use case, the NSTD differences increase together with the size of 

the coverpoint. 

Chart ‘(c)’ depicts the NSTD performance results that increase together with 

the coverpoint size. In addition, the performance variances across different initial 

coverage rates are much larger compared to the ones obtained for the coverpoint 

with a linear distribution. 

Chart ‘(d)’ indicates the NSGA performance results and positive results are 

obtained starting with a coverpoint size of 14 bins. For nonlinear coverpoints with 

small sizes, the ANNs have an implicit process overhead during the training epochs, 

which makes them less effective than the CDV approaches. Still, the variances of 

these NSGA results indicate a strong nonlinear behavior that increases together with 

the coverpoint size and decreases together with the initial coverage rate. Practically, 

the NSGA overhead decreases, as the size of the coverage item increases. Compared 

with the previous use case, a difference is that the power-of-two distributed 

coverpoint obtains better NSGA ratios for configurations that have lower initial 

coverage ratios. 

Like the results obtained for the coverpoint with linear distribution, the best 

NSTD ratio is obtained when the initial coverage rate is at 33%. In contrast with 

the previous use case, the best NSGA ratio is also captured when the initial coverage 

rate is at 33%. Thus, for this type of coverage item, the recommendation is to deploy 

tasks on the SF that have large coverpoints sizes and low initial coverage rates. 

5. Conclusions and Future Research 

Within the CDV approach, functional coverage models with complex 

nonlinear bin distributions remain some of today’s major bottlenecks that drag the 

ASIC tape-out milestone. The proposed novel ML-based framework addresses this 

problem and significantly diminishes redundant scenario deployment. In other 

words, the test regression is optimized by dropping ineffective simulation cycles. 

This leads to faster functional coverage closure with a relatively smaller 

engineering overhead. 

The most beneficial advantages of the smart framework are its support for 

process parallelization, which enables the execution of multiple ANNs at the same 

time, as well as its flexibility in deploying models for almost any user-defined 

verification task. The obtained performance results indicate great prospects for 



Benchmarking a Smart Framework for Reducing the Coverage Closure Time in ASIC…  219 

developing expert systems that can aid the electronic design automation (EDA) 

tools during future ASIC verification processes. This way, the demand for resources 

is reduced and the cost surge is mitigated. 

As mentioned in chapter 4.A, the current implementation of the SF learning 

engine cannot provide full coverage rate for the use cases in which the coverpoint 

PMF has outliers. Thus, further investigation is planned for exploring different 

activation functions on the output perceptron of the ANN. 

Another limitation is the implementation cost required for modeling the 

transfer function of the target DUT. This is an initial overhead that should be 

addressed before verifying an ASIC candidate using the proposed SF. 

Future research directions are set on deploying the smart framework during 

the complete verification phase of an industry-level project. Before achieving this, 

further exploration of more complex ANN architectures, as well as wielding more 

sophisticated Keras optimizers, might be needed. Even more interesting 

benchmarking results could be uncovered for a larger set of coverpoints using data 

sets generated by industrial production settings. 

Another interesting future work is to deploy nonlinear verification use cases 

on the AMIQ’s ECTB framework [16]. Specifically, investigations are currently 

being held into integrating the ANN-based learning core of the SF tool into the 

AMIQ ECTB architecture. 

One more investigation direction is to combine the strong points of both 

genetic algorithms (GA) [17] and inductive logic programming (ILP) [18] 

algorithms within a hybrid-like framework. The GA is suitable for improving the 

quality of the training set, while ILP could be involved in modeling complex 

coverage models [18]. Also, a support-vector machine (SVM) [19] engine could 

assist the SF with high-quality classification tasks. 
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