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ENTROPY GENERATION ANALYSIS AND COP 
EVALUATION FOR A REVERSED QUASI-CARNOT CYCLE 
(Refrigeration Machine) BY USING THE DIRECT METHOD 

FROM FINITE SPEED THERMODYNAMICS 

Stoian PETRESCU1, Cătălina DOBRE2, Monica COSTEA3, 
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Lucrarea prezintă o abordare complet nouă şi originală a analizei 
ireversibilitatilor generate în timpul funcţionării maşinilor frigorifice cvasi-Carnot 
cu vapori. În acest articol sunt dezvoltate expresii pentru calculul sursei interne de 
generare a entropiei şi a coeficientului de performanţă, în funcţie de viteza finită a 
procesului şi de alţi parametri, precum temperatura vaporilor, raportul de 
comprimare/destindere, debitul masic şi proprietăţile vaporilor pentru fiecare 
proces ce se desfaşoară cu viteză finită în maşinile frigorifice ireversibile cvasi-
Carnot. În cadrul acestor calcule sunt luate în considerare proprietăţile gazului 
real. Această abordare, bazată pe Metoda Directă, propune o alternativă viabilă 
pentru proiectarea şi optimizarea acestui tip de maşini. 

The paper presents a completely new and original approach of quasi-Carnot 
refrigeration machines working with vapor. It provides expressions for calculating 
the internal entropy generation source and COP, as a function of the finite speed of 
the process and other parameters such as temperature of the vapor, 
compression/expansion ratio, mass flow rate and vapor properties for each finite 
speed process of the reversed irreversible quasi-Carnot cycle refrigeration 
machines. The real gas properties are considered in these calculations. This 
approach, based on the Direct Method, becomes an important issue in design and 
optimization of such machines. 
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Nomenclature 

a coefficient ( = γ3 ) 
c average molecular speed, m s-1 
cp, cv specific heats, J kg-1 K-1 

COP coefficient of performance 
D diameter, m 
f coefficient related to the friction 
            contribution ∈ (0, 1) 
h specific enthalpy, J kg-1 

K the overall heat transfer coefficient,  
            W m-2 K-1 
L length, m 
m mass, kg 
N number of pipes, 
p pressure, Pa 
Δp pressure loss, Pa 
Q heat, J 
q heat lost, J kg-1 

R gas constant, J kg-1 K-1 
s specific entropy, J kg-1K-1 

S entropy generation, J K-1 

S  entropy generation rate, W K-1 
T temperature, K 
U internal energy, J 
V volume, m3 
v specific volume, m3 kg-1 

ΔV volume variation, m3 

w specific work, J kg-1 

wp piston speed, m s-1 
Greek symbols 
α  convection heat transfer 
 coefficient, W m-2K 
λ  thermal conductivity, Wm-1 K-1 

pλ  compression ratio in the 
  compressor  
θ  the temperature ratio 
k ratio of the specific heats 
ρ  density of vapor, kg m-3 

Subscripts 
ad adiabatic 
Cp compressor 
exp expansion 
f friction 
H the hot-end of the machine 
i internal 
ins insulation 
irr irreversible 
L the cold-end of the engine 
med average 
r reversible 
thr throttling 
w,f with finite speed and friction 

1. Introduction 

 The entropy generation estimation becomes an important issue when 
internal and external irreversibilities of a thermodynamic cycle are considered and 
an analytical approach of them is sought.  

 The optimization of Carnot cycle and the calculation of the entropy 
generation is a topic previously developed by the authors for Carnot and Stirling 
cycle engines [1-13]. The papers [1-12] present analysis models based on the 
Direct Method and the First Law of Thermodynamics for processes with 
finite speed [14-18]. In these papers, the study was further developed for an 
irreversible Carnot cycle with perfect gas as working fluid, achieved in four 
separate machine components (an isothermal expansion component at HT , an 
adiabatic expansion component, an isothermal compression component at LT  and 
an adiabatic compression component) that are connected through tubes and 
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valves, keeping the expansion ratio during the isothermal expansion at the high 
temperature constant. 

 The results were obtained for a particular set of engine parameters, namely 
the optimum piston speed for maximum power and optimum speed for maximum 
first law efficiency have been found and it has been shown that minimum entropy 
generation per cycle occurs at maximum efficiency. 

 Recently a similar model was developed for a Carnot cycle refrigeration 
machine [11,12]. The objective of those works was to find an analytical 
expression for the internal entropy generation per cycle and entropy generation 
rate [11], and to compare it [12] with proposed equations in the literature [14]. 
Also, an attempt of validation was made by using experimental data [15] available 
for a real operating refrigeration machine [12]. 

 This paper analyses the irreversibilities generation in a reversed 
irreversible quasi-Carnot cycle machine (Mechanical Vapor Compression 
Refrigeration Machine) starting from previous work [12,13] in which a reversed 
irreversible Carnot cycle with perfect gas was studied, functioning with finite 
speed.  

 We are going to define a quasi-Carnot cycle as any cycle reversible or 
irreversible, direct or reversed, which departs a “little bit” from a Carnot cycle 
[16]. In this sense, Rankine and refrigeration cycles (and corresponding heat 
pump cycles) are quasi-Carnot cycles, because they depart from a Carnot cycle (2 
adiabatic and 2 isothermal processes) just on the small portion which is only 
isobaric (at high pressure) and not isothermal (in the domain of saturated vapor) 
and all the others 3 processes are exactly like in the Carnot cycle, respectively one 
entirely isothermal (at low pressure) and two adiabatic processes [16]. 

 The objective of this approach, in comparison with others [4] is to take 
into account the essential differences between the behavior of perfect gases and 
vapors, and to analyze the changes necessary to develop a methodology for 
calculating fully analytical the irreversibilities (entropy generation) and 
performances evaluation (efficiency and power) of such a cycle.  

 The Direct Method takes into consideration any irreversible cycle step by 
step, by using the mathematical expression of the First Law of Thermodynamic 
for processes with finite speed on each process and integrating them throughout 
the cycle. This leads to finding the equations of irreversible processes in the cycle 
depending on finite speed of the processes (and other characteristic parameters for 
the cycle: pressure ratio, temperature ratio at the sources etc., finally the analytical 
assessment of the sources of entropy and of the performances (COP and power 
[16]).  

 In the previous papers mentioned above [12,13] the expressions of the 
internal generation of entropy depending on the finite speed of the process were 
obtained and also depending on other parameters such as gas temperature, 
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volumetric ratio, mass flow rate and gas properties in the adiabatic processes with 
finite speed of reversed Carnot cycle machines, with perfect gas.  

 In this paper the pressure ratio 12 pp  (exit-entry of the compressor) 
replaces the volumetric ratio, while the deviation of vapors behavior from perfect 
gas is considered like in [16].  
 An example of a comparative study (four cycles in which irreversibilities 
are introduced gradually) is presented in order to illustrate the use of these 
expressions to assess the internal entropy generation and also the evaluation of the 
machine performance, COP.   

2. Fundamental equations from Finite Speed Thermodynamics 
[16] 

 The entropy generation per cycle, entropy generation rate and COP for a 
quasi-Carnot refrigeration cycle with irreversible processes are computed based 
on the First Law of Thermodynamics for processes with Finite Speed [8, 17, 18]:  
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where the work in irreversible processes is expressed as: 
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The two terms from eq. (1 and 2) look similar, but actually they have different 
significance, despite of some correlations between them. Namely, in eq. (2) the 
term multiplied with p  and dV  is the friction work between piston and cylinder. 
But the term from eq. (1), which contains f , is only the amount of heat generated 
by friction which remains in the system (gas). The difference between the two 
terms, namely ( )dVf1p f −Δ represents the heat passing through the cylinder and 
given to the surroundings. Because of that this portion from the friction work 
transformed into heat does not remain in the system, and must not appear in the 
eq. (1).  

 In equations (1) and (2), the sign (+) is for compression and the sign (−) is 
for expansion, and each term in parenthesis takes into account one type of internal 
irreversibility, as follows:  

cawp  = contribution of finite speed of the piston, with: TRkc = ; γ3=a ;  

pp fΔ  = contribution of mechanical friction between mechanical parts;  

ppthΔ  = contribution of throttling process through the valves;  
 where: p is a new concept in comparison with Reversible Thermodynamics, 
namely: the instantaneously average pressure in the system [17].  
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 The mechanical friction and throttling losses are expressed in a similar 
manner to the case of internal combustion engines from [19], adapted by the 
authors to be included in the mathematical expression of the First Law for 
Processes with Finite Speed ( pw ) for the study of irreversible cycles with 
external and  internal irreversibilities [8, 9]:  

pf wBAp '+=Δ   2
pthr Cwp =Δ   (3)-(4) 

where 94.0=A , 045.0' =B and 0045.0=C [19].  
Observation: When 0=A  the friction at the limit 0→pw  is not taken into 

account, but of the friction with velocity pw  is taken into account the variation 
and in the case 94.0=A  it takes into account the existing friction even at the limit 

0→pw .  
 The First Law expression is combined with the internal entropy 
generation definition given by:  
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H S
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respectively, with the total entropy generation per cycle, given by: 
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The internal and total entropy generation ( iS  and TS ) as well as the internal and 
total entropy generation rates: iS , TS  will be computed from equations (5) −(6) 
combined with (1) and (2).   

2. Application of the Direct Method to the irreversible quasi-Carnot 
cycle refrigeration machine 

 
 The Direct Method from Finite Speed Thermodynamics consists in 
analyzing any irreversible cycle, step by step, on each process, by writing the 
corresponding equation of the First Law of Thermodynamics for finite speed 
processes and integrating it on the whole cycle. The First Law expression for 
finite speed processes includes all three of the principal sources of internal 
irreversibility, namely: (1) finite speed interaction between the piston and the 
gas/vapor, (2) friction due to the finite speed of the piston within the cylinder, (3) 
throttling processes in valves. These throttling losses are directly due to finite 
gas/vapor velocity and ultimately due to the finite speed of the piston. 
 The paper presents a comparison of the reversible cycle 1-2r-3-4r-1 with 
the irreversible cycle with finite speed 1-2irr-3-4irr-1, from the point of view of 
COP and entropy generation. Equations (1) and (2) can be integrated 
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(analytically) for any processes in an irreversible cycle with finite speed, in order 
to obtain the process equations and also the expressions for the irreversible work 
and heat. This is the “power” of the Direct Method, in comparison with 
Thermodynamics in Finite Time developed after Curzon – Ahlborn seminal paper 
[20]. 
 For the cycle illustrated in Fig. 1, equation (1) is integrated only for the 
irreversible adiabatic process 1-2irr, in the compressor. Thus, one gets the 
equation of irreversible adiabatic compression in the compressor. This equation 
contains the origin of the internal irrevesibilities, namely: (1) finite speed of the 
piston and (2) friction between piston and cylinder.  
 Based on this equation, it will be possible to get the temperature in the 
state 2irr, namely T2irr. With this temperature one can get from the table of 
superheated vapor the specific properties h2irr and s2irr, which are necessary for 
computation of the work consumed in the compressor and the increase of entropy 
(entropy generation) in the irreversible adiabatic process 1-2irr, namely: 

1irr2Cp sss −=Δ      (7) 
The tables with thermodynamic properties of vapor will not be used, because the 
aim is to obtain a total analytic scheme of computation of the irreversible cycle, 
in a similar way as it is done in the Reversible Classical Thermodynamics, and it 
was done by us for Stirling Machines [5]. 

TVsΔ CpsΔ

ctp =

Cpw

  
 Fig. 1. Irreversible quasi-Carnot Refrigeration cycle on T-S coordinates. 

 
 Each process in the irreversible quasi-Carnot cycle shown in Fig. 1 occurs 

in a separate component: compressor (1-2irr), condensate (2irr-3), detentor (3-4) 
or throttling valve (3-4irr). The resulting four components are assumed to be 
connected by tubes. In order to derive an expression easy to apply (in an 
analytical way) for getting the internal entropy generation, and irrCOP , only the 
irreversibility on the adiabatic processes in the compressor (1-2irr) have been 
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considered here, as shown in Fig. 1. In the total irreversible process 3-4irr (in the 
throttling valve) enthalpy is constant: h3=h4irr, and thus there is no need of another 
equation for this process.  

2.1. Internal Entropy Generation calculations  

For the internal entropy generation per cycle, one gets from (5):  

LHL

L

H

H
cyclei T

q

T

q

T
q

T
qs irrirr 1432

, −−=−−=Δ     (8) 

which leads to: 
( ) ( ) ( ) ( )
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sssssssssss cyclei 214312344123, −− Δ+Δ=−+−=−−−−=Δ

      (9)  
 Regarding the first term: exp.,43 adiirr ss Δ=Δ − , it is easy to compute as in 

the Classical Thermodynamics, based on the fact that irrhh 43 =  and using tables. 
But because a total analytic computation is sought, the properties h  and s  on the 
limiting curves as a function of pressure and temperatures are expressed as in 
Table 1. 
 Regarding the second term Cp.ad,iirr21 ss ΔΔ =− , the situation is 
completely different. Here the Direct Method is used in order to get an equation of 
this irreversible process 1-2irr .  

2.2. Entropy generation during an adiabatic irreversible process 
with finite speed  

 In order to determine the entropy generation during an adiabatic 
irreversible process, Δsad,irr , one needs to find the irreversible adiabatic process 
equation, with finite speed, friction and throttling, which in our cycle (Fig. 1)  is 
the equations for the irreversible adiabatic processes 1 – 2irr . 

 The First Law for processes with finite speed, eq. (1), is used and 
integrated by applying the Direct Method.  

 Assuming the hypothesis that the working fluid is a perfect gas, and 
imposing the adiabatic process condition, 0=irrQδ , from eq. (1) it  results:  
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where the factor f  shows the part of friction heat that remains inside the system, 
10 ≤≤ f . The case 0=f  corresponds to the case when all the friction heat is 

„lost” towards the sourroundings (at the cold source); the case 1=f  is the other 
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extreme, when all friction heat remains inside the system. The influence of this 
factor f  on COP and entropy generation will be presented further in this work. 

 Equation (10) could be integrated in different assumptions in order to 
avoid combersome calculations. The simplest method of integration is described 
below: one denotes the parenthesis that collects the irreversibility causes with 
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where the mean temperature is expressed as:  

2
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In order to estimate 2T  from (12) we assume, in a first approximation, 
that rTT 22 ≅ . The equation for the reversible adiabatic process 1-2r yields:  
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where: 12 ppp =λ  and 'k  is a corrected adiabatic exponent, which takes into 
account the difference between perfect gas and vapor of R134a (Table 1). This 
corrected 'k exponent was obtained comparing T2 computed with eq. (13), and T2r 
computed based on constant entropy in the reversible adiabatic process 1-2r, and 
using tables data for vapor in state 2r. As result of this computation Fig. 2 was 
plotted and the corresponding analytical formula for 'k was derived.  
 For evaluation of 21, −medp  one uses the arithmetic average between initial 
and final pressures. 
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Upon substitution of (13) and (14) in (11), it results: 
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Fig. 2. Corrected adiabatic exponent 'k variation versus the saturation vapor temperature T2”, 

respectively pressure. [16]  
 

Here we take into account only the contribution of the finite speed and 
friction. The throttling into the valves of the compressor will be taken into account 
separately.  

Once the coefficient B  is expressed as a function of the piston speed and 
the other gas parameters, one proceeds with a variable separation in eq. (10): 

dV
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,               (16) 

where the pressure is expressed from the state equation: 

.
V

mRTp =       (17) 

By taking into account that a corrected specific heat '
vc  which depends on 'k  (the 

corrected adiabatic exponent) is used in eq. (16):  
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equation (16) becomes:   
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This equation is different in comparison with the differential equation of adiabatic 
processes from Classical Thermodynamics, because of two terms: B  and 'k . 
Term B  takes into account the internal irreversibilities as function of the speed, 
wp and term 'k  takes into account the departure of the superheated vapor in the 
compressor exit from the perfect gas behaviour.  
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All the equations which derives from this one (14) will contain these two 
„corrections”, and are an important results of the Direct Method which consist in 
integrating this equation (14) and using the results for computation of the 
performances of the irreversible cycle that are studied. 
By integrating eq. (19) for the irreversible adiabatic process 1 – 2irr, one gets: 
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which leads to the following equations for the irreversible adiabatic process with 
finite speed and friction: 
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With equation (24), one computes T2irr. After getting the correlations 
between h  and s as function of T on the isobaric process 2”-2irr, one can get 

Table 1 

Refrigerant property expressions in the two cycles main states 
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immediately irrh2  and irrs2 , necessary for computation of entropy generation 

irrs 21−Δ  and irreversible work in the compressor ( )12 hh irr − . Since 1-2irr is a 
compression process, in the analytical expression of B, the (+) sign appears.  
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   (25) 

Finally the entropy generation per cycle yields: 
      irrirrcyclei sss 4321, −− Δ+Δ=Δ ,                   (26) 

with 3443 sss irrirr −=Δ − .  
The internal entropy generation rate, in the case in which the internal heat 
losses between the condenser and evaporator are not taken into account, is given 
by the expression:  

 cycleii smS ,Δ=Δ .    (27) 
The internal entropy generation rate, in the case in which the internal heat 
losses between the condenser and evaporator are taken into account, is given by 
the expression:  

( )
LH

LH
cycleilossesi TT

TT
KAsmS

2

,,
−

+Δ=Δ .   (28)  

 Equation (26) will represent the internal generation of entropy rate, which 
accounts for three causes of irreversibility generation: irreversibility in the 
compressor (caused by friction and finite speed), also the internal entropy 
generation due to heat losses between HT  and LT  (between condenser and 
evaporator), and the entropy generation throughout the cycle. The second term 
from eq. (28) is the classical expression of entropy generation between two bodies 
having different temperatures, exchanging the heat flux ( )LH TTKA − ,  namely: 

( ) ( ) HLHLLH TTTKATTTKA −−− .  
In this way the analytical expressions for coefficient of performance, COP 

are obtained, analyzing the successive influence of all the five internal losses. 
(Table 2)  
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Table 2 

Formulas for COP [16] 

 COP 

Finite speed of the piston in the compressor ( ) 12

41
hh

hh
COP

wirr

r
I −

−
=  

Finite speed of the piston and the friction in 
the compressor ( ) 1,2

41
hh

hh
COP

fwirr

r
II −

−
=  

Finite speed of the piston, the friction in the 
compressor  and the throttling in the 

throttling valve 
( ) 1,2

41
hh

hh
COP

fwirr

irr
III −

−
=  

Finite speed of the piston, the friction in the 
compressor, the throttling in the throttling 
valve and the throttling in the compressor 

( )
Cpthfwcpr

irr
IV ww

hh
COP

+
−

=
,

41

 

with: ( ) ( ) 1,2, hhw fwirrfwcpr −=   

12 vpvpw thrAirrRthrthCp
⋅Δ+⋅Δ=  

Finite speed of the piston, the friction in the 
compressor, the throttling in the throttling 
valve, the throttling in the compressor, but 

also the heat losses between sources 

( )
( )mhh

Qhhm

w

qq
COP

irr

losth

cpr

lostref
V

12

41
−

−−
=

−
=

 

where: pwDm
4

2
1
πρ= , 

1
1

1
v

=ρ ; 

( )LHlost TTkAQ −=  

3. Results 

 The calculations are done considerating the folowing data for dimensions 
and properties: L=1m, D=0.05m, Npipes=8, KmW7 2

e =α , KmW5 2
i =α , 

mKW044.0ins =λ , m1.0ins =δ  and 2
CdEv m176.0AA == . The heat transfer 

coefficient α  of natural convection in air, at temperatures close o ambient 
temperature is usually between 5-7 KmW 2 . Taking into account the fact that the 
space between condenser and evaporator is limited, and also taking into account 
the insulation we have chosen for the numerical example calculation the lower 
value. For more precise calculation of course, the correlation equations must be 
used, and also the geometry of the heat exchanger must be taken into account. The 
given numerical example is not pretending to be realistic. The objective of this 
study was to develop a methodology for analytical calculation of entropy 
generation and performances of the refrigeration systems with mechanical vapor 
compression, and to numerical exemplify it. The usage of this methodology for 
specific optimization and redesign requires the adoption of appropriate values of 
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the convection coefficient and thermal conductivity of the wall and of the heat 
exchange surfaces, resulting either from experiments or calculated using the heat 
transfer correlations. 
Using the above (completely analytical) formula for entropy generation and for 
COP the curves in Figures 3 – 5 were plotted giving the chance to see the 
influence of different types of internal irreversibilities on the COP and 
corresponding entropy generation.  
 The analytical model was taken into account the finite speed of the friction 
process, the irreversibilities produced during adiabatic compression (1-2irr) and 
adiabatic irreversible expansion (3-4irr) in the throttling valve (see Table 3).  

Table 3 
Notations used for cycleis ,Δ  

Types of irreversibilities cycleis ,Δ  
Irreversibilities occured during the adiabatic irreversible expansion in the 
throttling valve Icycleis .,Δ  

Irreversibilities due to the finite speed, and the friction (when 0=A  is not 
taken into account the friction at the limit 0→pw , but is taken into 

account the variation of the friction with velocity pw ) 

 
IIcycleis .,Δ  

Irreversibilities occured during the adiabatic irreversible expansion in the 
throttling valve, and due to the finite speed, and the friction (when 0=A  
(when the friction is not taken into account the friction at the limit 

0→pw , but is taken into account the variation of the friction with 

velocity pw ) 

 
 

 
IIIcycleis .,Δ  

Irreversibilities due to the finite speed, and the friction (when 94.0=A  
that takes into account the existing friction even at the limit 0→pw . 

IVcycleis .,Δ  
 

Irreversibilities occured during the adiabatic irreversible expansion in the 
throttling valve, and due to the finite speed, and the friction (when 

94.0=A  that takes into account the existing friction even at the limit 
0→pw ). 

 
Vcycleis .,Δ  

To highlight the influence of all internal irreversibilities on the functioning of a 
real refrigerator, we analyzed the results obtained by varying the temperature 

"2TTH = . Figures 3 and 4 show that, with the decrease in the temperature 
difference between the machine heat sources, COP increases and the internal 
entropy generation per cycle decreases. 
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Fig. 3. The effect of piston speed pw on COP, for KT 313"2 = , respectively KT 293"2 =     

  

Fig. 4. The effect of piston speed pw on COP, entropy generation per cycle cycleis ,Δ , for 

KT 313"2 = , respectively KT 293"2 =   

In these figures appears the effect of the successive introduction of 
irreversibilities produced by finite speed of the processes, generated during 
adiabatic expansion in the throttling valve (3-4irr), respectively during the 
irreversible adiabatic compression (1-2irr). It also examines the influence of the 
factor A in calculating friction losses, and by default upon the COP and internal 
entropy generation per cycle.  
 In the real reversible cycle 1-2r-3-4r, the work is minimal and COP is 
maximal, compared to any other cycle that could reach the same cooling power, 
because for any other cycle losses due to external and internal irreversibility 
would appear. It can be noticed that for a constant temperature of the cooled space 

LT , and as the superheated saturated vapor temperature decreases, the work 
needed for the reversed quasi – Carnot cycle and the refrigeration efficiency COP 
of the cycle decrease, so seemingly the cold cycle is more efficient with the 
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decrease in the temperature difference between sources. Analyzing the curves of 
Fig. 5 it is found that IVCOP  decreases with the increase of T2” and with the 
increase of the speed pw . It seems good to decrease ''2T  to enlarge the COP. This 
conclusion is false because it was not yet taken into account the effect of external 
irreversibilities.  
 

   
Fig. 5. The effect of piston speed pw  on IVCOP  in the quasi-Carnot cycle for various 

temperatures of saturation ''2T .  
 

 For example, with the decrease of T2” the temperature differences 
increasingly lowers (at the hot source where heat is evacuated). This would entail 
the need to increase the surface of the heat exchange of the condenser, which 
would involve additional costs for the construction of the machine and also larger 
storage space. 

Figures 6 and 7 illustrate the influence of the piston speed, the factor f, and the 
coefficient A, upon IIICOP  of the irreversible quasi-Carnot cycle, but also upon 
the variation of the specific entropy per cycle cycleis ,Δ . It can be noticed that, 
with the increase in influence of the friction and of the speed of process, the COP 
decrease. It is found that when the friction at the limit 0→pw  ( 0=A ) is not 
taken into account, the COPIII, respectively the entropy generation per cycle, have 
the same value regardless of the part of friction heat that remains inside the 
system, f. 
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Fig. 6. The effect of piston speed pw  upon the IVCOP  for various values of the factor f. Case 

0=A , respectively case 94.0=A .  

  
Fig. 7. The effect of piston speed pw  on the entropy generation in quasi-Carnot cycle for various 

values of the factor f. Case 0=A , respectively case 94.0=A  
 
 With the increase of the piston speed, factor f produces a decrease in COPIII, 
and therefore an increase in entropy generation. In the case of real operating 
systems ( smw p 2≈ , 6.0≈f ) the COP that takes into account the existing 

friction even at the limit 0→pw  ( 94.0=A ) witnessed a decrease of about 19% 

compared to the COP calculated where the friction even at the limit 0→pw is not 
taken into account, but is taken into account the variation of the friction with the 
velocity wp ( 0=A ). The same comparison of the corresponding entropy 
generation values leads to a growth per cycle with about 26.5%.   



Entropy generation analysis and COP evaluation […] thermodynamics                      133 

 Increase of the piston speed pw  and f (part of the friction heat that remains 
inside the system) results in an increase of the entropy generation rate. By 
comparing the values of generated entropy rate (Fig. 8), it is found that with the 
increase of temperature "2T , the values of the analyzed rates increase as well. 
Figure 9 reveals that the maximum value of the COP corresponds to a minimum 
value for the entropy generation per cycle. 

  
Fig. 8. Influence of piston speed pw , upon the entropy generation rate in the cycle iSΔ , for 

different values of factor f, for two different temperatures KT 313"2 = , respectively 

KT 293"2 = .  

 

   
Fig. 9. The effect of piston speed wp, on VCOP , respectively on the internal entropy generation  

rate lossesiS ,Δ . 
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Fig. 10. The effect of different internal types of irreversibilities on COP and entropy generation 

rate iSΔ   

 By using the above derived (completely analytical) formulae for COP and 
internal entropy generation, the effect of internal irreversibilities progressively 
introduced on the cycle performances are illustrated in Figure 10. Thus, the major 
reductions of COP are registered when the friction losses are considered (COPII), 
respectively the throttling in the compressor valves (COPIV). 
 By comparing the variation of the two performances with the piston speed, 
clearly appears that small values of the piston speed provide economical 
operational regime, mainly from the power consumption reason.  
 This study emphasizes the entropy generation in the cycle, and not in the 
machine. It should be noted that the variation of the analyzed parameters is strictly 
influenced by the speed of the process and friction coefficient. 
 

4. Conclusion and perspectives  
 

 Internal Entropy Generation and COP calculation for a reversed 
irreversible cycle quasi-Carnot machine (Refrigeration Machine with mechanical 
compression of vapor) are presented in this paper. Irreversibility due to the finite 
speed of the piston, friction and the throttling during the adiabatic compression 
and expansion have been taken into account.  
 A thermodynamic approach based on the Direct Method and The First 
Law of Thermodynamic for processes with finite speed is shown to be especially 
effective for analytical estimation of the entropy generation rate. The treatment is 
done here completely analytical, which means that formulae for COP, isΔ  and iS  
as function of piston speed pw  in the compressor, and other parameters 
(compression ratio, temperature ratios, etc) have been got. Such a treatment 
allowed insight of the factors causing internal irreversibilities by a sensibility 
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study in which they are taking into account step by step. In this way one can see 
which one influence in what way, and also how much is the influence of each one. 
Based on such calculation the designer has a chance to “see” where to intervene in 
order to improve the performances of the whole system.  
 Taking into account other internal irreversibilities, it is possible to develop 
this scheme of computation to the final goal of validation. Such a validated 
scheme could help the optimization and design of refrigeration machines and heat 
pumps.  
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