

***g*-ORTHONORMAL BASES, *g*-RIESZ BASES AND *g*-DUAL OF
g-FRAMES**

Sayyed Mehrab Ramezani¹, Akbar Nazari²

*The duals of frames, duals of *g*-frames, and orthonormal bases are widely used in mathematics, physics, signal processing, and many other areas, in which elements need to be represented in terms of the frame, *g*-frame, and basis elements. In this paper, we give equivalent conditions for a *g*-orthonormal basis and characterize all *g*-Riesz bases for a separable Hilbert space \mathcal{H} , starting with a given *g*-orthonormal basis. Also, we introduce the notion of generalized dual of a *g*-frame in a separable Hilbert space \mathcal{H} and provide some characterizations of the generalized dual of *g*-frames. Our results generalize and improve the results obtained by Dehghan and Hasankhani Fard in [1].*

Keywords: *g*-frame; *g*-orthonormal basis; *g*-Riesz basis; *g*-dual *g*-frame.

MSC2000 : 42C15; 42C99.

1. Introduction

Frames for Hilbert space were formally defined by Duffin and Schaeffer [5] in 1952 in order to study some problems in non-harmonic Fourier series. These frames were improved in 1986 by Daubechies, Grossman and Meyer [3]. Wenchang Sun [7] developed a generalization of frame (*g*-frame) including more other concepts and proved that many basic properties can be derived from this more general context and he also presented a generalization of orthonormal bases or simply *g*-orthonormal bases. In this paper, we define the notion of *g*-orthonormal system and give some equivalent conditions for a *g*-orthonormal system $\{\xi_j\}_{j \in J}$ to be a *g*-orthonormal basis. M. A. Dehghan and M. A. Hasankhani Fard [1] determined and characterized *g*-duals of a frame in a separable Hilbert space \mathcal{H} and obtained more reconstruction formulas of vectors (or signals) in terms of the frame elements by using the *g*-dual frames. In this work, we introduce the generalized dual of generalized frames or simply *g*-dual of *g*-frames and extend the reconstruction formulas of vectors in terms of the adjoint of *g*-frame elements using the *g*-dual of *g*-frames. Then, some properties are presented.

¹Corresponding author, Department of Mathematics, Shahid Bahonar University, Kerman , Iran, e-mail: mr.mehryan@math.uk.ac.ir

² Professor, Department of Mathematics, Shahid Bahonar University, Kerman , Iran

2. Preliminary Notes

Below, we will briefly recall some definitions and basic properties of g -frames in Hilbert spaces. We first give some notations which are needed later. Throughout this paper, J is a finite or a countable index set. \mathcal{H} and \mathcal{K} are two Hilbert spaces and $\{\mathcal{K}_j\}_{j \in J}$ is a sequence of closed Hilbert subspaces of \mathcal{K} . For each $j \in J$, $\mathcal{B}(\mathcal{H}, \mathcal{K}_j)$ is the collection of all bounded linear operators from \mathcal{H} to \mathcal{K}_j . We also denote:

$$\bigoplus_{j \in J} \mathcal{K}_j = \{g = \{g_j\} : g_j \in \mathcal{K}_j \text{ and } \sum_{j \in J} |\langle g_j, g_j \rangle| < \infty\}.$$

Definition 2.1. *We call a sequence $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{K}_j) : j \in J\}$ a g -frame for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ if there exist two positive constants C and D such that:*

$$C\|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq D\|f\|^2, \quad (f \in \mathcal{H}). \quad (1)$$

We call C and D the lower and upper g -frame bounds, respectively. If only the right-hand inequality of (1) is satisfied, we call $\{\Lambda_j\}_{j \in J}$ the g -Bessel sequence for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ with g -Bessel bound D . If $C = D = \lambda$, we call $\{\Lambda_j\}_{j \in J}$ the λ -tight g -frame. Moreover, if $\lambda = 1$, we call $\{\Lambda_j\}_{j \in J}$ the Parseval g -frame.

The bounded linear operator T_Λ defined by:

$$T_\Lambda : \bigoplus_{j \in J} \mathcal{K}_j \longrightarrow \mathcal{H}, \quad T_\Lambda(\{g_j\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* g_j,$$

is called the pre-frame operator of $\{\Lambda_j\}_{j \in J}$. Also, the bounded linear operator S_Λ defined by:

$$S_\Lambda : \mathcal{H} \longrightarrow \mathcal{H}, \quad S_\Lambda(f) = \sum_{j \in J} \Lambda_j^* \Lambda_j f,$$

is called the frame operator of $\{\Lambda_j\}_{j \in J}$.

Example 2.1. *If $\mathcal{K}_j = \mathbb{C}$ for any $j \in J$ and $\Lambda_j f = \langle f, f_j \rangle$ for any $f \in \mathcal{H}$, in this case, the g -frame is just a frame for \mathcal{H} .*

3. g -orthonormal basis and g -Riesz basis

In this section, we give equivalent conditions for a g -orthonormal basis and characterize all g -Riesz bases for a separable Hilbert space \mathcal{H} , starting with one g -orthonormal basis.

Definition 3.1. *A g -sequence $\{\xi_j \in \mathcal{B}(\mathcal{H}, \mathcal{K}_j) : j \in J\}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ is said to be a g -orthonormal basis if it satisfies the following cases:*

- (i) $\langle \xi_j^* g_j, \xi_k^* f_k \rangle = \delta_{jk} \langle g_j, f_k \rangle$, $(j, k \in J), \quad (g_j \in \mathcal{K}_j, f_k \in \mathcal{K}_k).$
- (ii) $\|f\|^2 = \sum_{j \in J} \|\xi_j f\|^2$, $(f \in \mathcal{H}).$

If only the condition (i) is satisfied, we call $\{\xi_j\}_{j \in J}$ the *g-orthonormal system* for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. Note that a *g-orthonormal system* $\{\xi_j\}_{j \in J}$ is a *g-Bessel sequence*. In fact, if $\{g_j\}_{j \in J} \in \bigoplus_{j \in J} \mathcal{K}_j$ and $m, n \in J$, $n > m$, then:

$$\begin{aligned} \left\| \sum_{k=1}^n \xi_k^* g_k - \sum_{k=1}^m \xi_k^* g_k \right\|^2 &= \left\langle \sum_{k=m+1}^n \xi_k^* g_k, \sum_{k=m+1}^n \xi_k^* g_k \right\rangle \\ &= \sum_{k=m+1}^n \sum_{j=m+1}^n \delta_{jk} \langle g_k, g_j \rangle = \sum_{k=m+1}^n \|g_k\|^2. \end{aligned}$$

Since $\{g_j\}_{j \in J} \in \bigoplus_{j \in J} \mathcal{K}_j$, we know that $\{\sum_{k=1}^n \|g_k\|^2\}_{j \in J}$ is a Cauchy sequence in \mathbb{C} . The above calculation shows that $\{\sum_{k=1}^n \xi_k^* g_k\}_{j \in J}$ is a Cauchy sequence in \mathcal{H} and therefore convergent. The next theorem gives equivalent conditions for a *g-orthonormal system* $\{\xi_j\}_{j \in J}$ to be a *g-orthonormal basis*.

Theorem 3.1. *For a g-orthonormal system $\{\xi_j\}_{j \in J}$, the following cases are equivalent:*

- (i) $\{\xi_j\}_{j \in J}$ is a *g-orthonormal basis*.
- (ii) $f = \sum_{j \in J} \xi_j^* \xi_j f$, for all $f \in \mathcal{H}$.
- (iii) $\langle f, g \rangle = \sum_{j \in J} \langle \xi_j f, \xi_j g \rangle$, for all $f, g \in \mathcal{H}$.
- (iv) $\overline{\text{Im} T_\xi} = \mathcal{H}$.
- (v) If $\xi_j f = 0$ for all $j \in J$, then $f = 0$.

Proof. For the proof of (i) \Rightarrow (ii), let $f \in \mathcal{H}$ then we have:

$$\langle f, f \rangle = \|f\|^2 = \sum_{j \in J} \|\xi_j f\|^2 = \sum_{j \in J} \langle \xi_j f, \xi_j f \rangle = \left\langle \sum_{j \in J} \xi_j^* \xi_j f, f \right\rangle$$

therefore $f = \sum_{j \in J} \xi_j^* \xi_j f$. (iii) is an obvious consequence of (ii). For the proof of (iii) \Rightarrow (iv), let $W = \overline{\text{Im} T_\xi}$ and $W \neq \mathcal{H}$; there exist $f \in \mathcal{H}$ and $f \neq 0$ such that $f \perp W$. So, for $T_\xi(\{\xi_j f\}_{j \in J}) \in W$, we have:

$$0 = \langle T_\xi(\{\xi_j f\}_{j \in J}), f \rangle = \sum_{j \in J} \langle \xi_j f, \xi_j f \rangle = \langle f, f \rangle.$$

This contradiction shows that $\overline{\text{Im} T_\xi} = \mathcal{H}$. To prove (iv) \Rightarrow (v), note that by assuming $T_\xi^* f = 0$ and $\overline{\text{Im} T_\xi} = \mathcal{H}$ we infer $\ker T_\xi^* = \overline{\text{Im} T_\xi}^\perp = 0$. Therefore, $f = 0$. For the proof of (v) \Rightarrow (i), let $f \in \mathcal{H}$. Since $\{\xi_j\}_{j \in J}$ is a *g-Bessel sequence*, we know that $g := \sum_{j \in J} \xi_j^* \xi_j f$ is well defined; furthermore, for any $k \in J$ and $g_k \in \mathcal{K}_k$, we have:

$$\langle \xi_k g, g_k \rangle = \sum_{j \in J} \langle \xi_j^* \xi_j f, \xi_k^* g_k \rangle = \sum_{j \in J} \delta_{jk} \langle \xi_j f, g_k \rangle = \langle \xi_k f, g_k \rangle.$$

Therefore, $\xi_j(f - g) = 0$ for all $j \in J$, so by (v), $f = g = \sum_{j \in J} \xi_j^* \xi_j f$. On the other hand:

$$\|f\|^2 = \left\langle \sum_{j \in J} \xi_j^* \xi_j f, \sum_{k \in J} \xi_k^* \xi_k f \right\rangle = \sum_{j \in J} \sum_{k \in J} \delta_{jk} \langle \xi_j f, \xi_k f \rangle = \sum_{j \in J} \langle \xi_j f, \xi_j f \rangle,$$

and this completes the proof. \square

Definition 3.2. A g -frame $\{\Lambda_j \in \mathcal{B}(\mathcal{H}, \mathcal{K}_j) : j \in J\}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ is said to be a g -Riesz basis if it satisfies:

- (i) $\Lambda_j \neq 0$;
- (ii) If a linear combination $\sum_{j \in K} \Lambda_j^* g_j$ is equal to zero, then every summand $\Lambda_j^* g_j$ equals zero, where $g_j \in \mathcal{K}_j$ and $K \subseteq J$.

Example 3.1. As in Example 2.1, the induced functionals of any orthonormal basis (respectively Riesz basis) form a g -orthonormal basis (respectively g -Riesz basis).

The following Theorem characterizes all g -Riesz bases for \mathcal{H} , starting with one g -orthonormal basis.

Theorem 3.2. A g -Riesz basis for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ is a family with the form $\{\xi_j U^*\}_{j \in J}$, where $\{\xi_j\}_{j \in J}$ is a g -orthonormal basis for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ and U is a bounded bijective operator.

Proof. Let $\{\Lambda_j\}_{j \in J}$ be a g -Riesz basis and $\{\xi_j\}_{j \in J}$ be a g -orthonormal basis for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. Define the operator:

$$U : \mathcal{H} \longrightarrow \mathcal{H}, \quad U\left(\sum_{j \in J} \xi_j^* g_j\right) = \sum_{j \in J} \Lambda_j^* g_j, \quad \left(\{g_j\}_{j \in J} \in \bigoplus_{j \in J} \mathcal{K}_j \right).$$

Then, U boundedly and bijectively maps \mathcal{H} onto \mathcal{H} . Furthermore, for any $\{g_j\}_{j \in J} \in \bigoplus_{j \in J} \mathcal{K}_j$ and $f \in \mathcal{H}$, we have:

$$\begin{aligned} \langle \{g_j\}_{j \in J}, \{\Lambda_j f\}_{j \in J} \rangle &= \left\langle \sum_{j \in J} \Lambda_j^* g_j, f \right\rangle = \left\langle U\left(\sum_{j \in J} \xi_j^* g_j\right), f \right\rangle \\ &= \langle \{g_j\}_{j \in J}, \{\xi_j U^* f\}_{j \in J} \rangle. \end{aligned}$$

So $\{\Lambda_j f\}_{j \in J} = \{\xi_j U^* f\}_{j \in J}$. Conversely, assume that $\sum_{j \in J} U \xi_j^* g_j = 0$ for some elements $\{g_j\} \in \bigoplus_{j \in J} \mathcal{K}_j$. Then $\sum_{j \in J} \xi_j^* g_j = 0$ and for $g_i \in \mathcal{K}_i$, we have:

$$\|g_i\|^2 = \langle g_i, g_i \rangle = \sum_{j \in J} \delta_{ij} \langle g_j, g_i \rangle = \left\langle \sum_{j \in J} \xi_j^* g_j, \xi_i^* g_i \right\rangle = 0.$$

So, every summand $\xi_j^* g_j$ equals zero. \square

4. Generalized dual of a g-frame

Dehghan [1] introduced generalized dual frames; however, we will introduce generalized dual of generalized frames or simply *g-dual of g-frames*.

Definition 4.1. Let $\{\Lambda_j\}_{j \in J}$ be a *g-frame* for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. A *g-frame* $\{\Gamma_j\}_{j \in J}$ is called a *generalized dual g-frame* or *g-dual g-frame* of $\{\Lambda_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ if there exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that, for all $f \in \mathcal{H}$,

$$f = \sum_{j \in J} \Lambda_j^* \Gamma_j A(f). \quad (2)$$

If \mathcal{W} is a closed subspace of \mathcal{H} , a *g-frame* $\{\Gamma_j\}_{j \in J}$ is called a *g-dual g-frame* of $\{\Lambda_j\}_{j \in J}$ for \mathcal{W} if (2) holds for all $f \in \mathcal{W}$ and for some invertible operator $A \in \mathcal{B}(\mathcal{W})$.

When $A = I$, then $\{\Gamma_j\}_{j \in J}$ is an ordinary dual frame of $\{\Lambda_j\}_{j \in J}$. If S_Λ is the *g-frame operator* of the *g-frame* $\{\Lambda_j\}_{j \in J}$, then for all $f \in \mathcal{H}$, we have:

$$f = \sum_{j \in J} \Lambda_j^* \Lambda_j S_\Lambda^{-1}(f).$$

Hence, each *g-frame* is a *g-dual g-frame* to itself. The operator A in (2) is unique, since for all $f \in \mathcal{H}$,

$$A^{-1}f = \sum_{j \in J} \Lambda_j^* \Gamma_j(f).$$

Hence, $A^{-1} = T_\Lambda U_\Gamma^*$, where T_Λ and U_Γ are the pre-frame operators of $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$, respectively. Also, we say the *g-frame* $\{\Gamma_j\}_{j \in J}$ is a *g-dual g-frame* of $\{\Lambda_j\}_{j \in J}$ with the corresponding invertible operator A .

Lemma 4.1. Let $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ be *g-Bessel sequences* in \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. Then the following cases are equivalent:

- (1) There exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that $f = \sum_{j \in J} \Gamma_j^* \Lambda_j A(f)$.
- (2) There exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that $f = \sum_{j \in J} \Lambda_j^* \Gamma_j A^*(f)$.
- (3) There exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that $\langle f, g \rangle = \sum_{j \in J} \langle \Lambda_j f, \Gamma_j g \rangle$.

In case that one of the equivalent conditions is satisfied, $\{\Gamma_j\}_{j \in J}$ is a *g-dual* of $\{\Lambda_j\}_{j \in J}$, and vice versa.

Proof. Let (1) be satisfied and let $f \in \mathcal{H}$. Then, there exists $g \in \mathcal{H}$ such that $f = Ag$ and $g = \sum_{j \in J} \Gamma_j^* \Lambda_j A(g)$. Therefore, $f = Ag = \sum_{j \in J} A \Gamma_j^* \Lambda_j(f)$. Since $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j A^*\}_{j \in J}$ are *g-Bessel sequences*, using Proposition 3.6 [6], we have:

$$f = \sum_{j \in J} A \Gamma_j^* \Lambda_j(f) = \sum_{j \in J} \Lambda_j^* \Gamma_j(A^* f).$$

Hence, (2) holds. A similar argument shows that (2) implies (1). The rest of the proof is obvious. If the conditions are satisfied for $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$, and C_Λ is

the g -Bessel bound for $\{\Lambda_j\}_{j \in J}$ then:

$$\|f\|^4 = \left| \sum_{j \in J} \langle \Lambda_j A f, \Gamma_j f \rangle \right|^2 \leq C_\Lambda \|A\|^2 \|f\|^2 \sum_{j \in J} \|\Gamma_j f\|^2,$$

Therefore, $\{\Gamma_j\}_{j \in J}$ is a g -frame. Since (1) and (2) are equivalent so $\{\Lambda_j\}_{j \in J}$ is also a g -frame. \square

Proposition 4.1. *Every two g -Riesz bases are g -dual g -frames.*

Proof. Let $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ be two g -Riesz bases for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. There exist an orthonormal basis $\{\xi_j\}_{j \in J}$ and bounded invertible operators U and V on \mathcal{H} such that $\Lambda_j = \xi_j U^*$ and $\Gamma_j = \xi_j V^*$. Since U and V are invertible, there exists a bounded invertible operator T on \mathcal{H} such that $UV^*T = I$; hence, for all $f \in \mathcal{H}$, we have:

$$f = UV^*T(f) = \sum_{j \in J} U\xi_j^* \xi_j V^*(T(f)) = \sum_{j \in J} \Lambda_j^* \Gamma_j(T(f)). \quad \square$$

Now, we are going to give a simple way for the construction of infinitely many g -dual g -frames of a given g -frame.

Proposition 4.2. *Assume that $\{\Gamma_j\}_{j \in J}$ is a g -dual g -frame of $\{\Lambda_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ with invertible operator $U \in \mathcal{B}(\mathcal{H})$ and let α be a complex number. Then, the sequence $\{\Delta_j\}_{j \in J}$ defined by:*

$$\Delta_j = \alpha \Gamma_j + (1 - \alpha) \Lambda_j S_\Lambda^{-1} U^{-1},$$

is a g -dual g -frame of $\{\Lambda_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ with invertible operator U , where S_Λ is the g -frame operator of $\{\Lambda_j\}_{j \in J}$.

Proof. For all $f \in \mathcal{H}$, we have:

$$\begin{aligned} \sum_{j \in J} \Lambda_j^* \Delta_j(Uf) &= \sum_{j \in J} \Lambda_j^* \left(\alpha \Gamma_j + (1 - \alpha) \Lambda_j S_\Lambda^{-1} U^{-1} \right) (Uf) \\ &= \alpha \sum_{j \in J} \Lambda_j^* \Gamma_j Uf + (1 - \alpha) \sum_{j \in J} \Lambda_j^* \Lambda_j S_\Lambda^{-1} f = f. \quad \square \end{aligned}$$

In the next Proposition, we obtain a g -dual g -frame for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ from a g -dual g -frame for a subspace of \mathcal{H} .

Proposition 4.3. *Let $\{\Lambda_j\}_{j \in J}$ be a g -frame for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ with frame operator S and let $\{\Gamma_j\}_{j \in J}$ be a g -dual g -frame of $\{\Lambda_j\}_{j \in J}$ for $\mathcal{W} = \overline{\text{Im } T_\Gamma}$ with invertible operator $B \in \mathcal{B}(\mathcal{W})$. Then, the sequence $\{\Delta_j\}_{j \in J}$ defined by $\Delta_j = \Gamma_j B_1 + \Lambda_j S_\Lambda^{-1}$ is a g -dual g -frame of $\{\Lambda_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$, where the operator $B_1 : \mathcal{H} \rightarrow \mathcal{H}$ is defined by $B_1 := BP + Q$ and P and Q are the orthogonal projection onto \mathcal{W} and \mathcal{W}^\perp , respectively.*

Proof. Let $A := I - \frac{1}{2}P$, where I denotes the identity operator on \mathcal{H} . Since $\|I - A\| < 1$, the operator A is invertible. Let $f \in \mathcal{H}$; then there exist the unique vectors $g \in \mathcal{W}$

and $h \in \mathcal{W}^\perp$ such that $f = g + h$. Therefore,

$$\begin{aligned} \sum_{j \in J} \Lambda_j^* \Delta_j A f &= \sum_{j \in J} \Lambda_j^* \Delta_j h + \frac{1}{2} \sum_{j \in J} \Lambda_j^* \Delta_j g \\ &= \sum_{j \in J} \Lambda_j^* \Gamma_j B_1 h + \sum_{j \in J} \Lambda_j^* \Lambda_j S_\Lambda^{-1} h + \frac{1}{2} \sum_{j \in J} \Lambda_j^* \Gamma_j B g + \frac{1}{2} \sum_{j \in J} \Lambda_j^* \Lambda_j S_\Lambda^{-1} g \\ &= T_\Lambda T_\Gamma^* h + h + \frac{1}{2} g + \frac{1}{2} g = f. \end{aligned}$$

Note that $\ker T_\Gamma^* = \overline{\text{Im} T_\Gamma}^\perp = \mathcal{W}^\perp$. \square

Corollary 4.1. *Let $\{\Lambda_j\}_{j \in J}$ be a g-frame for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ with g-frame operator S_Λ and let $\{\Gamma_j\}_{j \in J}$ be a g-dual g-frame of $\{\Lambda_j\}_{j \in J}$ for $\mathcal{W} = \overline{\text{Im} T_\Gamma}$ with respect to $\{\mathcal{K}_j\}_{j \in J}$. Then, the g-sequence $\{\Delta_j\}_{j \in J}$ defined by:*

$$\Delta_j = \Gamma_j + \Lambda_j S_\Lambda^{-1}$$

is a g-dual g-frame of $\{\Lambda_j\}_{j \in J}$ for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$.

In the following Proposition, a necessary condition for g-duality of the sum of two g-dual g-frames is given.

Proposition 4.4. *Let $\{\Gamma_j\}_{j \in J}$ and $\{\Theta_j\}_{j \in J}$ be two g-dual g-frames of $\{\Lambda_j\}_{j \in J}$ with the corresponding invertible operators A and B , respectively. If $A^{-1} + B^{-1}$ is an invertible operator, then $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j + \Theta_j\}_{j \in J}$ are g-dual g-frames.*

Proof. Let $T \in \mathcal{B}(\mathcal{H})$ be the inverse operator of $A^{-1} + B^{-1}$. For all $f \in \mathcal{H}$, we have:

$$\begin{aligned} \sum_{j \in J} \Lambda_j^* (\Gamma_j + \Theta_j) (T f) &= \sum_{j \in J} \Lambda_j^* \Gamma_j A (A^{-1} T f) + \sum_{j \in J} \Lambda_j^* \Theta_j B (B^{-1} T f) \\ &= A^{-1} T f + B^{-1} T f = (A^{-1} + B^{-1}) T f = f. \end{aligned} \quad \square$$

Invertible operators preserve the g-duality property of g-frames.

Proposition 4.5. *Let $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ be two g-sequences for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$ and let $U, V \in \mathcal{B}(\mathcal{H})$ be two invertible operators on \mathcal{H} . Then, $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ are g-dual g-frames for \mathcal{H} if and only if $\{\Lambda_j U^*\}_{j \in J}$ and $\{\Gamma_j V^*\}_{j \in J}$ are g-dual g-frames for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$.*

Proof. Let $\{\Lambda_j\}_{j \in J}$ and $\{\Gamma_j\}_{j \in J}$ be g-dual g-frames for \mathcal{H} with respect to $\{\mathcal{K}_j\}_{j \in J}$. Then, there exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that:

$$f = \sum_{j \in J} \Gamma_j^* \Lambda_j A f,$$

for all $f \in \mathcal{H}$. Hence:

$$f = VV^{-1} f = \sum_{j \in J} V \Gamma_j^* \Lambda_j U^* (U^*)^{-1} A V^{-1} f = \sum_{j \in J} V \Gamma_j^* \Lambda_j U^* B f,$$

where $B = (U^*)^{-1} A V^{-1}$ is an invertible operator on \mathcal{H} . The converse is obtained by applying the operators U^{*-1} and V^{*-1} . \square

5. Conclusions

In this article g -orthonormal systems are independently defined, and we provide some conditions such that a g -orthonormal system will be a g -orthonormal basis. Also we characterize all g -Riesz bases for Hilbert space \mathcal{H} , starting with one g -orthonormal basis. In the second part we introduce the notion "the g -dual g -frame" and we obtain some results of g -dual g -frame. As a matter of fact our definition and results are an extension of definition and results obtained in [1, 2].

REFERENCES

- [1] *M.A. Dehgan, M. A. Hasankhani Fard*, g -dual frame in Hilbert spaces, U.P.B. Sci. Bull. **75**, (2013), 129-140.
- [2] *O. Christensen*, An introduction to Frame and Riesz Bases, Birkhäuser, Boston, 2003.
- [3] *I. Daubechies, A. Grossmann, Y. Meyer*, Painless non-orthogonal expansions, J. Math. Phys. **27** (1986), 1271-1283.
- [4] *I. Daubechies*, Ten Lectures on Wavelets, 1992.
- [5] *R. Duffin, A. Schaeffer*, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc. **72** (1952), 341-366.
- [6] *S. M. Ramezani, A. Nazari*, Charactrize g -Riesz basis and their dual in Hilbert \mathcal{A} -module, Int. J. Contemp. Math. Sci. **9** (2014), 83-95.
- [7] *W. Sun*, g -frame and g -Riesz bases, J. Math. Anal. Appl. **322** (2006), 437-452.