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HIGH ORDER COMPACT CRANK-NICOLSON DIFFERENCE
SCHEME FOR A CLASS OF SPACE FRACTIONAL
DIFFERENTIAL EQUATIONS

Qinghua Feng!

In this paper, we present a high order compact Crank-Nicolson dif-
ference scheme for the initial boundary value problem of a class of space frac-
tional differential equations, where the space fractional Riemann-Liouville
derivative are approximated by a weighted and shifted Grinwald-Letnikov
approximation formula with sizth order accuracy. This difference scheme
is proved to be of unique solution, unconditionally stable, convergent with
accuracy of second order and sixth order in temporal direction and space
direction respectively. Numerical experiments are carried out to support the
theoretical analytical results.
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1. Introduction

Recently, research on the theory and applications of fractional differential
equations (FDEs) has gained more and more attention by many researchers.
Compared with integer-order differential equations, FDEs are better choices
for describing some phenomena or processes with memory, hereditary and long-
range interaction in diffusion, biology, relaxation vibrations, electrochemistry,
finance, fluid mechanics and so on [1-6]. In the last few decades, a variety of
models have been proposed by use of FDEs for the description of memory and
hereditary properties of various materials and processes such as physical and
biological processes. For the basic theory of fractional calculus, we refer the
readers to the [7, §].

In the research of FDEs, seeking solutions of FDEs are a hot topic, and
have been paid much attention by many authors. However, in most cases, it
is difficult to obtain exact solutions for FDEs due to the complexity of frac-
tional operators and fractional calulus. Thus, it becomes very important to
develop efficient and high accuracy numerical methods to obtain numerical
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solutions for FDEs. Among the existing numerical methods, the finite differ-
ence method is the most popularly used one easy to be fulfilled. So far many
efficient finite difference schemes have been developed by many authors for
solving a variety of time FDEs and space FDEs as well as space-time FDEs.
In general, the Caputo fractional derivative is the most widely used one in time
FDEs, and the main method for approximating the Caputo derivative is by
L interpolation approximation formulas [9-16], while the Riemann-Liouville
fractional derivative and the Riesz fractional derivative are usually used in
space FDEs, and approximation formulas for them are usually constructed by
use of the Griinwald-Letnikov (G-L) approximation method [17-23], which was
initially proposed by Meerschaert and Tadjeran [24]. Besides, the Riesz frac-
tional derivative can also be approximated by the fractional center difference
approximation formula [25, 26]. On the other hand, due the global prop-
erty of the fractional operator, computation and stored task become expensive
for fractional finite difference schemes, especially for the computation of high
dimensional problems. The alternating direction implicit method [27-29] is a
valid approach to solve this problem, which reduce stored task to a large degree
for computer, and reduce the high dimensional computation problem to several
one dimensional computation problems improving computation efficiency.
In order to improve the accuracy of the finite difference scheme, com-
pact techniques are usually used to develop compact difference schemes [30-
32]. However, in the existing difference schemes for spatial FDEs, most of
the approximation accuracy for the fractional derivatives are no more than
fourth order. So motivated by the works above, we will construct an ap-
proximation formula with sixth accuracy for the Riemann-Liouville fractional
derivatives, and then based on the approximation formula develop a compact
Crank-Nicolson difference scheme for the initial boundary value problem of a
class of space fractional differential equation, which is denoted as follows
Ut(xvt) = k(OD§U($’ t) Tz D%U(:E,t)) + f(ﬂf,t),
l<a<2, 2€l0,L], tel0,T], (1)
u(e,0) = p(x), = € [0, L,
u(0,t) = u(L,t) =0,
where the function u is smooth enough, k£ > 0 is a constant, and the fractional
derivatives are defined in the sense of the left-side and right-side Riemann-
Liouville derivatives as follows:

oo D%u(zx,t) 1 [f (z—o)" " u(o,t)do),

=d (1
dz"‘T'(n — «a) /= 2)

D, t) = (<1)" o (g S0 = o) (o, 1)do),

wheren — 1 < a <n, neN.

For the sake of convenience, we extend the definition domain of the func-
tion u(z,t) to R x [0, 7], and satisfies u(x,t) = 0 for (x,t) ¢ [0, L] x [0,T]. So
under this extension we have
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oo D%u(z,t) =9 DSu(x,t), ,Diu(x,t) =, Dfu(z,t).

The rest of this paper is organized as follows. In Section 2, we present
some notations and preliminaries, and derive an approximation formula with
sixth accuracy for the Riemann-Liouville fractional derivatives. In Section 3,
we develop a compact Crank-Nicolson difference scheme for the problem (1).
In Section 4, unique solvability, unconditionally stability and convergence for
the Crank-Nicolson difference scheme are discussed. In Section 5, we carry
out numerical experiments for checking the validity of the present difference
scheme. In Section 6, some conclusions are given.

2. Preliminaries

Let M, N be positive integers, and h = % denotes the spatial step size,

while 7 = % denotes the temporal step size. Define z; = i x h(i € Z), t, =
nt(0 <n < N), Q,={x;li € Z}, Q; = {t,|0 <n < N}, (i,n) = (x;,t"), and
then the domain R x [0, 7] is covered by Q) x Q.. Let U = u(x;,t") and '
denote the exact solution and numerical solution at the point (7, n) respectively.
Ur=(.,0%, U, Uy, U, Uz, )7 u" = (. uy, vy, ul, ul, ul, ..t

Define the grid functions spaces Uy, = {u|u = (..., u_s, u_1, ug, U1, us,...)T }

and U} = {ulu € Uy, ‘illi_r)nooui = 0, |i1|EI3>05mui_% = 0}, where 5$ui_% =

u. _u, o

ZTH. For u, v € UY, define the inner product as (u,v) = h > wuv;,
1=—00

while define the discrete Ly norm by ||lul| = /(u,u) = ( S hlu]?)z.

1=—00

For further use, denote
1 n n—1 n n n 1 n
St = W T 52y — Uiy — 2u; +ug W= Y tu

ttg - T y Yty — 2 y Y -

Lemma 1 [27]. Let a € (1,2), u € C""3(R) such that all derivatives of u up
to order n+3 belong to L1 (R). Define the left-side shifted Griinwald difference
operator by
Ajpule) = g 30 g u(e = (k= p)h),
k=0
where p is an integer, and g((]a) =1, g,(ga) =(1- O‘Tﬂ)g,(i)l, k=1,2,.... Then
it holds that

n—1
A‘f{,pu(:c) = o DSu(x)+ 1—231 P Deu(x)h +O(h™) (3)

n—1
i

uniformly for x € R, where cfzp , | = 1,2... are the coefficients of the power

series expansion for the function (1_76_'2)%”2.
Corollary 1. If we define the right-side shifted Griinwald difference operator
by

Biu(e) = g 3 0 u(w + (k= p)h),

then we have
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By pul@) = Du(z)+ Z ¢ DI u(x) k' +O(h™), (4)
Lemma 2. Let o € (1,2), u E 09( ) such that all derivatives of u up to order

9 belong to Li(R), ¢* = Z spcy P, where s,, p = 0,£1, +2 are constants,
p=—2
and ¢;"" are defined as in (3). Define three operators A{, Ag, A® such that

;

() — L S N@ (e
Afu(r) = 7 Z Apu( — (k= 2)h),
Agu(r) = 1 Z M u(@ + (k= 2)h),
| Avu(e) = (1 + R u(a),
where )
)\(()a) = 329(()a)7
A = 5,00 4 5168,
A = 5205 + 519\ + 095",
A@ = g gl Q) (o) ()
5 = S2g3 + 5195 +s0g1 +S-100
\ )\i(fa) =5 g](g ) +S191(<; )1 "‘SOQI(C )2 +s- 1gl(c )3 +5- 2gl(c )47 k=45,
If
, 1 1 1 4
2—42@ 6a JE_AMO‘ , 307 W0
s1= 230 + fa? ma 15 ma
271“—10‘2—@@*4*1 )
25 5 5 L4
s 7—Oé+%’04 +?r04+15 T20%
S_ 2_%a+%a2—ﬁa3—ﬁj+4%ma4~

Then 1t holds that .
Afu(z) = A°[ o D3u(w)] + O(1Y), .
Agu(x) = A°[, D%u(a)] + O(H)
2
Proof. From the definition of A} we have in fact Afu(z) = > s,Af u(z).
p=—2

It follows from Lemma 1 that

2

Atu(z) = >0 spl-coDyu(w)] + E > spe) " [coe Dy Hu(@)]h' + O(h°).
p=—2 =1 p=-2
2
After setting > s, = 1 and the coefficients of [ D¢ u(z)]h?, i = 1,2,3,5
p=-—2

be zero one can obtain (5), and furthermore,
ASu(z) =_ oo D2u(x) + (Lo D2 u(z))c*h* + O(h9)
=_ oo Dou(x) 4+ c*h*0262[_ o D2u(x)] + O(h%) = AY[_ o Ddu(x)] + O(hY),
where the center difference formula §26%[_., D%u(z)] has been used for approx-
imating _,, D u(x).
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Fig. 1 The function curve of <

Similarly, one can prove that ASu(z) = A%, D% u(x)]+O(h®). The proof
is complete.
Lemma 3. [33, Lemma 2.1.1]. Suppose u € UY. Then it holds that

Pl < 1.l < Flal,
Gyl < 183l = ool < Gl
Lemma 4. For u € UY, we have

0.36]ull* < (A%, u) < [|ul]®.

In fact, by use of the definition of A® and the discrete Green formula we
have

(A%u,u) = (u,u) + c*hH(0262u, u) = ||jul|® + c*h*||62ul?.
According to the function curve of ¢* shown in Fig. 1 one can see that ¢* €
(—0.04, —0.01) for @ € (1,2). Then the result can be deduced by a combination
with Lemma 3.

Based on Lemma 4, for u, v € V;?, we can define the following inner
product

(u,0)p0 = h D (A%u)y;
and the corresponding discrete norm ||u|l 4o = (A%u,u). Furthermore, ||ul/4a
is equivalent to [jul].



78 Qinghua Feng

3. The compact Crank-Nicolson difference scheme

Now we derive the compact Crank-Nicolson difference scheme for the
problem (1). Considering _oDgu(x,t) =¢ Dgu(z,t), Diu(r,t) =, Df u(w,t),
by use of Lemma 2 one can obtain that at the point (i,n)

Ao Dgu(z,t) —x Dyu(e,t)]mn)

1 - ), n 1 S ), n
= 5= k;o)\]g‘ g — 7 k;ﬁ\i(ﬁ Ul gy + O(RO)

S ) z_joo wur , +0(hS). (7)
where @ @
Wy =Ny — Ay =0,
o 3 3
BRI
Wi =N, k=34, .
| w<_°;3 = —w,ﬁa), k=1,2,

After applying the operator A% on both sides of the first equation of (1),
by use of the center difference approximation formula for u(x,t), together with
the average of the approximation formula (7) at the point (¢,n) and (i,n — 1)
one can deduce 1that - ) )

AU %) = e > WU E AT O(72+BE). (8)

k=—oc0
Then the compact Crank-Nicolson difference scheme approximating the prob-

lem (1) can be denoted as follows:

h
w=p(r;), 1<i<M-—1,
u =0, 1<0, ori> M.

(9)
4. Unique solvability, stability and convergence analysis

In this section, we research the unique solvability, stability and conver-
gence of the present Crank-Nicolson difference scheme (9). For further use,
the definition domain of the function f(x,t) is extended to R x [0, 7] such that
f is smooth enough and f € Uy.

Lemma 5. For v € U}, it holds that > [ > w,ga)ui,kui] = 0.

i=—00 k=—00

Proof. We have the following observations

SIS Pl = S [ w®u ]

t=—00 k=—0o0 k=—o00 1=—00
[es)

k=—00 1=—00 k=—o00 t=—00
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== Y[ wuu,

t=—00 k=—00
o0

which implies > [ > w,(ca)ui,kui} = 0. The proof is complete.
1=—00 k=—o00
Theorem 1. The Crank-Nicolson difference scheme denoted by (9) has unique
solution.
Proof. The corresponding homogeneous difference equation of the first equa-

tion of (9) is denoted by

Aaun _ Qha k;mw( ) ;l b (10)
Taking the inner product of (10) with «", by use of Lemma 5 we have
|u"||4 = 0, and then |Ju"|| = 0. So there is only zero solution for (10),

which implies the Crank-Nicolson difference scheme denoted by (9) has unique
solution. The proof is complete.
Theorem 2. The Crank-Nicolson difference scheme (9) is unconditionally
stable on the initial value and the the right source term f.
Proof. Setting r = #, the first equation of (9) can be rewritten as follows
e n—1 n—1
A=) = 3 Pl A (1)
k=—0o0
1
Multiplying hu, 2 on both sides of Eq. (11) and a summation with respect to
i from —oo to oo yields that
= af,mn n— u? + u?il
h 30 JA () —u ))(F——)
[e%s) o) 1 1 oo A S §
=rh 328 WM ek 3 A
i=—00 k=—00 i=—00
) 1,1 ‘
Since > > w,(ca)u?_kf u; * =0 according to Lemma 5, one has

i=—00 k=—00
n—1 (o) 1 1

S af,n n— ?+ ) a =2y, "3
ho 3 A = () = Th 30 (AN ey

that is,

a2 = lum e = 20(f" 2, "2 ) e

Furthermore, we have
n n— 1 TL—*
[ 1% — "M e < 27[g— w2 e +
T2+ 7)

AT s

TCET)) e
TR ET)) b2,

[
= W(HU" +u %) +

n n—1
< (2+ )(HU e+ [u" =M %a) +
which implies
e < (147l 2 + 71+ 5212 2
Moreover,
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n—1 1
[ )% < (14 7)"[[ul] e + 2_30(1 + 1)L+ HP R

n—1 1
< (L+7)" el fe + [22 1+ 7)™ (1 + 5)? max [| /52

=0 1<k<n
_1
< (U ) [l e+ (1+ 5% ma 43 3]

n+1)7 E—112
foax |||

< exp” [l + exp?” max ||/ .
n

< exp" [|[u’]|4a + exp'

From the inequality above one can see that the solution ™ of the Crank-
Nicolson difference scheme (9) depends continuously on the initial value u° and
the right term f, which shows that the difference scheme (9) is unconditionally
stable. The proof is complete.

Now we prove the convergence of the difference scheme (9).

Let € = U™ —u", n =0,1,..., N denote the errors between the exact
solutions and the numerical solutions, and €" = (..., €",, €, €3, €}, €5, ...)7.
Then from (8), (9), (11) we have

00 n_l
A — Y =1 3 w2 4 TAYR(T,R), 1<n < N, i=0,41,42, ..

k=—oc0
=0, i=041,+2 .
(12)
where A*R(7, h) = O(7? + h").
Similar to the proof process of Theorem 2 one can deduce that
€% < exp” [[€%] %0 + exp®™ [|R(7, h)|[ 3 = exp®® [|R(T, 1)||?,
which implies

l€*{lae < exp™ [[R(7, h)]].
Furthermore, according to lemma 4 we have ||¢"|| < Cy72+Cyh®, where Cy, Cy
are two positive constants. So we have the following theorem.
Theorem 3. The Crank-Nicolson difference scheme denoted by (9) is conver-
gent with the accuracy O(72 + h°).

5. Numerical experiments

In this section, we present two numerical examples for testing the theo-
retical analysis results above. In the first example, approximation accuracy for
the Riemann-Liouville derivative by use of (6) is checked, while in the second
example, the efficiency of the Crank-Nicolson difference scheme (9) is tested.

T—«
Example 1. Let u(z) = 27, x € [0, 1], and consider ¢D%u(z) = %'

In Table 1, we list the errors in Ly norm and the convergence rates gen-
erated by use of the approximation formula (6), where the error is denoted by

|R(h)||, and the convergence rate is defined by Rate =

In([|&(7, h) I/ |1 R(7, ho) 1)

ln(hl/hg)
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Table 1: The Lo errors and convergence rates for (6)

a=1.3
[=(h)]

4.7724 x107°
1.2699 x107°
4.3004 x10~6
1.7215 x1076
7.7942 x10~7
3.8600 x10~7
2.0669 x10~7

a=1.5
[R(®)]

5.3243 x107°
1.4390 x10~°
4.9381 x1076
1.9986 x10~°
9.1325 x10~7
4.6010 x10~7
2.5056 x10~7

a=1."7
[R(A)]

4.8612 x107°
1.3465 x107°
4.7128 x1076
1.9348 x1076
8.9897 x10~ "
4.5676 x10~7
2.4616 x10~7

Rate Rate Rate

5.9331
5.9389
5.9390
5.9342
5.9662
5.9284

5.8632
5.8663
5.8678
5.8654
5.8205
5.7682

5.7532
5.7580
9.7755
5.7402
5.7486
5.8675

S5~ o =

From the results in Table 1 one can see that the errors are about O(h®),
and the convergence rates are about sixth order, which coincide with the con-
clusion of (6).

Example 2. Consider the problem (1) with an exact analytical solution

[ (#+ D231 —2)3 ze]0,1],
W’“{o v € (~00,0) (L o0).
and satisfies
k=L =1,
flx,t) =2tz®(1 — x)3 — Z[ %n—'x(;:jﬁ - cnlzl(!l(l_—axl n) J,
u(z,0) = p(z )— (1 - ) ;
where 23(1 — z)® = Z Cn

Let ||é]|eo = max |U " —ul'| denotes the maximum absolute error between

the exact solutions and the numerical solutions. By use of the Crank-Nicolson
difference scheme (9) we obtain corresponding numerical results, which are
shown in Fig. 2 and Table 2 respectively under certain conditions.

Table 2: The maximum absolute errors at 7 = 107°, h = %
a=1.3 a=15 a=1.7 a=1.9
time steps lelloo l[elloo [[elloo le]lso
10 1.0633x107°% [ 1.9728x107° | 3.3266x 1075 | 5.0501x10~°
20 1.0631x107% | 1.9724x107% | 3.3262x107% | 5.0497x 106
30 1.0626x1076 | 1.9717x107% | 3.3255%x107% | 5.0491x 106
40 1.0620x 1076 | 1.9708 1076 | 3.3246x 1076 | 5.0481x 106
50 1.0611x107% | 1.9695%x107% | 3.3233x1076 | 5.0469x 106
60 1.0601x107% | 1.9680x1076 | 3.3218x107° | 5.0454x 1076

From Fig. 2 one can see that the maximum absolute errors between
the numerical solutions and the exact solutions lie in a low level with about
O(h%), and the results in both Fig. 2 and Table 2 show that the maximum
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Fig 2. The maximum absolute errors with h:1/40;‘C:10_5;0£:1 .5

absolute errors are stable with the time steps increasing, which coincides with
the stability analysis in Section 4 for the Crank-Nicolson difference scheme (9).

6. Conclusions

In this paper, by use of the weighted and shifted Griinwald-Letnikov ap-
proximation technique, we have derived an approximation formula with sixth
order accuracy for the Riemann-Liouville derivative, and based on this formula
constructed a compact Crank-Nicolson difference scheme for a class of space
fractional differential equations. The present difference scheme is proved to
be unconditionally stable and convergent with accuracy O(7% + h%). Numer-
ical experiments are carried out to test the approximation formula and the
Crank-Nicolson difference scheme, and the numerical results show their good
agreement with the theoretical analytical results.
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