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NEW CONTRACTIONS AND SOME FIXED POINT RESULTS WITH
APPLICATION BASED ON EXTENDED QUASI --METRIC SPACES

by Wasfi Shatanawi®, Tariq Qawasmeh?, Anwar Bataihah® and Abdalla Tallafha*

The conceptions of metric spaces and extended b-metric spaces play a ma-
jor role in proving many theorems of existence solution of such equations as integral
or differential equations. The notions of quasi metric spaces and quasi b-metric space
are a modification of metric and b-metric spaces. In our article, we introduce the con-
cepts of extended (a,&)-contraction and generalized extended (a,§)-contraction for a
self-mapping 11 in an extended quasi b-metric space. Also, we prove that every extended
(e, &)-contraction has a unique fized point under a set of conditions. As well as, we prove
that every generalized extended (o, £)-contraction has a unique solution under some spec-
ified conditions. Moreover, an application and an example were added to highlight the
importance of our work. Our work modify many exciting results in the literature.
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1. Introduction and Preliminary

The fixed point theory plays a pivotal role to solve equations in mathematics and
other sciences since there is a major similarity between solving equations and finding fixed
point for functions under suitable conditions for example the solution of the equation

z = G(x, h(z)),

where G: R x R — R, and h : R — R is the fixed point for the function f: R — R which
defined by f(x) = G(z, h(x)), where R is the set of real numbers.

The concept of metric spaces was appeared at the beginning of twentieth century by
Maurice Fréchet. Later on, many generalizations of metric spaces and corresponding fixed
point results were proposed by many mathematicians see [1]-[23], and [28]-[41] and references
therein.

In the present work, we mean by M a non-empty set, [; a self mapping on M, R the set of
reals and N the set of naturals.
Let £ : M x M — [1,00) and d¢ : M x M — [0,00) be given functions, and consider the
following axioms for all my, mo,ms € M:

(&1) de(my,mo) = 0 iff my = mo,

(§2) de(ma,ma) = dg(ma, my),

(&3) de(ma,ms) < §(ma, m3) [de(ma, m2) + de(ma, ms)] .
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If d¢ satisfying &1, & and &3, then (d¢, M) is called an extended b-metric space [25], and if
d¢ satisfying just &; and &s, then (d¢, M) is called an extended quasi b-metric space [29].

Example 1.1. Define £ : {1,2,3} x {1,2,3} — [1,00) by £(mq1,me) = max{my, ma}

and ge : {1,2,3} x {1,2,3} — [0,00) by

qé(la]-) = Q§(272) = QS(?’?'?)) = 0 and QE(172) = QE<173) = q5(2a3) = 6 and q£(271) =
qe(3,1) = q¢(3,2) = 5. Then ({1,2,3},¢¢) is an extended quasi b-metric space which is not
an extended b-metric space.

Note:
(1) If £(m) = s > 1 in an extended b-metric space (d¢, M), then (d¢, M) is a b-metric
space,
(2) If £(m) = s > 1 in an extended quasi b-metric space (d¢, M), then (dg, M) is a quasi
b-metric space.
From now on, (M, ge) refers to an extended quasi b-metric space and (M, gg) refers to a
quasi b-metric space.

The concept of extended b-metric spaces introduced in 2017 by Kamran et al. [25] in
which they studied some fixed point results. For more results and theorems, see [35, 26, 27,
38].

Note that one can induce an extended b-metric from an extended quasi b-metric as following:
Define d¢ : M x M — [0, 00) by

de(my, ma) = max{qe(ma, m1), ge(m1,ma)},
then d¢ is an extended b-metric on M.

We adopt [11] and [24] to generate the following definitions:

Definition 1.1. Let (m:) be a sequence in (M,q¢). Then, the sequence m; converges to
m € M if lim ge(my, m) = lim g¢(m, m;) = 0.
t—o00 t—o00

Definition 1.2. Let (m;) be a sequence in (M,qe). Then, we say that
(1) (my) is left-Cauchy in (M, q¢) iff for all e > 0, 3 N € N such that ge(my, ms) < e,
forall t>s> N,
(2) (my) is right-Cauchy in (M, qe) iff for all e > 0, 3 N. € N such that ge(my, ms) < ¢,
forall s >t > N,
(3) (my) is a Cauchy sequence in (M, qe) iff (my) is right and left Cauchy.
Definition 1.3. We say that:
(i) (M, qe) is left-complete iff Every left-Cauchy sequence in M is convergent,
(i) (M, qe) is right-complete iff Every right-Cauchy sequence in M is convergent,
(ili) (M, qe) is complete iff Every Cauchy sequence in M is convergent.
2. Main Results

On (M, g¢), we introduce the notions of an extended (o, £)-contraction and a gener-
alized extended (a, &)-contraction.

Definition 2.1. On (M,q¢), we say that l1 is an extended (o, §)-contraction if there is
a € (0,1) such that ¥V my1,me € M and j € N, we have

(1 — a)ge(my, Hmy) < ge(my, ma) implies ge(lymy, lima) < a*E(my, ma)ge (ma, ms),

and

(1 — a)ge(timi,m1) < ge(ma2,m1) implies ge(lima, limy) < a®€(ma, m1)ge(ma, m1).
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Definition 2.2. On (M, q¢), we say that 1y is a generalized extended («,&)-contraction if
Ja € (0,1) such that V my,me € M and j € N, we have

(1- a)qg(ml,l{ml) < g¢(ma, ma) implies ge(lima, limsg) < azf(ml,mg)A(ml,mg),
and

(1 —a)ge(l{mi,m1) < ge(ma, my) implies ge(lima, lim1) < a*&(ma, m1) A(my, m2),

where, A(m1, mo) = max{ge(m,lim1), ge(me, lima)}.

Definition 2.3. On (M, g¢) we say that § is bounded by ¢ € [1,00) if {(ma, ma) < ¢ for all
my, mg € M.

Now, we introduce our first main result.

Theorem 2.1. Suppose (M, q¢) is complete and 1y is continuous on M. Assume that there
is o € (0,1) such that Iy is an extended (o, §)-contraction, where & is bounded by =. Then
l1 has a unique fixed point in M.

Proof. Begin with mg € M to construct the sequence (m;) in M inductively by putting
mer1 = lymy for t € NU{0}. To show that, (m;) is a right Cauchy sequence, given ¢,s € N
with s > t. Let s =t + j for some j € N. Then, we have
(1—a)ge(mi—1,ms—1) = (1 — a)ge(my—1,l{ms—_1)
< ge(my—1,ms_1).
So,
ge(me,ms) = qe(lime—1,lims_1)
< a2é(mi—1,ms—1)qe(me—1,ms_1)
< a*[E(my—1,ms—1)E(My—2, Ms—2)]qe(Mi—2,ms_2)

< a? (H::1 E(mr—1, mr)) qe(mo, m;)

< alge(mo, mj).
Thus, . lim ge(m¢, ms) =0, and so, (my) is a right Cauchy sequence. To show that, (m;) is
,8—>00
a left Cauchy sequence, given t,s € N with s < t. Let t = s 4+ 4 for some i € N. Then we
have .
1 —a)ge(lims—1,ms-1)

(1 —a)ge(mi—1,me—1) =(
< qe(my—1,ms_1).

So,
ge(my,mg) = qe(limy—y, limgs_1)
< a?&(my—1,ms—1)qe(my—1,limy—q)

<a* (szl f(mjfhmj)) ge(mi, mo)
< a®ge(my, mo).

Thus, we get that %im ge(my,ms) = 0, and so, (my) is a right Cauchy sequence. Conse-
s,t—00

quently, (m;) is a Cauchy sequence. The completeness of ¢¢ informs us that 3 8* € M such
that my — ﬁ*
Since [; is a continuous function, then myy1 = lymy — 11 5*. The uniqueness of the limit
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ensures that [15* = §*.
To prove the uniqueness of 3%, assume 3 m, € M with lym. = m.. Then we have
(1=a)ge(B™,87) = (1 —a)ge(B™, 1157)
< ge(B*,my).

Then,
Ge(B" m.) = qe(L 8", lim.) < a’€(B*,m.)ge(8",m.) < age(8",m.).  (22)
Thus’ qf(ﬁ*am*) = O, and SO, 6* = M.
|

Theorem 2.2. Suppose (M, ge) is complete. Assume that there exists o € (0,1) such that &
1s bounded by é Furthermore, assume that for each mi,me € M, 11 satisfies the following
condition.
ge(lima, limz) < a®€(my, ma2)ge(ma, ma). (2.3)
Then Iy has a unique fized point in M.

Proof. Starting with mg € M, we construct the sequence (m;) in M inductively by putting
me1 = limy , for t € NU{0}. To show that (m;) is a right Cauchy sequence, given ¢,s € N
with s > t. Let s =t + j for some 5 € N. Then

ge(me,ms) = qe(limy—1,limg_1)
< a2 (TTzy €my-1,m0) ) ge(mo, m;) (24)
< alge(mo, m;).
By letting t, s — oo, we get
lim g¢(mye, ms) = 0. (2.5)

t,s— 00
Thus (m;) is a right Cauchy sequence. On a similar manner, we can show that (m;) is a
left Cauchy sequence. Consequently, (m;) is a Cauchy sequence. The completeness of g¢
informs us that there is ¢* € M such that m; — ¢*. Now, we show that [;¢* = ¢*. Using
(EQ2), we have

qe(lic*,¢*) < &(1is*, ¢")[qe (g™, myg1) + qe(myy1,67). (2.6)

Also, we have
qe(lis*,mey1) = qe(lis™, limy)
< 02E(s*, my)[ge (¢, my)]. (2.7)

Using the equations (2.6) and (2.7) and letting ¢t — oo, we get I;¢* = ¢*.
To prove the uniqueness of ¢*, assume 3 m, € M with [ym, = m,. Then,

(s, ma) = ge(lis™, lim.) < @2E(s*,mu)ge (s, m.) < age(¢*,my). (2.8)
Thus, g¢(¢*,my) =0, and so, ¢* = m,. O

We illustrate Theorem 2.2, by the following example.

Example 2.1. Let M =[0,1]. Let gq¢ : M x M — [0,00) and § : M x M — [1,00) be defined
by ge(ma,ma) = |my — ma| and (mq,me) = 1+ |my —ma|. Letly : M — M be defined by

1-7 1

1-3 0,1]
l:(m) = 2—-m?2 , M €& [ s 21
1(m) z , me (3,1].
Then, we have the following:

(1) (ge, M) is a complete extended quasi b-metric space,
(2) 1y satisfies condition 2.3, with o =

s
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Proof. First, observe that £ is bounded by é =/8.
Now, we just show (2):

We consider the following cases:

Case (1): If my, my € [0, 1], then

1By om
2—m? 2-—m3

— 1 1 1

PCERICET) (@ +y = 3oy = 3)(m1 = ma)|

qe(limy, lymy)

1
< pem g 2 M el
< & |my —ma|
< a?&(my1, ma)ge(my, ms2).

Case (2): If my € [0, 4] and mg € (3,1], then

1-m
lim, 1 - i
ge(lama, limz) ‘2—m% D)
o = )
= mq — —
22—m2) | VT2
< 1 1
=8| 2

<
< a®¢(my, ma)qe (my, ma).

The other cases are similar to the previous cases. Hence by Theorem 2.2, [; has a unique
fixed point in M.

O

Corollary 2.1. Suppose that (M, e) is complete. Assume that there is o € (0,1) and s <
such that for all my,ms € M, Iy satisfies

1
a

Ge(lyma, lymg) < azsq'g(ml7 ma).

Then Iy has a unique fized point in M.
Next, we introduce the second main results:

Theorem 2.3. Suppose that (M, qe) is complete and Iy is continuous on M. Assume that
there is o € (0, 1) such that 1y is a generalized extended (v, §)-contraction, where £ is bounded
by é Then 1y has a unique fized point in M.

Proof. Let mg € M and construct the sequence (m;) by putting m; = li(lyms—q1) =
L (I8 mg) V t € N. To show that (m;) is a right Cauchy sequence, let t,s € N with
t < s. Then s =t + j for some j € N. So

1- a)QE(mt—la l{mt—l)

(1 —a)ge(mi—1,ms—1) =(
< qe(my—1,ms_1).

Thus,
ge(me,ms) = qe(limy—1,lims—1)
< a?&(my—1,ms—1) max{qe (me—1, lims—1), ge(ms—_1,lims_1)} (2.9)
_ 2 .
= a?{(my—1, ms—1) max{qe (me—1,m¢), g (Ms—1,ms)}.
Now,

1- a)QE(mt—27l1mt—2)

(1 — a)ge(mi—2,me—1) = (
< (J§(mt72,mt71)~
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Therefore,

ge(me—1,me) = qe(limy—2,limy—1)
< a?é(my—o, my—1) max{qe (my—2, limi_2), qe(my—1, limy—1) }
= 0425(77%—2, mt—l) max{qg(mt_g, mt—1)7 %(mt—l, mt)}~

If max {qe(mi—2,mi—1), ge(My—1,m4)} = qe(my—1,my), then we get that
ge(mi—1,my) < ge(my—1,my), which is a contradiction. So,

qe(my—1,my) < a2E(my—o, my—1)qe(my—o, my_1). (2.10)
Therefore, inductively we get that

t—1
qe(mi—1,my) < a®? <H é(mrhmr)) qe(mo, m1).
r=1

So,

ge(me—1,my) < at_lqg(mo,ml). (2.11)
By a similar argument, we get

qe(ms—1,ms) < a* 1ge(mo, my). (2.12)

From Equations (2.11),(2.12), we obtain

ge(me,mg) < a®&(my—1,me_1) max {a'~1qe(mo, m1), o ge (mo, ma) }
< amax {a " ge(mo, my), * " ge(mo, m1) } - (2.13)

Letting ¢, s — 0o, we get that
lim ge(mg,ms) =0. (2.14)

t,s—00
Hence (m;) is a right Cauchy sequence. Similarly, we can prove that (my) is a left Cauchy
sequence. So, we conclude that (m;) is a Cauchy sequence.
The completeness of ¢¢ informs us that 3 f* € M such that m; — 5*.
Since [; is a continuous function, then we have m;;1 = lym; — I3 5*. The uniqueness of the
limit ensures that [;8* = 3*.
To prove that 8* is unique, assume 3 m, € M with [ym, = m,. Then,

So, we have

q&(ﬁ*vm*) = q{(llﬁ*vllm*)
< a?€(B*, m.) max{qe(8*,118%), ge (M, Ly ) }
:a2§(5*,m*)max{qg(ﬂ*,ﬂ*),%(m*,m*} (215)
=0.
Hence the result. O

Theorem 2.4. Suppose (M, qe) is complete, Iy is continuous on M and £ is bounded by é,
where a € (0,1). Assume that for all my,mg € M, 1y satisfies

ge(lima, lima) < @&(ma, ma) max {qe (ma, lima), ge (Mo, lima)} .

Then 11 has a unique fixed point in M.
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Corollary 2.2. Suppose (M, q¢) is complete, 1y is continuous on M and & is bounded by

ﬁ with 81,02 € (0,1) and §1 + 02 < 1. Assume that for all mi,mq € M, |y satisfies

ge(lyma, lyma) < 83€(my, ma)ge(ma, lymy) + 05&(my, ma)ge (ma, lyms).

Then Iy has a unique fized point in M.

Theorem 2.5. Suppose (M, qGe) is complete and ly is continuous on M. Assume there exist
a € (0,1) and s < i such that for all mi,mq € M, l; satisfies

(jg(llml, llmg) S a25 max{(jg(ml, llml), q%(’l?’m, llmg)}.
Then Iy has a unique fized point in M.

Corollary 2.3. Suppose (M,qe) is complete and 1y is continuous on M. Assume that
s < ﬁ where 01,02 € (0,1) and 61 + d3 < 1 such that for all mq1,mq € M, 1y salisfies

Ge(lyma, lyma) < 67 se(ma, lyma) + 035G (ma, limy).

Then 11 has a unique fixed point in M.

3. Application

To highlight the importance of our work, we utilize Theorem 2.2 to prove that the
following nonlinear equation

Dz +nz"t' =2"+1 neN,

has a unique solution in [0, 1].

Theorem 3.1. The nonlinear equation
Dz +na"tt =2"4+1, neN, (3.1)

where D > 2n has a unique solution in [0,1].

Proof. Let M = [0,1] and let £ : M x M — [1,00) and ¢¢ : M x M — [0,00) be defined

via £(my,ma) = 1+ %|my — ma| and ge(my, mo) = [my — my|. Let a = DLH. Then it is

obvious that (M, qe) is a complete quasi extended b-metric space and ¢ is bounded by é
To show that Equation (8.1) has a unique solution it is equivalent to show that the function

1 n
Iy : M — M which defined by I;(m) = % where n € N has a unique fixed point in
nm
M.
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Now,

_ | 14m? 1+m3
Q€(11m1,l1m2> | D+nmp - D+nmY

= (D+nm;1)1(D+nm;) |D(m} —m3) — n(m} —my)|

< B my —my|

n—2 n—2

= 2 |m1*m2|(m’f—1 + momy + -+ mh m1+m?_1)

2
< (DLH) (1 + %|m1 - mg‘) |m1 — M2
= a*§(my, ma)ge(ma, ma).

Hence, [y satisfies all the properties of Theorem 2.2 and so [; has a unique fixed point in
M. Consequently, the above equation has a unique solution in M. O

Example 3.1. The equation
200z + 100z'" = 1% + 1

has a unique solution in [0,1].

Proof. Follows from Theorem 3.1 by choosing n = 100. O

Now, we move on to give an application to integral equations of Fredholm type.
Let U = C([0,1],R) the set of all continuous real-valued functions on [0,1]. For = € U, let

||z = max |z(¢)], and let K : U — [2,3) be defined by K(z) = iﬁfml.
t€[0,1]

Define § : Ux U — [1,00), and ¢¢ : U x U — [0,00) by {(z,y) = K(z), and
qe(z,y) = 3K (z)||z —y||>. It is clear that (U, g¢) is a complete extended quasi metric space,
and ¢ is bounded by 3.

Theorem 3.2. Consider the integral equation

1
z(t) = g(t) +/ H(t,s,xz(s))ds t,s€[0,1], (3.2)
0
where g : [0,1] — R, H : [0,1] x [0,1] x R — R are continuous functions. Suppose H
satisfies the following condition for all x,y € U and t, s € [0,1]
e~y
—llz -yl
Nordalid

Then, the integral equation (3.2) has a unique solution.

[H(t,s,2(s)) — H(t,s,y(s))| <

Proof. Let f: U — U be defined by fz(t) = g(t) + fol H(t,s,z(s))ds. We show that the

operator f satisfies the hypothesis of Theorem 2.2 with o = %

Let 2,y € U. Then, for any t,s € [0, 1], we have
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1
falt) — fy()] = / (H(t,5,2(s)) — H(t,5,y(s))) ds

< / |H(t, s,2(s)) — H(t, 5,y(s))| ds

< — e -yl
27
2 4 2
So, [[fz = fyl* < zlle —yl*
Now,
1
2
(i, fy) = 5K (o) ISz 1yl
3 2
< Sllifz = fyll
2
< Sz —yl?
< Zlle
2
< &*¢(2,y)qe (@, y).
Hence, f has a unique fixed point. Consequently, the integral equation (3.2) has a
unique solution. O
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