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ON PSEUDO-CHEBYSHEV SUBSPACES IN QUOTIENT

GENERALIZED 2-NORMED SPACES
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In this paper, we study the concept of best simultaneous approxima-
tion in quotient generalized 2-normed linear spaces. We will determined under
what conditions pseudo-Chebyshev subspaces are transmitted to and from quotient
spaces. Also we shall give a characterization of simultaneous pseudo-Chebyshev
subspaces on these spaces.
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1. Introduction and preliminaries

Approximation theory has many important applications in various areas of
functional analysis, computer science, numerical solutions of differential and inte-
gral equations. A generalization of normed spaces is 2-normed spaces plays a very
important role in functional analysis. The concept of linear 2-normed spaces was
initiated by Gähler in 1965 ([8]) and has been developed extensively in different sub-
jects by others. Later, in 1999-2004, Z. Lewandwoska published a series of papers
on 2-normed sets and generalized 2-normed spaces, investigating some properties of
these spaces. ([10]-[14]). The concept of generalized 2-normed space is a generaliza-
tion of the concepts of a normed space and of a 2-normed space. In fact, generalized
2-normed spaces are part of locally convex spaces. Recently, some results on best
approximation theory in generalized 2-normed spaces have been obtained by Sh.
Rezapour, M. Acikgoz and others (for example [1]-[5] and [16]-[22]). The theory of
best simultaneous approximation has been studied by many authors (for example
[6],[7],[9]). In [9], M. Iranmanesh and H. Mohebi get some results on best simulta-
neous approximation in quotient normed spaces. In this paper, we shall introduce
the notions of 2-best simultaneous approximation in quotient generalized 2-normed
spaces and we shall give some results in this field.

Definition 1.1. [8] Let X be a real linear space of dimension greater than 1 and
let ∥., .∥ be a real-valued function on X ×X satisfying the following conditions:
(G1)∥x, y∥ = 0 if and only if x and y are linearly dependent vectors.
(G2)∥x, y∥ = ∥y, x∥ for all x, y ∈ X.
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(G3)∥αx, y∥ = |α|∥x, y∥ for every real number α.
(G4)∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all x, y, z ∈ X.
Then ∥., .∥ is called a 2-norm on X and the pair (X, ∥., .∥) is called a linear 2-normed
space.

There are no remarkable relations between normed spaces and 2-normed spaces.
We could not construct any 2-norm on X by a normed space (X, ∥.∥), and this could
be a motive for definition of generalized 2-normed spaces.
Definition 1.2. [10],[11] Let X and Y be linear spaces, D be a non-empty subset
of X × Y such that for every x ∈ X and y ∈ Y , the sets

Dx = {y ∈ Y : (x, y) ∈ D} ; Dy = {x ∈ X : (x, y) ∈ D}

are linear subspaces of the spaces Y and X, respectively. A function ∥., .∥ : D →
[0,∞) is called a generalized 2-norm on D if it satisfies the following conditions:
(N1)∥αx, y∥ = |α|∥x, y∥ = ∥x, αy∥ for all (x, y) ∈ D and every scalar α.
(N2)∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥ for all (x, y), (x, z) ∈ D.
(N3)∥x+ y, z∥ ≤ ∥x, z∥+ ∥y, z∥ for all (x, z), (y, z) ∈ D.
Then (D, ∥., .∥) is called a 2-normed set. In particular, if D = X×Y ,(X×Y, ∥., .∥) is
called a generalized 2-normed space. Moreover, if X = Y , then generalized 2-normed
space is denoted by (X, ∥., .∥).
Definition 1.3. [14] Let X be a real linear space. Denote by X a non empty
subset of X × X with the property X = X−1(Symmetric) and such that the set
Xy = {x ∈ X; (x; y) ∈ X} is a linear subspace of X, for all y ∈ X. A function
∥., .∥ : X → [0,∞) satisfying the following conditions:
(S1)∥x, y∥ = ∥y, x∥for all (x; y) ∈ X,
(S2)∥αx, y∥ = |α|∥x, y∥ = ∥x, αy∥ for any real number α and all (x, y) ∈ X,
(S3)∥x, y + z∥ ≤ ∥x, y∥+ ∥x, z∥ for all x, y, z ∈ X such that (x, y), (x, z) ∈ X,
will be called a generalized symmetric 2-norm on X. The set X is called a symmetric
2-normed set. In particular, if X = X × X, the function ∥., .∥ will be called a
generalized symmetric 2-norm on X and the pair (X; ∥., .∥) a generalized symmetric
2-normed space.

The following examples are some generalized 2-normed spaces and symmetric
generalized 2-normed spaces.
Example 1.1. [15] 1) Let X be a real linear space having two norms ∥.∥1 and ∥.∥2.
Then (X, ∥., .∥) is a generalized 2-normed space with the 2-norm defined by

∥x, y∥ = ∥x∥1.∥y∥2 ;x, y ∈ X.

Specially if ∥.∥1 = ∥.∥2, our generalized 2-normed space will be a generalized sym-
metric 2-normed space.
2) Let X be a real inner product space. Then X is a symmetric generalized 2-normed
space under the 2-norm

∥x, y∥ = |⟨x, y⟩| ; ∀ x, y ∈ X.

3) Let X be the linear space of all sequence of real numbers. Put

∥x, y∥ =
∞∑
1

|xn||yn|,
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where x = {xn}, y = {yn} ∈ X. Then D = {(x, y) ∈ X × X : ∥x, y∥ < ∞}
is a symmetric 2-normed set and the function ∥., .∥ : D → [0,∞) is a generalized
symmetric 2-normed on D.
4) Let A be a Banach algebra and ∥a, b∥ = ∥ab∥ for all a, b ∈ A. Then, (A, ∥., .∥) is
a generalized 2-normed space.

S1 × S2 is called a 2-bounded subset of X × Y if there exists r > 0 such that
∥s1, s2∥ < r for all (s1, s2) ∈ S1 × S2.

Lemma 1.1. Let (X, ∥.∥) be a normed space, and let X be equipped with the following
generalized 2-norm

∥x, y∥ = ∥x∥.∥y∥; ∀x, y ∈ X.

If S is a bounded set in X, then S × S is a 2-bounded subset of X ×X.

Proof. Let S be a bounded set in X. Then there exists r > 0 such that ∥x∥ < r, for
each x ∈ S. Then we have

∥x, y∥ = ∥x∥.∥y∥ < r.r = r2,

for each x, y ∈ S. Therefore S × S is a 2-bounded subset of X ×X. �
Definition 1.4. Let X×Y be a generalized 2-normed linear space, W1×W2 a subset
of X × Y and S1 × S2 a 2-bounded subset of X × Y . We define

d(S1 × S2,W1 ×W2) = inf
(w1,w2)∈W1×W2

sup
(s1,s2)∈S1×S2

∥s1 − w1, s2 − w2∥,

if there exists some (w1, w2) ∈ W1×W2 such that sup(s1,s2)∈S1×S2
∥s1−w1, s2−w2∥ <

∞. S1 × S2 is called 2-simultaneous proximinal if for every (s1, s2) ∈ S1 × S2 there
exists an element (w01, w02) ∈ W1 ×W2 such that

d(S1 × S2,W1 ×W2) = sup
(s1,s2)∈S1×S2

∥s1 − w01, s2 − w02∥.

In this case (w01, w02) ∈ W1 ×W2 is called a 2-best simultaneous approximation to
S1 ×S2 from W1 ×W2. The set of all 2-best simultaneous approximation to S1 ×S2

from W1 × W2 will be denoted by SW1×W2(S1 × S2). If S1 × S2 = {(x, y)} where
(x, y) ∈ X ×Y then SW1×W2(S1×S2) is the set of all 2-best approximation of (x, y)
in W1×W2 that denoted by PW1×W2(x, y) and also W1×W2 is called a 2-proximinal
subspace of X × Y .

We recall that for an arbitrary nonempty convex set A inX the linear manifold
spanned by A which is denoted by ℓ(A) is defined as follows

ℓ(A) := {αx+ (1− α)y : x, y ∈ A : α is a scalar}.
For every fixed y ∈ A the set ℓ(A− y) is a linear subspace of X satisfying

ℓ(A− y) = ℓ(A)− y := {x− y : x ∈ ℓ(A)}.
It is clear that for an arbitrary nonempty convex set A in X

ℓ(π(A)) = π(ℓ(A)),

where π : X × Y −→ X
M1

× Y
M2

which is defined by π(x, y) = (x +M1, y +M2), is
the canonical map. The dimension of A is defined by

dimA := dim ℓ(A).
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Then for every y ∈ A we have

dimA := dim ℓ(A) = dim[ℓ(A)− y] = dim ℓ(A− y) = dim(A− y).

Definition 1.5. Let X × Y be a generalized 2-normed linear space, W1 × W2 a
subspace of X × Y and S1 × S2 a 2-bounded set in X × Y . Then, W1 ×W2 is called
2-simultaneous pseudo-Chebyshev subspace if SW1×W2(S1×S2) is finite dimensional
subset of W1 ×W2 for all 2-bounded subset S1 × S2 in X × Y .

Theorem 1.1 ([1]). Let (X × Y, ∥., .∥) be a generalized 2-normed linear space, and
M1 and M2 be subspaces of X and Y respectively. Define

∥., .∥ :
X

M1
× Y

M2
−→ [0,+∞)

∥x+M1, y +M2∥ = inf
(m1,m2)∈M1×M2

∥x+m1, y +m2∥

for every x ∈ X and y ∈ Y . Then ∥., .∥ is a generalized 2-norm on X
M1

× Y
M2

.

In [1], the authors have been shown that ∥., .∥ is a generalized 2-norm that it
is not necessary a 2-norm.

2. Main Results

Lemma 2.1. Let X × Y be a generalized 2-normed linear space and M1 × M2 a
2-proximinal subset of X × Y .Then for each nonempty 2-bounded subset S1 × S2 in
X × Y we have

d(S1 × S2,M1 ×M2) = sup
(s1,s2)∈S1×S2

inf
(m1,m2)∈M1×M2

∥s1 −m1, s2 −m2∥.

Proof. Since M1 × M2 is 2-proximinal, it follows that for each (s1, s2) ∈ S1 × S2,
there exists (m01,m02) ∈ M1 ×M2 such that

∥s1 −m01, s2 −m02∥ = inf
(m1,m2)∈M1×M2

∥s1 −m1, s2 −m2∥.

Hence we have

d(S1 × S2,M1 ×M2) = inf
(m1,m2)∈M1×M2

sup
(s1,s2)∈S1×S2

∥s1 −m1, s2 −m2∥

≤ sup
(s1,s2)∈S1×S2

∥s1 −m01, s2 −m02∥

= sup
(s1,s2)∈S1×S2

inf
(m1,m2)∈M1×M2

∥s1 −m1, s2 −m2∥

≤ inf
(m1,m2)∈M1×M2

sup
(s1,s2)∈S1×S2

∥s1 −m1, s2 −m2∥

= d(S1 × S2,M1 ×M2).

Which completes the proof. �
Lemma 2.2. Let W1×W2 be a 2-simultaneous proximinal subspace of a generalized
2-normed space X×Y , M1×M2 a 2-proximinal subspace of X×Y and M1×M2 ⊆
W1×W2. Then for each nonempty 2-bounded set S1×S2 with M1×M2 ⊆ S1×S2 ⊆
X × Y we have

d(S1 × S2,W1 ×W2) = d
( S1

M1
× S2

M2
,
W1

M1
× W2

M2

)
.
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Proof. It is easy to see that d(S1 × S2,W1 × W2) ≥ d
(

S1
M1

× S2
M2

, W1
M1

× W2
M2

)
. Fix

(w1, w2) ∈ W1 ×W2. Then, sup(s1,s2)∈S1×S2
∥s1 − w1 +M1, s2 − w2 +M2∥ ≥ ∥s1 −

w1 +M1, s2 − w2 +M2∥ for all (s1, s2) ∈ S1 × S2. Since M1 ×M2 is 2-proximinal,
there exists (m01,m02) ∈ M1 ×M2 such that

∥s1 − w1 +M1, s2 − w2 +M2∥ = ∥s1 − w1 +m01, s2 − w2 +m02∥

≥ inf
(w

′
1,w

′
2)∈W1×W2

∥s1 − w
′
1, s2 − w

′
2∥.

Thus, sup(s1,s2)∈S1×S2
∥s1−w1+M1, s2−w2+M2∥ ≥ inf

(w
′
1,w

′
2)∈W1×W2

∥s1−w
′
1, s2−

w
′
2∥ for all (s1, s2) ∈ S1 × S2. Hence by lemma 2.1,

sup
(s1,s2)∈S1×S2

∥s1 − w1 +M1,s2 − w2 +M2∥

≥ sup
(s1,s2)∈S1×S2

inf
(w

′
1,w

′
2)∈W1×W2

∥s1 − w
′
1, s2 − w

′
2∥

= inf
(w

′
1,w

′
2)∈W1×W2

sup
(s1,s2)∈S1×S2

∥s1 − w
′
1, s2 − w

′
2∥

= d(S1 × S2,W1 ×W2),

for all (w1, w2) ∈ W1 ×W2. Therefore,

d
( S1

M1
× S2

M2
,
W1

M1
× W2

M2

)
= inf

(w
′
1,w

′
2)∈W1×W2

sup
(s1,s2)∈S1×S2

∥s1 − w1 +M1, s2 − w2 +M2∥

≥ d(S1 × S2,W1 ×W2)

�
Lemma 2.3. Let W1×W2 be a 2-simultaneous proximinal subspace of a generalized
2-normed space X × Y , M1 ×M2 a 2-proximinal subspace of X × Y , S1 × S2 a 2-
bounded set in X × Y , M1 ×M2 ⊆ W1 ×W2. Then,

π
(
SW1×W2(S1 × S2)

)
⊆ SW1

M1
×W2

M2

( S1

M1
× S2

M2

)
.

Proof. If (w01, w02) ∈ SW1×W2(S1 × S2), we have

∥s1 − w01 +M1, s2 − w02 +M2∥ = inf
(m1,m2)∈M1×M2

∥s1 − w01 +m1, s2 − w02 +m2∥

≤ ∥s1 − w01, s2 − w02∥.
So by lemma 2.2 we obtain

sup
(s1s2)∈S1×S2

∥s1 − w01 +M1, s2 − w02 +M2∥ ≤ sup
(s1,s2)∈S1×S2

∥s1 − w01, s2 − w02∥

= d(S1 × S2,W1 ×W2) = d
( S1

M1
× S2

M2
,
W1

M1
× W2

M2

)
.

Therefore, (w01 +M1, w02 +M2) ∈ SW1
M1

×W2
M2

(
S1
M1

× S2
M2

)
. �

Lemma 2.4. Let W1×W2 be a 2-simultaneous proximinal subspace of a generalized
2-normed space X × Y , M1 ×M2 a 2-proximinal subspace of X × Y , S1 × S2 a 2-

bounded set in X×Y , M1×M2 ⊆ W1×W2. If (w01+M1, w02+M2) ∈ SW1
M1

×W2
M2

(
S1
M1

×
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S2
M2

)
and (m01,m02) ∈ SM1×M2(S1 − w01, S2 − w02), then (w01 +m01, w02 +m02) ∈

SW1×W2(S1 × S2).

Proof. By lemma 2.1 and 2.2, we have

sup
(s1,s2)∈S1×S2

∥s1 − w01 −m01, s2 − w02 −m02∥

= inf
(m1,m2)∈M1×M2

sup
(s1,s2)∈S1×S2

∥s1 − w01 −m1, s2 − w02 −m2∥

= sup
(s1,s2)∈S1×S2

inf
(m1,m2)∈M1×M2

∥s1 − w01 −m1, s2 − w02 −m2∥

= sup
(s1,s2)∈S1×S2

∥s1 − w01 +M1, s2 − w02 +M2∥

≤ d
( S1

M1
× S2

M2
,
W1

M1
× W2

M2

)
= d(S1 × S2,W1 ×W2)

So, (w01 +m01, w02 +m02) ∈ SW1×W2(S1 × S2). �

Corollary 2.1. Let W1 ×W2 be a 2-simultaneous proximinal subspace of a gener-
alized 2-normed space X × Y , M1 ×M2 a 2-proximinal subspace of X × Y , S1 × S2

a 2-bounded set in X × Y and M1 ×M2 ⊆ W1 ×W2. Then,

π
(
SW1×W2(S1 × S2)

)
= SW1

M1
×W2

M2

( S1

M1
× S2

M2

)
.

Proof. By lemma 2.3, we have

π
(
SW1×W2(S1 × S2)

)
⊆ SW1

M1
×W2

M2

( S1

M1
× S2

M2

)
.

Now, suppose that (w01 + M1, w02 + M2) ∈ SW1
M1

×W2
M2

(
S1
M1

× S2
M2

)
. Since M1 ×

M2 is 2-simultaneous proximinal, there exists (m01,m02) ∈ M1 × M2 such that
(m01,m02) ∈ SM1×M2(S1 − w01, S2 − w02). Now by lemma 2.4, (w01 + m01, w02 +

m02) ∈ SW1×W2(S1 × S2). So (w01 +M1, w02 +M2) ∈ π
(
SW1×W2(S1 × S2)

)
. �

Theorem 2.1. Let M1 ×M2 and W1 ×W2 be subspaces of a generalized 2-normed
linear space X × Y such that W1 ×W2 is 2-simultaneous proximinal and M1 ×M2

is finite dimensional and 2-proximinal subspace of W1×W2. Then the following are
equivalent.
(i) W1

M1
× W2

M2
is 2-simultaneous pseudo-Chebyshev subspace of X

M1
× Y

M2
.

(ii) (W1+M1)× (W2+M2) is 2-simultaneous pseudo-Chebyshev subspace of X×Y .

Proof. (i) ⇒ (ii) let S1×S2 be an arbitrary 2-bounded subset in X×Y and (k01, k02)
be an element of S(W1+M1,W2+M2)(S1 × S2). Then by using corollary 2.5 we have

π
(
ℓ(S(W1+M1)×(W2+M2)(S1 × S2)− (k01, k02))

)
= ℓ

(
π(S(W1+M1)×(W2+M2)(S1 × S2)− (k01, k02))

)
= ℓ

(
SW1

M1
×W2

M2

( S1

M1
× S2

M2

)
− (k01 +M1, k02 +M2)

)
.
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Since W1
M1

× W2
M2

is 2-simultaneous pseudo-Chebyshev subspace of X
M1

× Y
M2

, so

dim
[
ℓ
(
SW1

M1
×W2

M2

( S1

M1
× S2

M2

)
− (k01 +M1, k02 +M2)

)]
< ∞.

Hence,

dim
[
π
(
ℓ(S(W1+M1)×(W2+M2)(S1 × S2)− (k01, k02))

)]
< ∞.

Since M1 ×M2 is finite dimensional, we have

dim
[(

ℓ(S(W1+M1)×(W2+M2)(S1 × S2)− (k01, k02))
)]

< ∞.

Therefore, (W1 + M1) × (W2 + M2) is 2-simultaneous pseudo-Chebyshev subspace
of X × Y .
(ii) ⇒ (i) Let S1×S2 be an arbitrary 2-bounded subset of X×Y . Since (W1+M1)×
(W2+M2) is 2-simultaneous pseudo-Chebyshev subspace ofX×Y , S(W1+M1)×(W2+M2)(S1×
S2) is finite dimensional. But since W1+M1

M1
× W2+M2

M2
= W1

M1
× W2

M2
, so we have

dim
[
SW1

M1
×W2

M2

( S1

M1
× S2

M2

)]
= dim

[
ℓ
(
SW1

M1
×W2

M2

( S1

M1
× S2

M2

))]
= dim

[
ℓ
(
SW1+M1

M1
×W2+M2

M2

( S1

M1
× S2

M2

))]
= dim

[
ℓ
(
π
(
S(W1+M1)×(W2+M2)(S1 × S2)

))]
= dim

[
π
(
ℓ
(
S(W1+M1)×(W2+M2)(S1 × S2)

))]
< ∞.

Thus, W1
M1

× W2
M2

is 2-simultaneous pseudo-Chebyshev subspace of X
M1

× Y
M2

. �

Corollary 2.2. Let M1 ×M2 and W1 ×W2 are subspaces of generalized 2-normed
linear space X×Y such that M1×M2 is finite dimensional and 2-proximinal, W1×W2

is 2-simultaneous proximinal and M1 × M2 ⊆ W1 × W2. Then the following are
equivalent.
(i) W1

M1
× W2

M2
is 2-simultaneous pseudo-Chebyshev subspace of X

M1
× Y

M2
.

(ii) W1 ×W2 is 2-simultaneous pseudo-Chebyshev subspace of X × Y .

3. Conclusions

In this paper, we investigated the concept of best simultaneous approxima-
tion in quotient generalized 2-normed linear spaces. We proved that under the 2-
proximinality of the subspace M1×M2 pseudo-Chebyshev subspaces are transmitted
to and from quotient spaces. A characterization of simultaneous pseudo-Chebyshev
subspaces is obtained. Also we introduced equivalent assertions between the 2-
simultaneous pseudo-Chebyshevity of subspacesW1×W2 and (W1+M1)×(W2+M2)

and the quotient space W1
M1

× W2
M2

.
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