

A STUDY ON CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS TO COSYMPLECTIC MANIFOLDS

Murat Polat¹

In [3], Akyol and Sahin introduced the concept of conformal semi-invariant Riemannian maps to almost Hermitian manifolds. In this article, we expand this concept to almost contact metric manifolds as a generalization of totally real submanifolds and semi-invariant Riemannian maps. Herewith, we present conformal semi-invariant Riemannian maps from Riemannian manifolds to cosymplectic manifolds. To ensure the existence of this concept, we prepare a illustrative example, investigate the geometry of the leaves of D_1 , D_2 , \bar{D}_1 and \bar{D}_2 . We find necessary and sufficient conditions for conformal semi-invariant Riemannian maps to be totally geodesic. We also investigate the harmonicity of such maps.

Keywords: Semi-invariant Riemannian map, Conformal semi-invariant Riemannian map, cosymplectic manifold.

MSC2000: 53C15, 53C43.

1. Introduction

Fischer introduced Riemannian map between Riemannian manifolds as a generalization of an isometric immersion and Riemannian submersion that satisfies the well known generalized eikonal equation $\|\vartheta_*\|^2 = \text{rank}\vartheta$, which is a bridge between geometric optics and physical optics [5]. Let $\vartheta : (N_1, g_{N_1}) \rightarrow (N_2, g_{N_2})$ be a smooth map between Riemannian manifolds such that $0 < \text{rank}\vartheta < \min \{\dim(N_1), \dim(N_2)\}$. We state the kernel space of ϑ_* by $V_q = \ker \vartheta_{*q}$ at $q \in N_1$ and consider the orthogonal complementary space $H_q = (\ker \vartheta_{*q})^\perp$ to $\ker \vartheta_{*q}$ in $T_q N_1$. Then the tangent space $T_q N_1$ of N_1 at q has the decomposition $T_q N_1 = (\ker \vartheta_{*q}) \oplus (\ker \vartheta_{*q})^\perp = V_q \oplus H_q$. We state the range of ϑ_* by $\text{range}\vartheta_*$ at $q \in N_1$ and consider the orthogonal complementary space $(\text{range}\vartheta_{*q})^\perp$ to $\text{range}\vartheta_{*q}$ in the tangent space $T_{\vartheta(q)} N_2$ of N_2 at $\vartheta(q) \in N_2$. Since $\text{rank}\vartheta < \min \{\dim(N_1), \dim(N_2)\}$, we have $(\ker \vartheta_{*q})^\perp \neq \{0\}$. Therefore the tangent space $T_{\vartheta(q)} N_2$ of N_2 at $\vartheta(q) \in N_2$ has the decomposition $T_{\vartheta(q)} N_2 = (\text{range}\vartheta_{*q}) \oplus (\text{range}\vartheta_{*q})^\perp$. Then ϑ is called Riemannian map at $q \in N_1$ if the horizontal restriction $\vartheta_{*q}^h : (\ker \vartheta_{*q})^\perp \rightarrow (\text{range}\vartheta_{*q})$ is a linear isometry between the spaces $((\ker \vartheta_{*q})^\perp, g_{N_1}|_{(\ker \vartheta_{*q})^\perp})$ and $(\text{range}\vartheta_{*q}, g_{N_2}|_{\text{range}\vartheta_{*q}})$.

¹ Dr., Department of Mathematics, Faculty of Sci. Dicle University, 21280, Sur, Diyarbakir-Turkey, e-mail: murat.polat@dicle.edu.tr

In other words, ϑ satisfies

$$g_{N_2}(\vartheta_* A_1, \vartheta_* A_2) = g_{N_1}(A_1, A_2), \quad (1)$$

for all A_1, A_2 vector field tangent to $\Gamma(\ker \vartheta_{*q})^\perp$.

Different features of Riemannian maps have been investigated extensively by many authors such as [1, 7, 9, 10, 14, 18, 19, 11, 6, 20]. Detailed development in the theory of Riemannian map can be found in [15].

Conformal Riemannian maps as a generalization of Riemannian maps and the harmonicity of such maps have been introduced in [16, 17]. Conformal anti-invariant Riemannian maps have been studied in [2, 12]. In this article, we expand this concept to almost contact metric manifolds as a generalization of semi-invariant Riemannian maps and totally real submanifolds.

The paper is organized as follows. Section 2 contains preliminaries. Section 3 includes conformal semi-invariant Riemannian maps from Riemannian manifolds to cosymplectic manifolds and provides this notion by non-trivial example. Then, we get a decomposition theorem by using the existence of conformal semi-invariant Riemannian maps. Moreover, conformal semi-invariant Riemannian maps allow us to obtain new conditions for a map to be harmonic. We also investigated the total geodesicity of conformal semi-invariant maps.

2. Preliminaries

Let N be an odd-dimensional smooth manifold. Then, N has an almost contact structure [15] if there exist a tensor field P of type $-(1, 1)$, a vector field ξ , and 1-form η on N such that

$$P^2 E_1 = -E_1 + \eta(E_1)\xi, P\xi = 0, \eta \circ P = 0, \eta(\xi) = 1. \quad (2)$$

If there exists a Riemannian metric g_N on an almost contact manifold N satisfying:

$$\begin{aligned} g_N(PE_1, PE_2) &= g_N(E_1, E_2) - \eta(E_1)\eta(E_2), \\ g_N(E_1, PE_2) &= -g_N(PE_1, E_2), \end{aligned} \quad (3)$$

$$\eta(E_1) = g_N(E_1, \xi), \quad (4)$$

where E_1, E_2 are any vector fields on N , then N is called an almost contact metric manifold [4] with an almost contact structure (P, ξ, η, g_N) and is symbolized by (N, P, ξ, η, g_N) .

A manifold N with the structure (P, ξ, η, g_N) is said to be cosymplectic [15] if

$$(\nabla_{E_1}^N P)E_2 = 0, \quad (5)$$

for any vector fields E_1, E_2 on N , where ∇ stands for the Riemannian connection of the metric g_N on N . For a cosymplectic manifold, we get

$$\nabla_{E_1}^N \xi = 0, \quad (6)$$

for any vector field E_1 on N .

ϑ_* can be considered as a part of bundle hom $(TN_1, \vartheta^{-1}TN_2) \rightarrow N_1$, where $\vartheta^{-1}TN_2$ is the pullback bundle. The bundle has a connection ∇ induced from the pullback connection $\nabla_{A_1}^{\vartheta}$ and the Levi-Civita connection ∇^{N_1} . Then the second fundamental form $(\nabla\vartheta_*)(A_1, A_2)$ of ϑ is given by [8]

$$(\nabla\vartheta_*)(A_1, A_2) = \nabla_{A_1}^{\vartheta} \vartheta_* A_2 - \vartheta_*(\nabla_{A_1}^{N_1} A_2), \quad (7)$$

for all $A_1, A_2 \in \Gamma(TN_1)$, where $\nabla_{A_1}^{\vartheta} \vartheta_* A_2 \circ \vartheta = \nabla_{\vartheta_* A_1}^{\vartheta} \vartheta_* A_2$. It is known that $(\nabla\vartheta_*)(A_1, A_2)$ is symmetric and $(\nabla\vartheta_*)(A_1, A_2)$ has no component in $\text{range}\vartheta_*$, for all $A_1, A_2 \in \Gamma(\ker\vartheta_*)^\perp$ [15]. It means that, we get

$$(\nabla\vartheta_*)(A_1, A_2) \in \Gamma(\text{range}\vartheta_*)^\perp.$$

The tension field of ϑ is defined to be the trace of the second fundamental form of ϑ , i.e. $\tau(\vartheta) = \text{trace}(\nabla\vartheta_*) = \sum_{i=1}^m (\nabla\vartheta_*)(e_i, e_i)$, where $m = \dim(N_1)$ and $\{e_1, e_2, \dots, e_m\}$ is the orthonormal frame on N_1 . Moreover, a map $\vartheta : (N_1, g_{N_1}) \rightarrow (N_2, g_{N_2})$ is harmonic if and only if the tension field of ϑ vanishes at each point $q \in N_1$.

For any section B_1 of $(\text{range}\vartheta_*)^\perp$ and vector field A_1 on N_1 , we get $\nabla_{A_1}^{\vartheta\perp} B_1$, which is the orthogonal projection of $\nabla_{A_1}^{N_2} B_1$ on $(\text{range}\vartheta_*)^\perp$, where $\nabla^{\vartheta\perp}$ is linear connection on $(\text{range}\vartheta_*)^\perp$ such that $\nabla^{\vartheta\perp} g_{N_2} = 0$. For a Riemannian map ϑ we describe S_{B_1} as ([15], p. 188)

$$\nabla_{\vartheta_* A_1}^{N_2} B_1 = -S_{B_1} \vartheta_* A_1 + \nabla_{A_1}^{\vartheta\perp} B_1, \quad (8)$$

where $S_{B_1} \vartheta_* A_1$ is the tangential component of $\nabla_{\vartheta_* A_1}^{N_2} B_1$ and ∇^{N_2} is Levi-Civita connection on N_2 . Therefore, we have

$$\nabla_{\vartheta_* A_1}^{N_2} B_1(q) \in T_{\vartheta(q)} N_2, S_{B_1} \vartheta_* A_1 \in \vartheta_{*q}(T_q N_1)$$

and

$$\nabla_{A_1}^{\vartheta\perp} B_1 \in (\vartheta_{*q}(T_q N_1))^\perp$$

at $q \in N_1$. We know that $S_{B_1} \vartheta_* A_1$ is bilinear in B_1 , and ϑA_1 at q depends only on B_{1q} and $\vartheta_{*q} A_{1q}$. From here, using (7) and (8) we have

$$g_{N_2}(S_{B_1} \vartheta_* A_1, \vartheta_* A_2) = g_{N_2}(B_1, (\nabla\vartheta_*)(A_1, A_2)), \quad (9)$$

where S_{B_1} is self adjoint operator for $A_1, A_2 \in \Gamma(\ker\vartheta_*)^\perp$ and $B_1 \in \Gamma(\text{range}\vartheta_*)^\perp$.

For all $B_1, B_2 \in \Gamma(\text{range}\vartheta_*)^\perp$ we define

$$\nabla_{B_1}^{N_2} B_2 = R(\nabla_{B_1}^{N_2} B_2) + \nabla_{B_1}^{\vartheta\perp} B_2,$$

where $R(\nabla_{B_1}^{N_2} B_2)$ and $\nabla_{B_1}^{\vartheta\perp} B_2$ denote $\text{range}\vartheta_*$ and $(\text{range}\vartheta_*)^\perp$ part of $\nabla_{B_1}^{N_2} B_2$, respectively. Therefore $(\text{range}\vartheta_*)^\perp$ is totally geodesic if and only if

$$\nabla_{B_1}^{N_2} B_2 = \nabla_{B_1}^{\vartheta\perp} B_2. \quad (10)$$

3. Conformal semi-invariant Riemannian maps to cosymplectic manifolds

Definition 3.1. [17] Let $\vartheta : (N_1, g_{N_1}) \rightarrow (N_2, g_{N_2})$ be a conformal Riemannian map (cRm). Then, ϑ is a horizontally homothetic map if $H(\text{grad}\lambda) = 0$.

Definition 3.2. [16] Let $\vartheta : (N_1, g_{N_1}) \rightarrow (N_2, g_{N_2})$ be a smooth map between Riemannian manifolds. Then, ϑ is a cRm at $q \in N_1$ if $0 < \text{rank}\vartheta_{*q} \leq \min\{\dim(N_1), \dim(N_2)\}$ and ϑ_{*q} maps the horizontal space $H(q) = (\ker\vartheta_{*q})^\perp$ conformally into $\text{range}\vartheta_{*q}$, it means that there exists a number $\lambda^2(q) \neq 0$ such that

$$g_{N_2}(\vartheta_{*q}A_1, \vartheta_{*q}A_2) = \lambda^2(q)g_{N_1}(A_1, A_2),$$

for $A_1, A_2 \in \Gamma(\ker\vartheta_{*q})^\perp$. Moreover, if ϑ is cRm at any $q \in N_1$, then ϑ is called cRm.

Lastly, the second fundamental form of ϑ is given by [16]

$$\begin{aligned} (\nabla\vartheta_{*})(A_1, A_2)^{\text{range}\vartheta_{*}} &= A_1(\ln\lambda)\vartheta_{*}A_2 + A_2(\ln\lambda)\vartheta_{*}A_1 \\ &\quad - g_{N_1}(A_1, A_2)\vartheta_{*}(\text{grad}\ln\lambda). \end{aligned} \quad (11)$$

Therefore, if we state the $(\text{range}\vartheta_{*})^\perp$ component of $(\nabla\vartheta_{*})(A_1, A_2)$ by $(\nabla\vartheta_{*})(A_1, A_2)^{(\text{range}\vartheta_{*})^\perp}$, then we can write

$$\begin{aligned} (\nabla\vartheta_{*})(A_1, A_2) &= (\nabla\vartheta_{*})(A_1, A_2)^{\text{range}\vartheta_{*}} \\ &\quad + (\nabla\vartheta_{*})(A_1, A_2)^{(\text{range}\vartheta_{*})^\perp}, \end{aligned} \quad (12)$$

for $A_1, A_2 \in \Gamma(\ker\vartheta_{*})^\perp$. Therefore we get

$$\begin{aligned} (\nabla\vartheta_{*})(A_1, A_2) &= A_1(\ln\lambda)\vartheta_{*}A_2 + A_2(\ln\lambda)\vartheta_{*}A_1 \\ &\quad - g_{N_1}(A_1, A_2)\vartheta_{*}(\text{grad}\ln\lambda) \\ &\quad + (\nabla\vartheta_{*})(A_1, A_2)^{(\text{range}\vartheta_{*})^\perp}. \end{aligned} \quad (13)$$

Definition 3.3. Let ϑ be a cRm from a Riemannian manifold (N_1, g_{N_1}) to an almost contact metric manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then ϑ is a conformal semi-invariant Riemannian map (csiRm) at $q \in N_1$ if there is a subbundle $D_1 \subseteq (\text{range}\vartheta_{*})$ such that

$$\text{range}\vartheta_{*q} = D_1 \oplus D_2, P(D_1) = D_1, P(D_2) \subseteq (\text{range}\vartheta_{*q})^\perp,$$

where D_2 is orthogonal complementary to D_1 in $\text{range}\vartheta_{*}$. If ϑ is a csiRm for any $q \in N_1$, then ϑ is called a csiRm.

For $\vartheta_{*}A_1 \in \Gamma(\text{range}\vartheta_{*})$, then we write

$$P\vartheta_{*}A_1 = \phi\vartheta_{*}A_1 + \omega\vartheta_{*}A_1, \quad (14)$$

where $\phi\vartheta_{*}A_1 \in \Gamma(D_1)$ and $\omega\vartheta_{*}A_1 \in \Gamma(PD_2)$. Also, for $\vartheta_{*}A_1 \in \Gamma(D_1)$ and $\vartheta_{*}A_2 \in \Gamma(D_2)$, we have $g_{N_2}(\vartheta_{*}A_1, \vartheta_{*}A_2) = 0$. Thus we have two orthogonal distributions \bar{D}_1 and \bar{D}_2 such that

$$(\ker\vartheta_{*q})^\perp = \bar{D}_1 \oplus \bar{D}_2.$$

On the other hand, for $B_1 \in \Gamma((\text{range} \vartheta_*)^\perp)$, then we have

$$PB_1 = \beta_1 B_1 + \alpha_1 B_1, \quad (15)$$

where $\beta_1 B_1 \in \Gamma(D_1)$ and $\alpha_1 B_1 \in \Gamma(\eta)$. Here η is the complementary orthogonal distribution to $\omega(D_2)$ in $(\text{range} \vartheta_*)^\perp$. It is easy to see that η is invariant with respect to P .

Example 3.1. Let N_1 be an Euclidean space given by

$$N_1 = \{(u_1, u_2, u_3, u_4, u_5) \in \mathbb{R}^5 : u_1 \neq 0, u_2 \neq 0, u_5 \neq 0\}.$$

We describe the Riemannian metric g_{N_1} on N_1 given by

$$g_{N_1} = du_1^2 + du_2^2 + du_3^2 + du_4^2 + du_5^2.$$

Let $N_2 = \{(v_1, v_2, v_3, v_4, v_5) \in \mathbb{R}^5\}$ be a Euclidean space with metric g_{N_2} on N_2 given by

$$g_{N_2} = e^{2u_1} dv_1^2 + e^{2u_1} dv_2^2 + e^{2u_1} dv_3^2 + dv_4^2 + dv_5^2.$$

An almost contact structure (P, ξ, η) on (N_2, g_{N_2}) can be chosen as

$$\begin{aligned} P\left(\frac{\partial}{\partial v_1}\right) &= \frac{\partial}{\partial v_2}, P\left(\frac{\partial}{\partial v_2}\right) = -\frac{\partial}{\partial v_1}, \\ P\left(\frac{\partial}{\partial v_3}\right) &= \frac{\partial}{\partial v_4}, P\left(\frac{\partial}{\partial v_4}\right) = -\frac{\partial}{\partial v_3}, \\ \eta &= dv_5, \xi = \frac{\partial}{\partial v_5}, P(\xi) = 0. \end{aligned}$$

Then a basis of $T_q N_1$ is

$$\left\{ e_i = e^{u_1} \frac{\partial}{\partial u_i} \text{ for } 1 \leq i \leq 5 \right\},$$

and a P -basis on $T_{\vartheta(q)} N_2$ is

$$\left\{ e_j^* = \frac{\partial}{\partial v_j} \text{ for } 1 \leq j \leq 4, e_4^* = e^{u_1} \frac{\partial}{\partial v_4}, \xi = e_5^* = \frac{\partial}{\partial v_5} \right\},$$

for all $q \in N_1$. Now, we define a map $\vartheta : (N_1, g_{N_1}) \rightarrow (N_2, g_{N_2}, P)$ by

$$\vartheta(u_1, u_2, u_3, u_4, u_5) = (u_1, u_2, u_5, 0, 0).$$

Then, we have

$$\text{ker} \vartheta_* = \text{Span} \{U_1 = e_3, U_2 = e_4\},$$

$$(\text{ker} \vartheta_*)^\perp = \text{Span} \{A_1 = e_1, A_2 = e_2, A_3 = e_5\}.$$

Hence it is easy to see that

$$\vartheta_* A_1 = e^{u_1} e_1^*, \vartheta_* A_2 = e^{u_1} e_2^*, \vartheta_* A_3 = e^{u_1} e_3^*$$

and

$$g_{N_2}(\vartheta_*(A_{1i}), \vartheta_*(A_{1j})) = e^{2u_1} g_{N_1}(A_{1i}, A_{1j})$$

for $i, j = 1, 2, 3$. Thus ϑ is a cRm with $\lambda = e^{2u_1}$ and we get

$$\begin{aligned} \text{range}\vartheta_* &= \text{Span} \{e^{u_1}e_1^*, e^{u_1}e_2^*, e^{u_1}e_3^*\}, \\ (\text{range}\vartheta_*)^\perp &= \text{Span} \{e_4^*, \xi\}, \\ D_1 &= \text{Span} \{e^{u_1}e_1^*, e^{u_1}e_2^*\}, D_2 = \text{Span} \{e^{u_1}e_3^*\}. \end{aligned}$$

Moreover it is easy to see that

$$P\vartheta_*A_1 = e^{u_1}e_2^*, P\vartheta_*A_2 = -e^{u_1}e_1^*, P\vartheta_*A_3 = e^{u_1}e_4^*.$$

Thus ϑ is a csiRm.

Remark 3.1. Throughout this article $\xi \in (\text{range}\vartheta_*)^\perp$ will be taken as the Reeb vector field.

We obtain the following theorem for the geometry of the leaves of D_1 .

Theorem 3.1. Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then D_1 describes a totally geodesic foliation on N_2 if and only if

- i. $g_{N_2}(\beta_1 B_1 (\ln \lambda) \vartheta_* A_1 + \vartheta_*(\nabla_{A_1}^{N_1} A_3), P\vartheta_* A_2) = g_{N_2}(S_{\alpha_1 B_1} \vartheta_* A_1, P\vartheta_* A_2) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1)$,
- ii. $\phi S_{P\vartheta_* B_2} \vartheta_* A_1$ has no components in $\Gamma(D_1)$,
for any $A_1, A_2, A_3, B_2 \in \Gamma(\ker\vartheta_*)^\perp$ such that

$$\vartheta_* A_1, \vartheta_* A_2 \in \Gamma(D_1), \vartheta_* B_2 \in \Gamma(D_2)$$

and $B_1 \in \Gamma(\text{range}\vartheta_*)^\perp$ such that $\vartheta_* A_3 = \beta_1 B_1$.

Proof. For $\vartheta_* A_1, \vartheta_* A_2 \in \Gamma(D_1)$, $B_1 \in \Gamma(\text{range}\vartheta_*)^\perp$ and $\vartheta_* B_2 \in \Gamma(D_2)$, since ϑ is a cRm, using (2), (3) and then from (4), (5), (6), (7) and (15), we have

$$\begin{aligned} &g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_2, B_1) \\ &= -g_{N_2}((\nabla^{N_2} \vartheta_*)(A_1, A_3) + \vartheta_*(\nabla_{A_1}^{N_1} A_3), P\vartheta_* A_2) \\ &\quad + g_{N_2}(S_{\alpha_1 B_1} \vartheta_* A_1, P\vartheta_* A_2) - g_{N_2}(\nabla_{A_1}^{\vartheta \perp} \vartheta_* A_1, P\vartheta_* A_2) \\ &\quad + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1), \end{aligned}$$

where $\beta_1 B_1 = \vartheta_* A_3 \in \Gamma(D_2)$ for $A_3 \in \Gamma(\ker\vartheta_*)^\perp$. From (11) and using (12) in the above equation and since $\text{grad} \ln \lambda \in (\text{range}\vartheta_*)^\perp$, using (3) and $\vartheta_* A_3 = \beta_1 B_1$ we get

$$\begin{aligned} &g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_2, B_1) \\ &= -g_{N_2}(\beta_1 B_1 (\ln \lambda) \vartheta_* A_1 + \vartheta_*(\nabla_{A_1}^{N_1} A_3), P\vartheta_* A_2) \\ &\quad + g_{N_2}(S_{\alpha_1 B_1} \vartheta_* A_1, P\vartheta_* A_2) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1). \end{aligned}$$

This implies the proof of i.

On the other hand, by using (3) and from (4), (5), (6), (14) and (8) we get

$$g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_2, \vartheta_* B_2) = g_{N_2}(-\phi S_{P\vartheta_* B_2} \vartheta_* A_1, \vartheta_* A_2).$$

This implies the proof of ii. \square

We obtain the following theorem for the geometry of the leaves of D_2 .

Theorem 3.2. *Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then D_2 describes a totally geodesic foliation on N_2 if and only if*

- i. $\eta(\nabla_{B_3}^{N_2} \vartheta_* B_4) \eta(B_2) = g_{N_2}((\nabla^{N_2} \vartheta_*)(B_3, A_4)^{(range \vartheta_*)^\perp} - \nabla_{B_3}^{\vartheta \perp} \alpha_1 B_2, P\vartheta_* B_4)$,
- ii. $\beta_1(\nabla^{N_2} \vartheta_*)(B_3, A_3)^{(range \vartheta_*)^\perp}$ has no components in $\Gamma(D_2)$ for any $A_3, A_4, B_3, B_4 \in \Gamma(\ker \vartheta_*)^\perp$ such that

$$\vartheta_* A_3, \vartheta_* B_3, \vartheta_* B_4 \in \Gamma(D_2), B_2 \in \Gamma(\text{range } \vartheta_*)^\perp$$

and $\vartheta_* A_4 = \beta_1 B_2$.

Proof. For $\vartheta_* A_3, \vartheta_* B_3, \vartheta_* B_4 \in \Gamma(D_2), B_2 \in \Gamma(\text{range } \vartheta_*)^\perp$, using (3), (5), (14), (15) and since ϑ is a cRm, then from (7), (8) and $\vartheta_* A_4 = \beta_1 B_2$ we have

$$\begin{aligned} & g_{N_2}(\nabla_{B_3}^{N_2} \vartheta_* B_4, B_2) \\ &= -g_{N_2}((\nabla^{N_2} \vartheta_*)(B_3, A_4) + \vartheta_*(\nabla_{B_3}^{N_1} A_4) \\ &\quad - S_{\alpha_1 B_2} \vartheta_* B_3 + \nabla_{B_3}^{\vartheta \perp} \alpha_1 B_2, P\vartheta_* B_4) \\ &\quad + \eta(\nabla_{B_3}^{N_2} \vartheta_* B_4) \eta(B_2). \end{aligned}$$

Since D_2 defines a totally geodesic foliation on N_2 , using (12) we have

$$\begin{aligned} & g_{N_2}(\nabla_{B_3}^{N_2} \vartheta_* B_4, B_2) \\ &= g_{N_2}((\nabla^{N_2} \vartheta_*)(B_3, A_4)^{(range \vartheta_*)^\perp} \\ &\quad + \nabla_{B_3}^{\vartheta \perp} \alpha_1 B_2, P\vartheta_* B_4) + \eta(\nabla_{B_3}^{N_2} \vartheta_* B_4) \eta(B_2). \end{aligned}$$

This implies the proof of i.

On the other hand, by the virtue of (3), (8), (12) and (15) we have

$$\begin{aligned} & g_{N_2}(\nabla_{B_3}^{N_2} \vartheta_* A_3, \vartheta_* B_3) \\ &= g_{N_2}(\beta_1(\nabla^{N_2} \vartheta_*)(B_3, A_3)^{(range \vartheta_*)^\perp}, \vartheta_* B_3). \end{aligned}$$

Since D_2 defines a totally geodesic foliation on N_2 then we can say that $\beta_1(\nabla^{N_2} \vartheta_*)(B_3, A_3)^{(range \vartheta_*)^\perp}$ has no components in $\Gamma(D_2)$. This completes the proof of ii. \square

Theorem 3.3. *Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. If $(\text{range } \vartheta_*)$ defines a totally geodesic foliation on N_2 and ϑ is a horizontally homothetic cRm then we have*

$$\begin{aligned} & g_{N_2}(S_{\alpha_1 B_1} \vartheta_* A_1, \phi \vartheta_* A_2) \\ &\quad - g_{N_2}(\vartheta_*(\nabla_{A_1}^{N_1} A_3), \phi \vartheta_* A_2) \\ &= g_{N_2}(S_{\omega \vartheta_* A_2} \vartheta_* A_1, \beta_1 B_1) - g_{N_2}(\nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_2, \alpha_1 B_1) \\ &\quad - \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1) \end{aligned} \tag{16}$$

for any $A_1, A_2 \in \Gamma(\ker \vartheta_*)^\perp$ such that

$$\vartheta_* A_1, \vartheta_* A_2 \in \Gamma(\text{range } \vartheta_*), B_1 \in \Gamma(\text{range } \vartheta_*)^\perp$$

and $\vartheta_* A_3 = \beta_1 B_1$.

Proof. For $A_1, A_2 \in \Gamma(\ker \vartheta_*)^\perp$ and $B_1 \in \Gamma(\text{range } \vartheta_*)^\perp$, using (3), (5) and from (15), (14) and $\vartheta_* A_3 = \beta_1 B_1$ we get

$$\begin{aligned} & g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_2, B_1) \\ = & -g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_3, \phi \vartheta_* A_2) + g_{N_2}(\nabla_{A_1}^{N_2} \omega \vartheta_* A_2, \vartheta_* A_3) \\ & -g_{N_2}(\nabla_{A_1}^{N_2} \alpha_1 B_1, \phi \vartheta_* A_2) + g_{N_2}(\nabla_{A_1}^{N_2} \omega \vartheta_* A_2, \alpha_1 B_1) \\ & + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1). \end{aligned}$$

Since ϑ is a cRm, using $\vartheta_* A_3 = \beta_1 B_1$, (7), (13), (8) and if we take $A_1(\ln \lambda) = g_{N_1}(A_1, H\text{grad} \ln \lambda)$ and $A_3(\ln \lambda) = g_{N_1}(A_3, H\text{grad} \ln \lambda)$, then we obtain

$$\begin{aligned} & g_{N_2}(\nabla_{A_1}^{N_2} \vartheta_* A_2, B_1) \tag{17} \\ = & -g_{N_1}(A_1, H\text{grad} \ln \lambda) g_{N_2}(\vartheta_* A_3, \phi \vartheta_* A_2) \\ & -g_{N_1}(A_3, H\text{grad} \ln \lambda) g_{N_2}(\vartheta_* A_1, \phi \vartheta_* A_2) \\ & -g_{N_1}(A_1, A_3) g_{N_2}(\vartheta_*(\text{grad} \ln \lambda), \phi \vartheta_* A_2) \\ & -g_{N_2}(\vartheta_*(\nabla_{A_1}^{N_1} A_3), \phi \vartheta_* A_2) \\ & -g_{N_2}(S_{\omega \vartheta_* A_2} \vartheta_* A_1, \beta_1 B_1) + g_{N_2}(S_{\alpha_1 B_1} \vartheta_* A_1, \phi \vartheta_* A_2) \\ & + g_{N_2}(\nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_2, \alpha_1 B_1) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_2) \eta(B_1). \end{aligned}$$

Since $(\text{range } \vartheta_*)$ describes a totally geodesic foliation on N_2 and ϑ is a horizontally homothetic cRm, then from (17) we obtain (16). \square

Theorem 3.4. *Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then $(\text{range } \vartheta_*)^\perp$ defines a totally geodesic foliation on N_2 if and only if*

$$\begin{aligned} & g_{N_2}(\alpha_1 B_1, (\nabla \vartheta_*)(A_1, A_2))^{(\text{range } \vartheta_*)^\perp} \\ = & g_{N_2}(B_2, [B_1, \vartheta_* A_1] + \nabla_{\vartheta_* A_1}^{\vartheta \perp} P \beta_1 B_1 \\ & + \alpha_1 \nabla_{\vartheta_* A_1}^{\vartheta \perp} P \alpha_1 B_1), \end{aligned}$$

for any $B_1, B_2 \in \Gamma(\text{range } \vartheta_*)^\perp$ and $A_1, A_2 \in \Gamma(\ker \vartheta_*)^\perp$ such that $\vartheta_* A_2 = \beta_1 B_2$.

Proof. For any $B_1, B_2 \in \Gamma(\text{range } \vartheta_*)^\perp$ and $A_1, A_2 \in \Gamma(\ker \vartheta_*)^\perp$, using (3), (5) and since N_2 is a cosymplectic manifold,

$$\begin{aligned} & g_{N_2}(\nabla_{B_1}^{N_2} B_2, \vartheta_* A_1) \\ = & -g_{N_2}(B_2, [B_1, \vartheta_* A_1]) - g_{N_2}(P B_2, \nabla_{\vartheta_* A_1}^{N_2} P B_1) \\ & + \eta(\nabla_{B_1}^{N_2} B_2) \underbrace{\eta(\vartheta_* A_1)}_0. \end{aligned}$$

Then using (7), (8), (14), (15) and from (12), (10) and since $(range\vartheta_*)^\perp$ defines a totally geodesic foliation we have

$$\begin{aligned} & g_{N_2}(\alpha_1 B_1, (\nabla\vartheta_*)(A_1, A_2)^{(range\vartheta_*)^\perp}) \\ &= g_{N_2}(B_2, [B_1, \vartheta_* A_1] + \nabla_{\vartheta_* A_1}^{\vartheta^\perp} P\beta_1 B_1 \\ &\quad + \alpha_1 \nabla_{\vartheta_* A_1}^{\vartheta^\perp} P\alpha_1 B_1). \end{aligned}$$

This completes the proof. \square

Remark 3.2. Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. From the second fundamental form, one can easily see that $ker\vartheta_*$ and $(ker\vartheta_*)^\perp$ define a totally geodesic foliation on N_1 .

From the above fact we can state following theorem.

Theorem 3.5. Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then ϑ is totally geodesic foliation if and only if

$$\begin{aligned} & \phi((\nabla\vartheta_*)(A_1, A_2)^{range\vartheta_*} - \vartheta_*(\nabla_{A_1}^{N_1} A_2) - S_{\omega\vartheta_* A_3} \vartheta_* A_1) \quad (18) \\ &= -\beta_1((\nabla\vartheta_*)(A_1, A_2)^{(range\vartheta_*)^\perp} + \nabla_{A_1}^{\vartheta^\perp} \omega \vartheta_* A_3) - \vartheta_*(\nabla_{A_1}^{N_1} A_3), \end{aligned}$$

$$\begin{aligned} & \omega((\nabla\vartheta_*)(A_1, A_2)^{range\vartheta_*} - \vartheta_*(\nabla_{A_1}^{N_1} A_2) - S_{\omega\vartheta_* A_3} \vartheta_* A_1) \quad (19) \\ &= -\alpha_1((\nabla\vartheta_*)(A_1, A_2)^{(range\vartheta_*)^\perp} + \nabla_{A_1}^{\vartheta^\perp} \omega \vartheta_* A_3) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_3) \xi, \end{aligned}$$

for any $A_1, A_2, A_3 \in \Gamma(ker\vartheta_*)^\perp$ such that $\vartheta_* A_2 = \phi\vartheta_* A_3$.

Proof. For $A_1, A_3 \in \Gamma(ker\vartheta_*)^\perp$, using (2), (7), (14) and from (8) and (12) we have

$$\begin{aligned} & (\nabla^{N_2} \vartheta_*)(A_1, A_3) \\ &= -P((\nabla\vartheta_*)(A_1, A_2)^{range\vartheta_*}) \\ &\quad -P((\nabla\vartheta_*)(A_1, A_2)^{(range\vartheta_*)^\perp}) \\ &\quad -P(\vartheta_*(\nabla_{A_1}^{N_1} A_2)) + P(S_{\omega\vartheta_* A_3} \vartheta_* A_1) \\ &\quad -P(\nabla_{A_1}^{\vartheta^\perp} \omega \vartheta_* A_3) \\ &\quad -\vartheta_*(\nabla_{A_1}^{N_1} A_3) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_3) \xi. \end{aligned}$$

Since ϑ is a cRm, from (14), (15) and taking $range\vartheta_*$ and $(range\vartheta_*)^\perp$ components we have

$$\begin{aligned} & \phi((\nabla\vartheta_*)(A_1, A_3)^{range\vartheta_*} \\ &= -\phi((\nabla\vartheta_*)(A_1, A_2)^{range\vartheta_*}) + \vartheta_*(\nabla_{A_1}^{N_1} A_2) \\ &\quad -S_{\omega\vartheta_* A_3} \vartheta_* A_1) - \beta_1((\nabla\vartheta_*)(A_1, A_2)^{(range\vartheta_*)^\perp} \\ &\quad + \nabla_{A_1}^{\vartheta^\perp} \omega \vartheta_* A_3) - \vartheta_*(\nabla_{A_1}^{N_1} A_3) \end{aligned}$$

$$\begin{aligned}
& (\nabla \vartheta_*)(A_1, A_3)^{(range \vartheta_*)^\perp} \\
= & -\omega((\nabla \vartheta_*)(A_1, A_2)^{range \vartheta_*} + \vartheta_*(\nabla_{A_1}^{N_1} A_2) \\
& - S_{\omega \vartheta_* A_3} \vartheta_* A_1) - \alpha_1((\nabla \vartheta_*)(A_1, A_2)^{(range \vartheta_*)^\perp} \\
& + \nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_3) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_3) \xi.
\end{aligned}$$

Thus $(\nabla \vartheta_*)(A_1, A_3) = 0$ if and only if (18) and (19) are satisfied. This completes the proof. \square

Proposition 3.1. *Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$ such that $\dim(range \vartheta_*) > 1$. Then the following statements are true.*

i. \bar{D}_1 defines a totally geodesic foliation if and only if $(\nabla \vartheta_*)(A_1, U_1)$ has no component in D_1 such that

$$S_{P \vartheta_* A'_1}(\cdot) g_{N_2}(\vartheta_* A_1, P \vartheta_* A_2) = \eta(\nabla_{A_1}^{N_1} A_2) \eta(A'_1)$$

for $A_1, A_2 \in \Gamma(\bar{D}_1)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_1 \in \Gamma(\bar{D}_2)$.

ii. \bar{D}_2 defines a totally geodesic foliation if and only if $(\nabla \vartheta_*)(A_2, U_1)$ has no component in D_2 such that

$$S_{P \vartheta_* A'_4}(\cdot) g_{N_2}(\vartheta_* A_3, P \vartheta_* A'_3) = \eta(\nabla_{\vartheta_* A_3}^{N_1} \vartheta_* A_4) \eta(A'_3)$$

for $A_2, A_3, A_4 \in \Gamma(\bar{D}_2)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_3 \in \Gamma(\bar{D}_1)$.

Proof. We know that \bar{D}_1 defines totally geodesic foliation if and only if

$$g_{N_1}(\nabla_{A_1}^{N_1} A_2, U_1) = 0$$

and

$$g_{N_1}(\nabla_{A_1}^{N_1} A_2, A'_1) = 0$$

for $A_1, A_2 \in \Gamma(\bar{D}_1)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_1 \in \Gamma(\bar{D}_2)$. Now, since ϑ is Riemannian map, using (1), (7) and (8) we have

$$g_{N_1}(\nabla_{A_1}^{N_1} A_2, U_1) = -g_{N_2}((\nabla \vartheta_*)(A_1, U_1), \vartheta_* A_2),$$

and similarly

$$g_{N_1}(\nabla_{A_1}^{N_1} A_2, A'_1) = -g_{N_2}(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A'_1, \vartheta_* A_2).$$

Since N_2 is cosymplectic manifold, using (3) and then (8), we have

$$\begin{aligned}
& g_{N_1}(\nabla_{A_1}^{N_1} A_2, A'_1) \\
= & -S_{P \vartheta_* A'_1}(\cdot) g_{N_2}(\vartheta_* A_1, P \vartheta_* A_2) + \eta(\nabla_{A_1}^{N_1} A_2) \eta(A'_1).
\end{aligned}$$

This completes the proof of i.

On the other hand, we know that \bar{D}_2 defines a totally geodesic foliation if and only if

$$g_{N_1}(\nabla_{A_3}^{N_1} A_4, U_1) = 0$$

and

$$g_{N_1}(\nabla_{A_3}^{N_1} A_4, A'_3) = 0$$

for $A_3, A_4 \in \Gamma(\bar{D}_2)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_1 \in \Gamma(\bar{D}_1)$. Now, since ϑ is Riemannian map, using (1) and (7) we have

$$g_{N_1}(\nabla_{A_3}^{N_1} A_4, U_1) = -g_{N_2}((\nabla \vartheta_*)(A_3, U_1), \vartheta_* A_4),$$

and similarly

$$g_{N_1}(\nabla_{A_3}^{N_1} A_4, A'_3) = -g_{N_2}(\nabla_{\vartheta_* A_3}^{N_2} \vartheta_* A_4, \vartheta_* A'_3).$$

Since N_2 is cosymplectic manifold, using (3), (5) and then (8), we have

$$\begin{aligned} & g_{N_1}(\nabla_{A_3}^{N_1} A_4, A'_3) \\ &= -S_{P\vartheta_* A_4}(\cdot)g_{N_2}(\vartheta_* A_3, P\vartheta_* A'_3) \\ & \quad + \eta(\nabla_{\vartheta_* A_3}^{N_1} \vartheta_* A_4)\eta(\vartheta_* A'_3). \end{aligned}$$

This completes the proof of ii. \square

Definition 3.4. [13] Let (N_1, g_{N_1}) be a Riemannian manifold and assume that the canonical foliations K_1 and K_2 such that $K_1 \cap K_2 = \{0\}$ everywhere. Then (N_1, g_{N_1}) is a locally product manifold if and only if K_1 and K_2 are totally geodesic foliations.

Theorem 3.6. Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$ such that $\dim(\text{range } \vartheta_*) > 1$. Then $(\ker \vartheta_*)^\perp$ is a locally product manifold of \bar{D}_1 and \bar{D}_2 if and only if

- $(\nabla \vartheta_*)(A_1, U_1)$ has no component in D_1 such that

$$S_{P\vartheta_* A'_1}(\cdot)g_{N_2}(\vartheta_* A_1, P\vartheta_* A_2) = \eta(\nabla_{A_1}^{N_1} A_2)\eta(A'_1)$$

for $A_1, A_2 \in \Gamma(\bar{D}_1)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_1 \in \Gamma(\bar{D}_2)$,

ii. $(\nabla \vartheta_*)(A_3, U_1)$ has no component in D_2 such that

$$S_{P\vartheta_* A_3}(\cdot)g_{N_2}(\vartheta_* A_3, P\vartheta_* A'_3) = \eta(\nabla_{\vartheta_* A_3}^{N_2} \vartheta_* A_4)\eta(A'_3)$$

for $A_2, A_3, A_4 \in \Gamma(\bar{D}_2)$, $U_1 \in \Gamma(\ker \vartheta_*)$ and $A'_3 \in \Gamma(\bar{D}_2)$.

Proof. The proof is clear by Proposition (3.1) and Definition (3.4). \square

Theorem 3.7. Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$ such that $\dim(\text{range } \vartheta_*) > 1$. Then the base manifold is locally product manifold $N_{2_{\text{range } \vartheta_*}} \times N_{2_{(\text{range } \vartheta_*)^\perp}}$ if and only if

$$\begin{aligned} 0 &= g_{N_2}(\vartheta_*(\nabla_{A_1}^{N_2} \phi \vartheta_* A_1), \beta_1 B_1) + g_{N_2}(\vartheta_*(\nabla_{A_1}^{\vartheta_* \perp} \omega \vartheta_* A_1), \beta_2 B_1) \\ & \quad + g_{N_2}(S_{\beta_2 B_1} \vartheta_* A_1, \phi \vartheta_* A_1) + \eta(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A_1)\eta(B_1) \end{aligned}$$

for $A_1 \in \Gamma(\bar{D}_1)$ and $B_1 \in \Gamma(\text{range } \vartheta_*)^\perp$.

Proof. Since N_2 is cosymplectic manifold, using (3) we have

$$\begin{aligned} & g_{N_2}(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A_1, B_1) \\ &= g_{N_2}(\nabla_{\vartheta_* A_1}^{N_2} P \vartheta_* A_1, P B_1) + \eta(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A_1)\eta(B_1), \end{aligned}$$

for $\vartheta_* A_1 \in \Gamma(\text{range} \vartheta_*)$ and $B_1 \in \Gamma(\text{range} \vartheta_*)^\perp$. Using (14), (15), (8) and then (7) we have

$$\begin{aligned} & g_{N_2}(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A_1, B_1) \\ &= g_{N_2}((\nabla \vartheta_*)(A_1, {}^* \vartheta_*(\phi \vartheta_* A_1)), \beta_1 B_1) \\ & \quad + g_{N_2}(S_{\beta_2 B_1} \vartheta_* A_1, \phi \vartheta_* A_1) + g_{N_2}(\nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1, \beta_2 B_1) \\ & \quad + \eta(\nabla_{\vartheta_* A_1}^{N_2} \vartheta_* A_1) \eta(B_1). \end{aligned}$$

From Definition (3.4), the proof is completed. \square

Now, we will examine the harmonicity of csiRm from a Riemannian manifold (N_1, g_{N_1}) to cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$ in the following theorem.

Theorem 3.8. *Let ϑ be a csiRm from a Riemannian manifold (N_1, g_{N_1}) to a cosymplectic manifold $(N_2, P, \xi, \eta, g_{N_2})$. Then ϑ is harmonic if and only if the following conditions are satisfied*

- i. The fibres are minimal,
- ii.

$$\begin{aligned} 0 &= \text{trace} \phi S_{\omega \vartheta_* A_1} A_1 - \beta_1 \nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1 \\ & \quad - \vartheta_*(\nabla_{A_1}^{N_1} A_1) - (\nabla_{A_1}^{N_2} P \phi \vartheta_* A_1)^{\text{range} \vartheta_*}, \end{aligned}$$

iii.

$$\begin{aligned} 0 &= \text{trace} \omega S_{\omega \vartheta_* A_1} A_1 - \alpha_1 \nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1 \\ & \quad - (\nabla_{A_1}^{N_2} P \phi \vartheta_* A_1)^{(\text{range} \vartheta_*)^\perp} + \eta((\nabla \vartheta_*)(A_1, A_1)^{(\text{range} \vartheta_*)^\perp}) \xi, \end{aligned}$$

for $A_1 \in (\ker \vartheta_*)^\perp$.

Proof. For $U_1 \in \ker \vartheta_*$, since $\vartheta_* U_1 = 0$, using (7) we get

$$(\nabla \vartheta_*)(U_1, U_1) = -\vartheta_*(\nabla_{U_1}^{N_1} U_1), \quad (20)$$

For $A_1 \in (\ker \vartheta_*)^\perp$ using (3), (7), (15), (12) and (8) we have

$$\begin{aligned} & (\nabla \vartheta_*)(A_1, A_1) \\ &= -\nabla_{A_1}^{N_2} P \phi \vartheta_* A_1 - P(-S_{\omega \vartheta_* A_1} \vartheta_* A_1 + \nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1) \\ & \quad - \vartheta_*(\nabla_{A_1}^{N_1} A_1) + \eta(\nabla_{A_1}^{N_2} \vartheta_* A_1) \xi. \end{aligned}$$

Since ϑ is a cRm, from (14), (15) and taking $\text{range} \vartheta_*$ and $(\text{range} \vartheta_*)^\perp$ components we have

$$\begin{aligned} & (\nabla \vartheta_*)(A_1, A_1)^{\text{range} \vartheta} \\ &= \phi S_{\omega \vartheta_* A_1} \vartheta_* A_1 - \beta_1 \nabla_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1 \\ & \quad - \vartheta_*(\nabla_{A_1}^{N_1} A_1) - (\nabla_{A_1}^{N_2} P \phi \vartheta_* A_1)^{\text{range} \vartheta} \end{aligned} \quad (21)$$

and

$$\begin{aligned}
 & (\bigtriangledown \vartheta_*)(A_1, A_1)^{(range \vartheta_*)^\perp} \\
 = & \omega S_{\omega \vartheta_* \vartheta_* A_1} \vartheta_* A_1 - \alpha_1 \bigtriangledown_{A_1}^{\vartheta \perp} \omega \vartheta_* A_1 \\
 & - (\bigtriangledown_{A_1}^{N_2} P \phi \vartheta_* A_1)^{(range \vartheta_*)^\perp} \\
 & + \eta((\bigtriangledown \vartheta_*)(A_1, A_1)^{(range \vartheta_*)^\perp}) \xi.
 \end{aligned} \tag{22}$$

Thus the proof is completed from (20), (21) and (22). \square

REFERENCES

- [1] *M. A. Akyol and B. Şahin*, Conformal slant Riemannian maps to Kahler manifolds, *Tokyo J. Math.*, **42** (2019), No. 1, 225-237.
- [2] *M. A. Akyol and B. Şahin*, Conformal anti-invariant Riemannian maps to Kaehler manifolds, *Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.*, **80** (2018), No. 4, 187-198.
- [3] *M. A. Akyol and B. Şahin*, Conformal semi-invariant Riemannian maps to Kähler manifolds, *Revista de la Unión Matemática Argentina*, **60** (2019), No. 2, 459-468.
- [4] *D. E. Blair*, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math, 509; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976.
- [5] *A. E. Fischer*, Riemannian maps between Riemannian manifolds, *Contemp. Math.*, **132** (1992), 331-366.
- [6] *Y. Gündüzalp and M. A. Akyol*, Remarks on conformal anti-invariant Riemannian maps to cosymplectic manifolds, *Hacettepe Journal of Mathematics and Statistics*, (2021) 1-9.
- [7] *J. P. Jaiswal*, Harmonic maps on Sasakian manifolds, *J. Geom.*, **104** (2013) (2), 309-315.
- [8] *T. Nore*, Second fundamental form of a map, *Annali di Matematica pura ed applicata*, **146** (1986), 281-310.
- [9] *B. Pandey, J. P. Jaiswal and R. H. Ojha*, Necessary and Sufficient Conditions for the Riemannian Map to be a Harmonic Map on Cosymplectic Manifolds, *Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.*, **85** (2015) No. 2, 265-268.
- [10] *R. Prasad and S. Pandey*, Slant Riemannian maps from an almost contact manifold, *Filomat*, **31** (2017) No. 13, 3999-4007.
- [11] *R. Prasad and S. Kumar*, Slant Riemannian maps from Kenmotsu manifolds into Riemannian manifolds, *Glob. J. Pure Appl. Math.*, **13** (2017), 1143-1155.
- [12] *M. Polat and K. Meena*, Clairaut semi-invariant Riemannian maps to Kähler manifolds, (2023), arXiv preprint arXiv:2303.08108.
- [13] *R. Ponge and H. Reckziegel*, Twisted products in pseudo-Riemannian geometry, *Geometriae Dedicata*, **48** (1993) No. 1, 15-25.
- [14] *B. Şahin*, Invariant and anti-invariant Riemannian maps to Kahler manifolds, *Int. J. Geom. Methods Mod. Phys.*, **7** (2010), No. 3, 1-19.
- [15] *B. Şahin*, Riemannian Submersions Riemannian Maps in Hermitian Geometry and their Applications, Elsevier, Academic Press, 2017.
- [16] *B. Şahin*, Conformal Riemannian maps between Riemannian manifolds their harmonicity and decomposition theorems, *Acta Appl. Math.*, **109** (2010), No. 3, 829-847.

- [17] *B. Şahin and S. Yanan*, Conformal Riemannian maps from almost Hermitian manifolds, *Turkish J. Math.*, **42** (2018), No. 5, 2436-2451.
- [18] *B. Şahin*, Semi-invariant Riemannian maps from almost Hermitian manifolds, *Indag. Math.*, **23** (2012), 80-94.
- [19] *B. Şahin*, Slant Riemannian maps from almost Hermitian manifolds, *Quaest. Math.*, **36** (2013), 449-461.
- [20] *A. Yadav and K. Meena*, Riemannian maps whose total manifolds admit a Ricci soliton, *Journal of Geometry and Physics*, **168** (2021), 104317.