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AN APPROACH ON MISSION ANALYSIS 

Dan TURCANU1, Ion STROE2, Emil COSTEA3 

During the early phases of aircraft design, there is the need to validate the 

configuration, based on intended missions and implications in operating cost. 

The paper presents a method for the fuel planning type of mission analysis – 

to obtain the quantity of fuel, given the payload and distance, taking into account a 

mission profile, regulations and operational options. The reference vertical flight 

profile is presented, along with hypotheses.  

Brief theoretical considerations regarding the main segments are presented 

showing the models used for obtaining the data and a work algorithm. Examples of 

analysis are presented for a small commercial aircraft theoretical model. 
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Nomenclature 

 

 x – horizontal distance (m); 

 h – altitude (m); 

 V, Ve – true airspeed, equivalent airspeed (m/s); 

 m, mf – aircraft mass, fuel mass (kg); 

 T – thrust (N); 

 L – aerodynamic lift (N); 

 D – aerodynamic drag (N); 

 γ – flight path angle (rad); 

 α – angle of attack (rad); 

 θ – pitch angle (rad); 

 χ – engine setting (%); 

 SR, SE – specific range (m/kg), specific endurance (s/kg); 

 ISA – standard atmospheric conditions. 
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1. Introduction 

 

There are two types of mission analysis, range planning and fuel planning. 

The range planning estimates the distance capability, given the fuel quantity 

and payload. The fuel planning estimates the fuel quantity, given the distance and 

payload. It is also called aircraft sizing, being based on a mission profile [4]. 

The reference mission is composed of several segments, with a set of 

theoretical models and hypotheses associated for each segment. 

 

 
Fig. 1 The typical mission profile 

 

The mission includes the take-off, an initial climb with transition to cruise 

configuration, the climb, cruise, descent, approach and landing. Additional 

segments account for engines start and taxi at departure and destination. 

In the mission analysis, allowance for several types of reserves must be 

considered as follows: flight to an alternate airport after an aborted landing at 

destination, being treated as a secondary mission with its own segments definition; 

a time flown in specified condition (or hold time); percent of the mission fuel (or 

contingency). 

Also, the carrying of fuel (tankering) for subsequent missions is sometimes 

justified economically [4,11,14,25]. Description of typical missions are found in 

[1,2,4,8,9,11,24]. The official definition of reserves is given in [18,19,20]. 

All the segments are taken into account for computation of fuel quantity and 

time. The segments for climb, cruise and descent are considered to have 
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contribution for total distance to the destination airport [8].  A similar judgment is 

made for the flight to the alternate airport. 

The paper presents a mission analysis approach based on the synthesis of 

the mission segments in an iterative algorithm, which can be configured for various 

mission profiles and fuel reserves structures. The mission segments are modelled 

in order to simulate common flight techniques. The mission analysis presented 

allows to determine the fuel needed for a specified mission and can be used also for 

other studies linked to mission performance. 

 

2. The theoretical model 

  

For trajectory analysis, the climb, cruise and descent phases are studied with  

the 3DoF model (point mass) for flight in a vertical plane in wind axes. 

The assumption is for low rotation rates and negligible influence of the 

control surfaces on aerodynamic forces. Hence, the force (translation) equations can 

be separated from the moment (rotation) equations and used as 3DoF model. 

 
Fig. 2 Forces and angles definition – wind and body axes 

 

The general form of the 3DoF equations for flight in the vertical plane is: 
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The equations of flight in the vertical plane for 6DoF and 3DoF are  treated 

in [1,2,3,7,10,12,15,16,22,23,24]. The 3DoF model is used also in other   mission 

or trajectory analysis models [23,24]. 

The aerodynamic forces are expressed as  ,,VhLL  ,  ,,VhDD   

and the thrust and fuel flow are expressed as  ,,VhTT  ,  ,,Vhfmfm   . 

 

2.1 The climb and descent with constant equivalent speed  

 

In current operations the most common climb technique is with constant 

equivalent air speed (EAS), ctVe  . The engine setting is set at maximum during 

the climb. The climb with constant EAS is a particular case of accelerated flight.  

The true air speed (TAS)  is variable with altitude, so we consider 

acceleration along the trajectory [2,3,15,16]. 

The true airspeed is [21]  
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The hypotheses made are for small flight path angle, angle of attack and 

neglijible normal acceleration. For a constant temperature (∆𝐼𝑆𝐴 = 𝑐𝑡) the 3DoF 

model (1) that describes the accelerated flight becomes:     
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Obtaining   from the fourth algebraic equation and eliminating it from the 

third equation we have  mVhDD ,, . Further, having 
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The system (3) can also be written with the altitude as integration variable: 

DT

dh

dV

g

V

V

gm
fm

dh

dm

DT

dh

dV

g

V

V

gm

dh

dt

dh

dV

g

V

DT

gm

dh

dx


































1

1

1



      (5) 
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 An example for climb is computed for the theoretical model of a small 

aircraft with constant EAS kept on altitude intervals. In practice it is common for 

small-medium commercial aircraft to use several constant EAS values on altitude 

intervals during climb.     

 
Fig. 3 The mass influence on climbing with constant EAS 

 

The descent with constant EAS is treated in a similar way, the difference 

being the engine setting (a reduced   is chosen for low traction). 
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2.2 The constant altitude cruise 

 

For the quasi-steady level flight the equations of motion (1) become (for 

∆𝐼𝑆𝐴 = 𝑐𝑡) [1,2,3,4,5,13]: 
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The aerodynamic forces are expressed as  ,,VhLL   and 

 ,,VhDD   and the thrust and fuel flow are expressed as  ,,VhTT   and 

 ,,Vhmm fuelfuel   . 

The distance and mass equations can be written with mass as integration 

variable: 
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where  mVhfmfm ,,   and  mVV  . 

It is seen that the speed schedule  mV  must be known in order to integrate 

the above system.  

The concepts of Specific Range and Specific Endurance are introduced 

[2,3,4,6,8,13,15]:  
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The Specific Range (or Range Factor)  mVhSR ,,  is defined as the (air) 

distance flown per unit of fuel mass, and the Specific Endurance (or Endurance 

Factor)  mVhSE ,,  is defined as the time flown per unit of fuel mass.  

From the other two equations, with a point performance analysis for a 

number of altitudes and masses, the speed and fuel flow are obtained for the 

available traction range  [1,2,3,4] and examples are presented below.  

Choosing the points of maximum SR on each ctm  curve gives the speed 

profile V(m) for maximum range, hence the SR(m) function. The common cruise 

technique is the “long range” (at 99% maximum range) which offers speed benefit 

for a small loss of range. Also constant speed, constant engine setting or maximum 
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cruise speed profiles are used. A similar plot for  mVSE ,  for cth   and ctISA

will lead to the maximum endurance technique, used when maximizing time is 

necessary. 

Below an example is computed for the theoretical model of a small 

commercial aircraft at h=4000 m. 

 
Fig. 3 The Specific Range SR(V,m), h=4000 m, ISA condition 

 

 
Fig. 4 The long Range speed profile at  h=4000 m 
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Fig. 5 The SR and SE for the Long Range speed profile, h=4000 m 

 

For the known speed profile V(m) (Fig. 5), the distance and time can be 

obtained by integration [2,3,6,13,16]: 
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3. The mission analysis algorithm 

 

An iterative algorythm is proposed for the fuel planning (aircraft sizing) 

problem, as a tool for mission analysis, taking into account the reserves structure.  

The total fuel mass totalmf  is initialized with a value up to maximum.  

For the cruise there is the issue of obtaining a fuel mass so that, after the 

subsequent descent segment, to obtain the imposed distance destx . The fuel 

quantity for cruise is not known beforehand in the context of the whole mission,  

the following segments depending on this value. An initial value for the cruise fuel 

mass is allocated. The iterative cycle modifies the value crmf  until convergence of 

the total distance is obtained, taking into account the segments that contribute to 

distance (climb, cruise, descent). The mass at the end of descent and the mission 

fuel determine the value for the contingency reserve resContmf . 

The landing mass landm  at the Destination airport is the initializing 

parameter for the computations of segments for the secondary mission (flight to the 

alternate airport). The cruise fuel mass crAltmf  is modified for the given distance 
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convergence. After the convergence of fuel for the alternate flight is met, the sum 

of segment fuel masses gives the fuel for the flight to alternate airport resAltmf . 

The mass after descent determines the value of fuel mass for the final reserve 

resFinAltm .  

The mission fuel for destination and the reserves give the total fuel mass in 

the current iteration. If the value of the total fuel mass computed is close to the 

previous computed value, then convergence is considered for totalmf . 

 
Fig. 6 The algorithm for fuel planning – simplified schematic 
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4. Examples 

The theoretical model for a small commercial aircraft in CS-23 category [17] 

was used to demonstrate the method proposed for mission analysis. 

The cruise altitude is investigated for short distance missions.  

For each mission, the cruise altitude is chosen to minimize the mission fuel, 

while for long missions the cruise altitude is the maximum cruise altitude.  

The cruise altitude for minimum mission fuel, for a given mission distance, is 

obtained from a parametric study. An example is shown for a distance of 150 km, 

where the cruise altitude for minimum mission fuel is 5500 m. 

 
Fig. 7 Mission Fuel vs. Cruise Altitude for x=150 km 

 

 
Fig. 8 Mission flight paths vs. distance 
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The influence of mission distance on the main flight segments fuel ratio as 

percentage of block fuel was investigated for the aircraft theoretical model.  

On short distances, a relative large quantity is allocated for climb and 

descent, compared with the cruise fuel requirements, while on long distances the 

major part of block fuel is made up from cruise fuel. 

 

 
Fig. 9 Fuel ratios for flight segments as percentage of block fuel 

 

The examples were computed with reserve for flight to alternate airport (50 

km), final reserve above the alternate airport and contingency reserve. The cruise 

segments were computed at Long Range setting. The atmospheric condition are 

ISA, no wind. 

 

5. Conclusion 

 

The numerical simulations for typical flight techniques and a mission 

analysis algorithm are proposed, based on a standard mission configuration. The 

algorithm takes into account the different categories of fuel reserves.  

Accurate data can be obtained for the whole mission and its segments - the 

fuel weight, time and distance - to assist in fuel planning, general sizing of the 

aircraft model and parametric studies. 

In the implementation of the algorithm, the use of precomputed data can be 

used instead of actual computing for the flight segments. The precomputed 

performance data can be generated in similar format with the data that can be 

directly extracted from flight manuals of existing aircraft. The method presented is 

a tool for early critical evaluations in showing the strenghts and weaknesses of 

aircraft projects in the context of mission performance. 
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