
U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 3, 2013 ISSN 1454-2358

MODELING OF DEPENDENCE STRUCTURES IN
METEOROLOGICAL DATA VIA ARCHIMEDEAN COPULAS

Vadoud Najjari1, Hasan Bal2, Salih Çelebioǧlu 3

In this study, the main endeavor is to find a copula that fits on me-
teorological data dependence structure. In order to specify the best copula,
we use nonparametric approach and Goodness of fit test. Calculations de-
clare that Archimedean family with cotangent generator (cot-copula) fits to
our data truthfully.
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test, Kendall’s tau, Nonparametric estimation

1. Introduction

Actually structure of the dependence between random variables is im-
portant. In decision support, properly accounting and modeling these de-
pendencies and correlations are essential in deriving reliable valuations. It
has proven, the copulas technique is a superior tool for modeling dependence
structures [11, 16].

As Nelsen discussed in his book [11], there are five important interna-
tional conferences devoted in growing interest on copulas and their applications
in statistics and probability which we review them in the following: the Sym-
posium on Distributions with Given Marginals (Fréchet Classes) in Rome in
1990; the conference on Distributions with Fixed Marginals, Doubly Stochastic
Measures, and Markov Operators in Seattle in 1993; the conference on Distri-
butions with Given Marginals and Moment Problems in Prague in 1996; the
conference on Distributions with Given Marginals and Statistical Modelling in
Barcelona in 2000; and the conference on Dependence Modelling: Statistical
Theory and Applications in Finance and Insurance in Québec in 2004.

In this study, we take monthly minimum and maximum air temperature
records from 1975 to 2010 in Tehran and try on modeling dependence struc-
tures of them. Hence we consider three the most widely used Archimedean
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families of copulas: Clayton, Gumbel and A1 (this family is numbered as
4.2.12 in Nelsen [11]). Also we use an Archimedean family with cotangent
generator (cot-copula) which recently presented by Pirmoradian and Hamzah
[13]. In order to be more familiar with the cot-copula, details of this family
are demonstrated in Table 1. Calculations declare that this family truthfully
fits to our data.

This paper is constructed as follows: in Section 2 we discuss about cop-
ulas and AC. Section 3, reviews fitting copulas to bivariate data. And Section
4 shows modeling of dependence structures in the meteorological data via the
mentioned AC. Section 5 summarizes the conclusion of our work.

2. Preliminaries

Sklar (1959), for the first time, used the word copula, a function which
allows us to combine univariate distributions to obtain a joint distribution with
a particular dependence structure [15]. A copula is a function C : [0, 1]2 →
[0, 1] which satisfies:

(a) for every u, v in [0,1], C(u, 0) = 0 = C(0, v), and C(u, 1) = u,
C(1, v) = v;

(b) for every u1, u2, v1, v2 in [0, 1] such that u1 ≤ u2, and, v1 ≤ v2,
C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The importance of copulas in statistics is described by Sklar Theorem
[15]: Let X and Y be random variables with joint distribution function H
and marginal distribution functions F and G, respectively. Then there exists
a copula C such that, H(x, y) = C(F (x), G(y)), for all x, y in R. If F and
G are continuous, then C is unique. Otherwise, the copula C is uniquely
determined on Ran(F ) × Ran(G). Conversely, if C is a copula and F and G
are distribution functions then the function H is a joint distribution function
with margins F and G. As a result of the Sklar’s theorem, copulas link joint
distribution functions to their one-dimensional margins.

2.1. Archimedean Copulas

One of the most important classes of copulas is known as AC. This cop-
ulas are very easy to construct, many parametric families belong to this class
and have a great variety of different dependence structures. In addition, the
Archimedean representation allows us to reduce the study of a multivariate
copula to a single univariate function. Archimedean copulas originally ap-
peared not in statistics, but rather in the study of probabilistic metric spaces,
where they were studied as part of the development of a probabilistic version
of the triangle inequality. For details see [11, 14].

Basic properties of AC are presented below and more information could
be found in Nelsen [11]. Let ϕ be a continuous, strictly decreasing function
from I to [0,∞] such that ϕ(1) = 0. The pseudo-inverse of ϕ is the function
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ϕ[−1] given by

ϕ[−1](t) =

{
ϕ(−1)(t), 0 ≤ t ≤ ϕ(0)
0, ϕ(0) ≤ t ≤ ∞. (1)

Copulas of the form C(u, v) = ϕ[−1](ϕ(u) +ϕ(v)), for every u, v in I are called
AC and the function ϕ is called a generator of the copula. If ϕ(0) = ∞ we
say that ϕ is a strict generator. In this case, ϕ[−1] = ϕ(−1) and C(u, v) =
ϕ(−1)(ϕ(u) + ϕ(v)) is said a strict Archimedean copula.

In the AC, one of the main topics is statistical inference on the depen-
dence parameter θ. Several methods of copula parameter estimation have
been developed, including the methods of concordance [4, 12], fully maximum
likelihood (ML), pseudo maximum likelihood (PML) [5], inference function of
margins (IFM) [7, 8] and minimum distance (MD) [16], etc. Nonetheless in
this paper, we focus only on nonparametric estimation in the dependence pa-
rameter θ which is based on Kendall’s tau, and in selecting the right copula we
focus on the GOF test and the nonparametric approach using the procedure
of Genest and Rivest [6].

3. Fitting copulas to data

In this section for identifying the right copula, we review the nonpara-
metric approach using the procedure of Genest and Rivest [6] and also GOF
test.

Table 1. Details of the selected copula families in this study

Family Generator Kendall’s tau λL λU θ interval

Clayton 1
θ ( 1
tθ
− 1) θ

θ+2 2
−1
θ 0 (0,∞)

Gumbel (−lnt)θ θ−1
θ 0 2− 2

1
θ [1,∞)

A1 ( 1
t − 1)θ 1− 2

3θ 2
−1
θ 2− 2

1
θ [1,∞)

cot-copula cotθ(πt2 ) 1− 8
π2θ 2

−1
θ 2− 2

1
θ [1,∞)

Note: A1 is a familiy that is numbered 4.2.12 in Table 4.1, Nelsen’s book [11].

3.1. Nonparametric approach using the procedure of Genest
and Rivest

Assume that we have a random sample of bivariate observations (Xi, Yi)
for i = 1, ..., n available and joint distribution function H has associated
Archimedean copula Cϕ, we wish to identify the form of ϕ. First to begin
with, define an intermediate (unobserved) random variable Zi = H(Xi, Yi)
that has distribution function K(z) = Prob[Zi ≤ z] (see [2, 3, 6]). This distri-
bution function is related to the generator of an Archimedean copula through
the expression,

K(z) = Kϕ(z) = z − ϕ(z)

ϕ′(z)
. (2)

In order to identify ϕ,
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(1) find Kendall’s tau using the usual (nonparametric or distribution-free)
estimate

τn =

(
n
2

)−1 n∑
i=2

i−1∑
j=1

Sign[(Xi −Xj)(Yi − Yj)]. (3)

(2) Construct a nonparametric estimation of K, as follows:
• First, define the pseudo-observations,

Zi = (n− 1)−1

n∑
j=1

if [Xj < Xi and Yj < Yi, 1, 0], i = 1, 2, ..., n. (4)

• Second, construct the estimate of K,

Kn(z) = n−1

n∑
i=1

if [Zi ≤ z, 1, 0]. (5)

(3) Now construct a parametric estimate Kϕ by using (2). Illustratively, τn →
θn → ϕn(t)→ Kϕn(z), where subscript n denotes estimation.

The step (3) is to be repeated for every copula family that we wish to com-
pare. The best choice of generator then corresponds to the parametric estimate
Kϕn(z), that most closely resembles the nonparametric estimate Kn(z). Mea-
suring closeness can be done either by a (L2-norm) distance such as∫ 1

0

[Kϕn(z)−Kn(z)]2dz (6)

or graphically by (a) plotting of z−K(z) versus z or (b) corresponding quantile-
quantile (Q-Q) plots. Q-Q plots are used to determine whether two data sets
come from populations with a common distribution. If the points of the plot,
which are formed from the quantiles of the data, are roughly on a line with a
slope of 1, then the distributions are the same.

3.2. GOF test.

The χ2-test uses the below test-statistic

χ2 =
k∑

i=1

[fi − np(xi)]2

np(xi)
(7)

where k is the number of classes, fi is the absolute frequency of data in the
class i and np(xi) is the theoretical frequency of data for every class i. Note
also that power of the test grows with growing number of the classes.
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4. Modeling of dependence structures

In this section, we take monthly minimum and maximum air tempera-
ture records from 1975 to 2010 in Tehran, then we consider three the most
widely used Archimedean families of copulas: Clayton, Gumbel and A1 (this
family numbered 4.2.12 in Nelsen [11]) and also cot-copula which recently pre-
sented by Pirmoradian and Hamzah [13], for details see Table 1. Figure 2
shows scatter plots of the cot-copula for several values of its parameter. In

Figure 1. Scatter plots of the minimum and maximum air tem-
perature records.

continue, each series of the mentioned data (monthly maximum and minimum
air temperature) is arranged and has been divided to total data sample size
plus one, as below (see [1], [6])

ui =
R(xi)

n+ 1
, vi =

R(yi)

n+ 1
(8)

where i = 1, 2, 3, ..., n and xi, yi are the minimum and maximum air temper-
ature records respectively and R(xi), R(yi) are respectively the rank of the
related data. It is clear that the final data (u and v) will be on the interval
(0, 1). Figure 1 shows scatter plots of the final data. Kendall’s tau for this
data is τ = 0.6373.

Table 2. Results of the nonparametric estimation and the GOF test

Family Parameter d(Kϕ,Kn) GOF

Clayton 3.5135 0.0900 28.2638
Gumbel 2.7568 0.0241 14.7278
A1 1.8378 0.0140 5.3600
cot-copula 2.2345 0.0096 5.1514

Note: A1 is a familiy that is numbered 4.2.12 in Table 4.1, Nelsen’s book [11].
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Figure 2. Scatterplots of cot-copula for several values of θ, n=700.

With relying on the calculated value of Kendall’s tau, for the mentioned
any copula family in Table 1, we apply nonparametric estimation of family pa-
rameter. Then following the described nonparametric procedure in the Section
3.1, we estimate Kn and the parametric estimation for each copula families.
Table 2 shows the estimated family parameters and their closeness to Kn nu-
merically. In our process Matlab software has been used. With using relation
4
√
n, (n number of observations), (see [1, 10]), we divide the range of two

variables uniform transformation into 4 intervals each, therefore df = 9 and
χ2
0.05,df = 16.9190. Thus in any copula family which χ2 < χ2

0.05,df , it means
that the family is suitable to the mentioned data.

Table 3. Goodness-of-fit test values.

Family Parameter GOF

Clayton 2.92 22.3972
Gumbel 2.74 14.7114
A1 1.88 5.2026
cot-copula 2.32 4.7648

Note: A1 is a familiy that is numbered 4.2.12 in Table 4.1, Nelsen’s book [11].

To find a suitable family of AC, for all copula families mentioned in the
Table 1 we applied the discussed process in previous section and results are
shown in Table 2. Moreover we inquired the best copula parameter in the
mentioned AC, that minimizes the GOF test statistic value and its results are
shown in Table 3.

The second column of the Table 2 consist of the estimated parameter
values by the nonparametric method which is based on Kendall’s tau, for the
mentioned copula families in the Table 1. As an example, parameter of the
cot-copula is estimated 2.2345, while as it is seen in the Table 3, by minimiz-
ing GOF test statistic value, this parameter is estimated 2.32. Moreover, for
the mentioned copula families in the Table 1, GOF test statistic values are
summarized in the forth column of the Table 2. For example this value for
the cot-copula is 5.1514, while as it is seen in the Table 3, by minimizing GOF
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test statistic value, it is estimated 4.7648. The third column of the Table 2
consist of values of the nonparametric approach using the procedure of Genest
and Rivest [6]. This value for the cot-copula is 0.0096, which is the minimum
value between the other mentioned families values.

Obviously with respect to Table 2 and Table 3 the cot-copula family is the
best one that fits to the mentioned data in the both nonparametric procedure
and GOF test. We recall that the cot-copula has a trigonometric generator and
calculating the dependence measures of this family such as kendall’s tau, tail
dependences, etc, are not complicated and all of these measures have a closed
form, which is an advantage for a copula family to be used in applications.

5. Conclusion

For the monthly maximum and minimum air temperature records from
1975 to 2010 in Tehran, we investigate suitable family of AC in modeling of
the dependence structures between them. Hence three widely used families of
AC and also cot-copula family are analyzed. In our process, we focused on the
nonparametric approach using the procedure of Genest and Rivest [6] and also
the GOF test. Results show that, in the both nonparametric procedure and
the GOF test, the cot-copula family fits to data the best.
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