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A STUDY ON CONFORMAL SEMI-INVARIANT 
RIEMANNIAN MAPS TO COSYMPLECTIC MANIFOLDS

Murat Polat1

In [3], Akyol and Şahin introduced the concept of conformal
semi-invariant Riemannian maps to almost Hermitian manifolds. In this
article, we expand this concept to almost contact metric manifolds as a
generalization of totally real submanifolds and semi-invariant Riemannian
maps. Herewith, we present conformal semi-invariant Riemannian maps
from Riemannian manifolds to cosymplectic manifolds. To ensure the exis-
tence of this concept, we prepare a illustrative example, investigate the ge-
ometry of the leaves of D1, D2, D̄1 and D̄2. We find necessary and sufficient
conditions for conformal semi-invariant Riemannian maps to be totally ge-
odesic. We also investigate the harmonicity of such maps.
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1. Introduction

Fischer introduced Riemannian map between Riemannian manifolds as
a generalization of an isometric immersion and Riemannian submersion that
satisfies the well known generalized eikonal equation ∥ϑ∗∥2 = rankϑ, which is
a bridge between geometric optics and physical optics [5]. Let ϑ : (N1, gN1) →
(N2, gN2) be a smooth map between Riemannian manifolds such that 0 <
rankϑ < min {dim(N1), dim(N2)} . We state the kernel space of ϑ∗ by Vq =
kerϑ∗q at q ∈ N1 and consider the orthogonal complementary space Hq =
(kerϑ∗q)

⊥ to kerϑ∗q in TqN1. Then the tangent space TqN1 of N1 at q has the
decomposition TqN1 = (kerϑ∗q)⊕ (kerϑ∗q)

⊥ = Vq ⊕Hq. We state the range of
ϑ∗ by rangeϑ∗ at q ∈ N1 and consider the orthogonal complementary space
(rangeϑ∗q)

⊥ to rangeϑ∗q in the tangent space Tϑ(q)N2 of N2 at ϑ(q) ∈ N2.
Since rankϑ < min {dim(N1), dim(N2)} , we have (kerϑ∗q)

⊥ ̸= {0} . Therefore
the tangent space Tϑ(q)N2 of N2 at ϑ(q) ∈ N2 has the decomposition Tϑ(q)N2 =
(rangeϑ∗q) ⊕ (rangeϑ∗q)

⊥. Then ϑ is called Riemannian map at q ∈ N1 if
the horizontal restriction ϑh

∗q : (kerϑ∗q)
⊥ → (rangeϑ∗q) is a linear isometry

between the spaces ((kerϑ∗q)
⊥, gN1q

|(kerϑ∗q )
⊥) and (rangeϑ∗q , gN2ϑ(q)|rangeϑ∗q ).
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In other words, ϑ satisfies

gN2(ϑ∗A1, ϑ∗A2) = gN1(A1, A2), (1)

for all A1, A2 vector field tangent to Γ(kerϑ∗q)
⊥.

Different features of Riemannian maps have been investigated extensively
by many authors such as [1, 7, 9, 10, 14, 18, 19, 11, 6, 20]. Detailed development
in the theory of Riemannian map can be found in [15].

Conformal Riemannian maps as a generalization of Riemannian maps
and the harmonicity of such maps have been introduced in [16, 17]. Conformal
anti-invariant Riemannian maps have been studied in [2, 12]. In this article,
we expand this concept to almost contact metric manifolds as a generalization
of semi-invariant Riemannian maps and totally real submanifolds.

The paper is organized as follows. Section 2 contains preliminaries. Sec-
tion 3 includes conformal semi-invariant Riemannian maps from Riemannian
manifolds to cosymplectic manifolds and provides this notion by non-trivial
example. Then, we get a decomposition theorem by using the existence of con-
formal semi-invariant Riemannian maps. Moreover, conformal semi-invariant
Riemannian maps allow us to obtain new conditions for a map to be harmonic.
We also investigated the total geodesicity of conformal semi-invariant maps.

2. Preliminaries

Let N be an odd-dimensional smooth manifold. Then, N has an almost
contact structure [15] if there exist a tensor field P of type−(1, 1), a vector
field ξ, and 1-form η on N such that

P 2E1 = −E1 + η(E1)ξ, Pξ = 0, η ◦ P = 0, η(ξ) = 1. (2)

If there exists a Riemannian metric gN on an almost contact manifold N
satisfying:

gN(PE1, PE2) = gN(E1, E2)− η(E1)η(E2), (3)

gN(E1, PE2) = −gN(PE1, E2),

η(E1) = gN(E1, ξ), (4)

where E1, E2 are any vector fields on N , then N is called an almost contact
metric manifold [4] with an almost contact structure (P, ξ, η, gN) and is sym-
bolized by (N,P, ξ, η, gN).

A manifold N with the structure (P, ξ, η, gN) is said to be cosymplectic
[15] if

(▽N
E1
P )E2 = 0, (5)

for any vector fields E1, E2 on N , where ▽ stands for the Riemannian connec-
tion of the metric gN on N . For a cosymplectic manifold, we get

▽N
E1
ξ = 0, (6)

for any vector field E1 on N .
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ϑ∗ can be considered as a part of bundle hom(TN1, ϑ
−1TN2) → N1, where

ϑ−1TN2 is the pullback bundle. The bundle has a connection ▽ induced from

the pullback connection
N2

▽ϑ and the Levi-Civita connection ▽N1 . Then the
second fundamental form (▽ϑ∗)(A1, A2) of ϑ is given by [8]

(▽ϑ∗)(A1, A2) =
N2

▽ϑ
A1
ϑ∗A2 − ϑ∗(▽N1

A1
A2), (7)

for all A1, A2 ∈ Γ(TN1), where
N2

▽ϑ
A1
ϑ∗A2 ◦ ϑ =

N2

▽ϑ
ϑ∗A1

ϑ∗A2. It is known that
(▽ϑ∗)(A1, A2) is symmetric and (▽ϑ∗)(A1, A2) has no component in rangeϑ∗,
for all A1, A2 ∈ Γ(kerϑ∗)

⊥ [15]. It means that, we get

(▽ϑ∗)(A1, A2) ∈ Γ(rangeϑ∗)
⊥.

The tension field of ϑ is defined to be the trace of the second fundamental

form of ϑ, i.e. τ(ϑ) = trace(▽ϑ∗) =
m∑
i=1

(▽ϑ∗) (ei, ei), where m = dim(N1)

and {e1, e2, ..., em} is the orthonormal frame on N1. Moreover, a map ϑ :
(N1, gN1) → (N2, gN2) is harmonic if and only if the tension field of ϑ vanishes
at each point q ∈ N1.

For any section B1 of (rangeϑ∗)
⊥ and vector field A1 on N1, we get

▽ϑ⊥
A1

B1, which is the orthogonal projection of ▽N2
A1
B1 on (rangeϑ∗)

⊥, where

▽ϑ⊥ is linear connection on (rangeϑ∗)
⊥ such that ▽ϑ⊥gN2 = 0. For a Rie-

mannian map ϑ we describe SB1 as ([15], p. 188)

▽N2
ϑ∗A1

B1 = −SB1ϑ∗A1 +▽ϑ⊥
A1

B1, (8)

where SB1ϑ∗A1 is the tangential component of ▽N2
ϑ∗A1

B1 and ▽N2 is Levi-Civita
connection on N2. Therefore, we have

▽N2
ϑ∗A1

B1(q) ∈ Tϑ(q)N2, SB1ϑ∗A1 ∈ ϑ∗q(TqN1)

and

▽ϑ⊥
A1

B1 ∈ (ϑ∗q(TqN1))
⊥

at q ∈ N1. We know that SB1ϑ∗A1 is bilinear in B1, and ϑA1 at q depends only
on B1q and ϑ∗qA1q. From here, using (7) and (8) we have

gN2(SB1ϑ∗A1, ϑ∗A2) = gN2(B1, (▽ϑ∗)(A1, A2)), (9)

where SB1 is self adjoint operator forA1, A2 ∈ Γ(kerϑ∗)
⊥ andB1 ∈ Γ(rangeϑ∗)

⊥.
For all B1, B2 ∈ Γ(rangeϑ∗)

⊥ we define

▽N2
B1
B2 = R(▽N2

B1
B2) +▽ϑ⊥

B1
B2,

where R(▽N2
B1
B2) ) and▽ϑ⊥

B1
B2 denote rangeϑ∗ and (rangeϑ∗)

⊥ part of▽N2
B1
B2,

respectively. Therefore (rangeϑ∗)
⊥ is totally geodesic if and only if

▽N2
B1
B2 = ▽ϑ⊥

B1
B2. (10)
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3. Conformal semi-invariant Riemannian maps to cosymplectic
manifolds

Definition 3.1. [17] Let ϑ : (N1, gN1) → (N2, gN2) be a conformal Riemannian
map (cRm). Then, ϑ is a horizontally homothetic map if H(gradλ) = 0.

Definition 3.2. [16] Let ϑ : (N1, gN1) → (N2, gN2) be a smooth map between
Riemannian manifolds. Then, ϑ is a cRm at q ∈ N1 if 0 < rankϑ∗q ≤
min {dim(N1), dim(N2)} and ϑ∗q maps the horizontal space H(q) = (kerϑ∗q)

⊥

conformally into rangeϑ∗q, it means that there exists a number λ2(q) ̸= 0 such
that

gN2(ϑ∗qA1, ϑ∗qA2) = λ2(q)gN1(A1, A2),

for A1, A2 ∈ Γ(kerϑ∗)
⊥. Moreover, if ϑ is cRm at any q ∈ N1, then ϑ is called

cRm.

Lastly, the second fundamental form of ϑ is given by [16]

(▽ϑ∗)(A1, A2)
rangeϑ∗ = A1 (lnλ)ϑ∗A2 + A2 (lnλ)ϑ∗A1 (11)

−gN1(A1, A2)ϑ∗(grad lnλ).

Therefore, if we state the (rangeϑ∗)
⊥ component of (▽ϑ∗)(A1, A2) by

(▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥ , then we can write

(▽ϑ∗)(A1, A2) = (▽ϑ∗)(A1, A2)
rangeϑ∗ (12)

+(▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥ ,

for A1, A2 ∈ Γ(kerϑ∗)
⊥. Therefore we get

(▽ϑ∗)(A1, A2) = A1 (lnλ)ϑ∗A2 + A2 (lnλ)ϑ∗A1 (13)

−gN1(A1, A2)ϑ∗(grad lnλ)

+(▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥ .

Definition 3.3. Let ϑ be a cRm from a Riemannian manifold (N1, gN1) to
an almost contact metric manifold (N2, P, ξ, η, gN2). Then ϑ is a conformal
semi-invariant Riemannian map (csiRm) at q ∈ N1 if there is a subbundle
D1 ⊆ (rangeϑ∗) such that

rangeϑ∗q = D1 ⊕D2, P (D1) = D1, P (D2) ⊆ (rangeϑ∗q)
⊥,

where D2 is orthogonal complementary to D1 in rangeϑ∗. If ϑ is a csiRm for
any q ∈ N1, then ϑ is called a csiRm.

For ϑ∗A1 ∈ Γ(rangeϑ∗), then we write

Pϑ∗A1 = ϕϑ∗A1 + ωϑ∗A1, (14)

where ϕϑ∗A1 ∈ Γ(D1) and ωϑ∗A1 ∈ Γ(PD2). Also, for ϑ∗A1 ∈ Γ(D1) and
ϑ∗A2 ∈ Γ(D2), we have gN2(ϑ∗A1, ϑ∗A2) = 0. Thus we have two orthogonal
distributions D̄1 and D̄2 such that

(kerϑ∗q)
⊥ = D̄1 ⊕ D̄2.
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On the other hand, for B1 ∈ Γ((rangeϑ∗)
⊥
), then we have

PB1 = β1B1 + α1B1, (15)

where β1B1 ∈ Γ(D1) and α1B1 ∈ Γ(η). Here η is the complementary orthog-

onal distribution to ω(D2) in (rangeϑ∗)
⊥
. It is easy to see that η is invariant

with respect to P .

Example 3.1. Let N1 be an Euclidean space given by

N1 =
{
(u1, u2, u3, u4, u5) ∈ R5 : u1 ̸= 0, u2 ̸= 0, u5 ̸= 0

}
.

We describe the Riemannian metric gN1 on N1 given by

gN1 = du2
1 + du2

2 + du2
3 + du2

4 + du2
5.

Let N2 = {(v1, v2, v3, v4, v5) ∈ R5} be a Euclidean space with metric gN2 on N2

given by

gN2 = e2u1dv21 + e2u1dv22 + e2u1dv23 + dv24 + dv25.

An almost contact structure (P, ξ, η) on (N2, gN2) can be choosen as

P (
∂

∂v1
) =

∂

∂v2
, P (

∂

∂v2
) = − ∂

∂v1
,

P (
∂

∂v3
) =

∂

∂v4
, P (

∂

∂v4
) = − ∂

∂v3
,

η = dv5, ξ =
∂

∂v5
, P (ξ) = 0.

Then a basis of TqN1 is{
ei = eu1

∂

∂ui

for 1 ≤ i ≤ 5

}
,

and a P -basis on Tϑ(q)N2 is{
e∗j =

∂

∂vj
for 1 ≤ j ≤ 4, e∗4 = eu1

∂

∂v4
, ξ = e∗5 =

∂

∂v5

}
,

for all q ∈ N1. Now, we define a map ϑ : (N1, gN1) → (N2, gN2 , P ) by

ϑ(u1, u2, u3, u4, u5) = (u1, u2, u5, 0, 0).

Then, we have

kerϑ∗ = Span {U1 = e3, U2 = e4} ,
(kerϑ∗)

⊥ = Span {A1 = e1, A2 = e2, A3 = e5} .
Hence it is easy to see that

ϑ∗A1 = eu1e∗1, ϑ∗A2 = eu1e∗2, ϑ∗A3 = eu1e∗3

and

gN2(ϑ∗ (A1i) , ϑ∗ (A1j)) = e2u1gN1(A1i, A1j)
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for i, j = 1, 2, 3. Thus ϑ is a cRm with λ = e2u1 and we get

rangeϑ∗ = Span {eu1e∗1, e
u1e∗2, e

u1e∗3} ,
(rangeϑ∗)

⊥ = Span {e∗4, ξ} ,
D1 = Span {eu1e∗1, e

u1e∗2} , D2 = Span {eu1e∗3} .
Moreover it is easy to see that

Pϑ∗A1 = eu1e∗2, Pϑ∗A2 = −eu1e∗1, Pϑ∗A3 = eu1e∗4.

Thus ϑ is a csiRm.

Remark 3.1. Throughout this article ξ ∈ (rangeϑ∗)
⊥ will be taken as the Reeb

vector field.

We obtain the following theorem for the geometry of the leaves of D1.

Theorem 3.1. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to
a cosymplectic manifold (N2, P, ξ, η, gN2). Then D1 describes a totally geodesic
foliation on N2 if and only if

i. gN2(β1B1 (lnλ)ϑ∗A1+ϑ∗(▽N1
A1
A3), Pϑ∗A2) = gN2(Sα1B1ϑ∗A1, Pϑ∗A2)+

η(▽N2
A1
ϑ∗A2)η(B1),
ii. ϕSPϑ∗B2ϑ∗A1 has no components in Γ(D1),
for any A1, A2, A3, B2 ∈ Γ(kerϑ∗)

⊥ such that

ϑ∗A1, ϑ∗A2 ∈ Γ(D1), ϑ∗B2 ∈ Γ(D2)

and B1 ∈ Γ(rangeϑ∗)
⊥ such that ϑ∗A3 = β1B1.

Proof. For ϑ∗A1, ϑ∗A2 ∈ Γ(D1), B1 ∈ Γ(rangeϑ∗)
⊥ and ϑ∗B2 ∈ Γ(D2), since ϑ

is a cRm, using (2), (3) and then from (4), (5), (6), (7) and (15), we have

gN2(▽N2
A1
ϑ∗A2, B1)

= −gN2((▽N2ϑ∗)(A1, A3) + ϑ∗(▽N1
A1
A3), Pϑ∗A2)

+gN2(Sα1B1ϑ∗A1, Pϑ∗A2)− gN2(▽ϑ⊥
A1

ϑ∗A1, Pϑ∗A2)

+η(▽N2
A1
ϑ∗A2)η(B1),

where β1B1 = ϑ∗A3 ∈ Γ(D2) for A3 ∈ Γ(kerϑ∗)
⊥. From (11) and using

(12) in the above equation and since grad lnλ ∈ (rangeϑ∗)
⊥, using (3) and

ϑ∗A3 = β1B1 we get

gN2(▽N2
A1
ϑ∗A2, B1)

= −gN2(β1B1 (lnλ)ϑ∗A1 + ϑ∗(▽N1
A1
A3), Pϑ∗A2)

+gN2(Sα1B1ϑ∗A1, Pϑ∗A2) + η(▽N2
A1
ϑ∗A2)η(B1).

This implies the proof of i.
On the other hand, by using (3) and from (4), (5), (6), (14) and (8) we

get
gN2(▽N2

A1
ϑ∗A2, ϑ∗B2) = gN2(−ϕSPϑ∗B2ϑ∗A1, ϑ∗A2).

This implies the proof of ii. □
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We obtain the following theorem for the geometry of the leaves of D2.

Theorem 3.2. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to
a cosymplectic manifold (N2, P, ξ, η, gN2). Then D2 describes a totally geodesic
foliation on N2 if and only if

i. η(▽N2
B3
ϑ∗B4)η(B2) = gN2((▽N2ϑ∗)(B3, A4)

(rangeϑ∗)⊥−▽φ⊥
B3

α1B2, Pϑ∗B4),

ii. β1(▽N2ϑ∗)(B3, A3)
(rangeϑ∗)⊥ has no components in Γ(D2)

for any A3, A4, B3, B4 ∈ Γ(kerϑ∗)
⊥ such that

ϑ∗A3, ϑ∗B3, ϑ∗B4 ∈ Γ(D2), B2 ∈ Γ(rangeϑ∗)
⊥

and ϑ∗A4 = β1B2.

Proof. For ϑ∗A3, ϑ∗B3, ϑ∗B4 ∈ Γ(D2), B2 ∈ Γ(rangeϑ∗)
⊥, using (3), (5), (14),

(15) and since ϑ is a cRm, then from (7), (8) and ϑ∗A4 = β1B2 we have

gN2(▽N2
B3
ϑ∗B4, B2)

= −gN2((▽N2ϑ∗)(B3, A4) + ϑ∗(▽N1
B3
A4)

−Sα1B2ϑ∗B3 +▽ϑ⊥
B3

α1B2, Pϑ∗B4)

+η(▽N2
B3
ϑ∗B4)η(B2).

Since D2 defines a totally geodesic foliation on N2, using (12) we have

gN2(▽N2
B3
ϑ∗B4, B2)

= gN2((▽N2ϑ∗)(B3, A4)
(rangeϑ∗)⊥

+▽ϑ⊥
B3

α1B2, Pϑ∗B4) + η(▽N2
B3
ϑ∗B4)η(B2).

This implies the proof of i.
On the other hand, by the virtue of (3), (8), (12) and (15) we have

gN2(▽N2
B3
ϑ∗A3, ϑ∗B3)

= gN2(β1(▽N2ϑ∗)(B3, A3)
(rangeϑ∗)⊥ , ϑ∗B3).

Since D2 defines a totally geodesic foliation on N2 then we can say that
β1(▽N2ϑ∗)(B3, A3)

(rangeϑ∗)⊥ has no components in Γ(D2). This completes the
proof of ii. □

Theorem 3.3. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to a
cosymplectic manifold (N2, P, ξ, η, gN2). If (rangeϑ∗) defines a totally geodesic
foliation on N2 and ϑ is a horizontally homothetic cRm then we have

gN2(Sα1B1ϑ∗A1, ϕϑ∗A2) (16)

−gN2(ϑ∗(▽N1
A1
A3), ϕϑ∗A2)

= gN2(Sωϑ∗A2ϑ∗A1, β1B1)− gN2(▽ϑ⊥
A1

ωϑ∗A2, α1B1)

−η(▽N2
A1
ϑ∗A2)η(B1)
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for any A1, A2 ∈ Γ(kerϑ∗)
⊥ such that

ϑ∗A1, ϑ∗A2 ∈ Γ(rangeϑ∗), B1 ∈ Γ(rangeϑ∗)
⊥

and ϑ∗A3 = β1B1.

Proof. For A1, A2 ∈ Γ(kerϑ∗)
⊥ and B1 ∈ Γ(rangeϑ∗)

⊥, using (3), (5) and from
(15), (14) and ϑ∗A3 = β1B1we get

gN2(▽N2
A1
ϑ∗A2, B1)

= −gN2(▽N2
A1
ϑ∗A3, ϕϑ∗A2) + gN2(▽N2

A1
ωϑ∗A2, ϑ∗A3)

−gN2(▽N2
A1
α1B1, ϕϑ∗A2) + gN2(▽N2

A1
ωϑ∗A2, α1B1)

+η(▽N2
A1
ϑ∗A2)η(B1).

Since ϑ is a cRm, using ϑ∗A3 = β1B1, (7), (13), (8) and if we take
A1 (lnλ) = gN1(A1, Hgrad lnλ) and A3 (lnλ) = gN1(A3, Hgrad lnλ), then we
obtain

gN2(▽N2
A1
ϑ∗A2, B1) (17)

= −gN1(A1, Hgrad lnλ)gN2(ϑ∗A3, ϕϑ∗A2)

−gN1(A3, Hgrad lnλ)gN2(ϑ∗A1, ϕϑ∗A2)

−gN1(A1, A3)gN2(ϑ∗(grad lnλ), ϕϑ∗A2)

−gN2(ϑ∗(▽N1
A1
A3), ϕϑ∗A2)

−gN2(Sωϑ∗A2ϑ∗A1, β1B1) + gN2(Sα1B1ϑ∗A1, ϕϑ∗A2)

+gN2(▽ϑ⊥
A1

ωϑ∗A2, α1B1) + η(▽N2
A1
ϑ∗A2)η(B1).

Since (rangeϑ∗) describes a totally geodesic foliation on N2 and ϑ is a
horizontally homothetic cRm, then from (17) we obtain (16). □

Theorem 3.4. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to
a cosymplectic manifold (N2, P, ξ, η, gN2). Then (rangeϑ∗)

⊥ defines a totally
geodesic foliation on N2 if and only if

gN2(α1B1, (▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥)

= gN2(B2, [B1, ϑ∗A1] +▽ϑ⊥
ϑ∗A1

Pβ1B1

+α1 ▽ϑ⊥
ϑ∗A1

Pα1B1),

for any B1, B2 ∈ Γ(rangeϑ∗)
⊥ and A1, A2 ∈ Γ(kerϑ∗)

⊥ such that ϑ∗A2 =
β1B2.

Proof. For any B1, B2 ∈ Γ(rangeϑ∗)
⊥ and A1, A2 ∈ Γ(kerϑ∗)

⊥, using (3), (5)
and since N2 is a cosymplectic manifold,

gN2(▽N2
B1
B2, ϑ∗A1)

= −gN2(B2, [B1, ϑ∗A1])− gN2(PB2,▽N2
ϑ∗A1

PB1)

+η(▽N2
B1
B2)η(ϑ∗A1)︸ ︷︷ ︸

0

.
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Then using (7), (8), (14), (15) and from (12), (10) and since (rangeϑ∗)
⊥

defines a totally geodesic foliation we have

gN2(α1B1, (▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥)

= gN2(B2, [B1, ϑ∗A1] +▽ϑ⊥
ϑ∗A1

Pβ1B1

+α1 ▽ϑ⊥
ϑ∗A1

Pα1B1).

This completes the proof. □

Remark 3.2. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to
a cosymplectic manifold (N2, P, ξ, η, gN2). From the second fundamental form,
one can easly see that kerϑ∗ and (kerϑ∗)

⊥ define a totally geodesic foliation
on N1.

From the above fact we can state following theorem.

Theorem 3.5. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to a
cosymplectic manifold (N2, P, ξ, η, gN2). Then ϑ is totally geodesic foliation if
and only if

ϕ((▽ϑ∗)(A1, A2)
rangeϑ∗ − ϑ∗(▽N1

A1
A2)− Sωϑ∗A3ϑ∗A1) (18)

= −β1((▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥ +▽ϑ⊥

A1
ωϑ∗A3)− ϑ∗(▽N1

A1
A3),

ω((▽ϑ∗)(A1, A2)
rangeϑ∗ − ϑ∗(▽N1

A1
A2)− Sωϑ∗A3ϑ∗A1) (19)

= −α1((▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥ +▽ϑ⊥

A1
ωϑ∗A3) + η(▽N2

A1
ϑ∗A3)ξ,

for any A1, A2, A3 ∈ Γ(kerϑ∗)
⊥ such that ϑ∗A2 = ϕϑ∗A3.

Proof. For A1, A3 ∈ Γ(kerϑ∗)
⊥, using (2), (7), (14) and from (8) and (12) we

have

(▽N2ϑ∗)(A1, A3)

= −P ((▽ϑ∗)(A1, A2)
rangeϑ∗)

−P ((▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥)

−P (ϑ∗(▽N1
A1
A2)) + P (Sωϑ∗A3ϑ∗A1)

−P (▽ϑ⊥
A1

ωϑ∗A3)

−ϑ∗(▽N1
A1
A3) + η(▽N2

A1
ϑ∗A3)ξ.

Since ϑ is a cRm, from (14), (15) and taking rangeϑ∗ and (rangeϑ∗)
⊥

components we have

ϕ((▽ϑ∗)(A1, A3)
rangeϑ∗

= −ϕ((▽ϑ∗)(A1, A2)
rangeϑ∗) + ϑ∗(▽N1

A1
A2)

−Sωϑ∗A3ϑ∗A1)− β1((▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥

+▽ϑ⊥
A1

ωϑ∗A3)− ϑ∗(▽N1
A1
A3)
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(▽ϑ∗)(A1, A3)
(rangeϑ∗)⊥

= −ω((▽ϑ∗)(A1, A2)
rangeϑ∗ + ϑ∗(▽N1

A1
A2)

−Sωϑ∗A3ϑ∗A1)− α1((▽ϑ∗)(A1, A2)
(rangeϑ∗)⊥

+▽ϑ⊥
A1

ωϑ∗A3) + η(▽N2
A1
ϑ∗A3)ξ.

Thus (▽ϑ∗)(A1, A3) = 0 if and only if (18) and (19) are satisfied. This
completes the proof. □

Proposition 3.1. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1)
to a cosymplectic manifold (N2, P, ξ, η, gN2) such that dim(rangeϑ∗) > 1. Then
the following statements are true.

i. D̄1 defines a totally geodesic foliation if and only if (▽ϑ∗)(A1, U1) has
no component in D1 such that

SPϑ∗A
′
1
(.)gN2(ϑ∗A1, Pϑ∗A2) = η(▽N1

A1
A2)η(A

′

1)

for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′
1 ∈ Γ(D̄2).

ii. D̄2 defines a totally geodesic foliation if and only if (▽ϑ∗)(A2, U1)
has no component in D2 such that

SPϑ∗A4(.)gN2(ϑ∗A3, Pϑ∗A
′

3) = η(▽N1
ϑ∗A3

ϑ∗A4)η(A
′

3)

for A2, A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′
3 ∈ Γ(D̄2).

Proof. We know that D̄1 defines totally geodesic foliation if and only if

gN1(▽N1
A1
A2, U1) = 0

and
gN1(▽N1

A1
A2, A

′

1) = 0

for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′
1 ∈ Γ(D̄2). Now, since ϑ is Riemann-

ian map, using (1),(7) and (8) we have

gN1(▽N1
A1
A2, U1) = −gN2((▽ϑ∗)(A1, U1), ϑ∗A2),

and similarly

gN1(▽N1
A1
A2, A

′

1) = −gN2(▽N2
ϑ∗A1

ϑ∗A
′

1, ϑ∗A2).

Since N2 is cosymplectic manifold, using (3) and then (8), we have

gN1(▽N1
A1
A2, A

′

1)

= −SPϑ∗A
′
1
(.)gN2(ϑ∗A1, Pϑ∗A2) + η(▽N1

A1
A2)η(A

′

1).

This completes the proof of i.
On the other hand, we know that D̄2 defines a totally geodesic foliation

if and only if
gN1(▽N1

A3
A4, U1) = 0

and
gN1(▽N1

A3
A4, A

′

3) = 0
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for A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′
1 ∈ Γ(D̄1). Now, since ϑ is Riemann-

ian map, using (1) and (7) we have

gN1(▽N1
A3
A4, U1) = −gN2((▽ϑ∗)(A3, U1), ϑ∗A4),

and similarly

gN1(▽N1
A3
A4, A

′

3) = −gN2(▽N2
ϑ∗A3

ϑ∗A4, ϑ∗A
′

3).

Since N2 is cosymplectic manifold, using (3),(5) and then (8), we have

gN1(▽N1
A3
A4, A

′

3)

= −SPϑ∗A4(.)gN2(ϑ∗A3, Pϑ∗A
′

3)

+η(▽N1
ϑ∗A3

ϑ∗A4)η(ϑ∗A
′

3).

This completes the proof of ii. □

Definition 3.4. [13] Let (N1, gN1) be a Riemannian manifold and assume that
the canonical foliations K1 and K2 such that K1∩K2 = {0} everywhere. Then
(N1, gN1) is a locally product manifold if and only if K1 and K2 are totally
geodesic foliations.

Theorem 3.6. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to
a cosymplectic manifold (N2, P, ξ, η, gN2) such that dim(rangeϑ∗) > 1. Then
(kerϑ∗)

⊥ is a locally product manifold of D̄1 and D̄2 if and only if
i. (▽ϑ∗)(A1, U1) has no component in D1 such that

SPϑ∗A
′
1
(.)gN2(ϑ∗A1, Pϑ∗A2) = η(▽N1

A1
A2)η(A

′

1)

for A1, A2 ∈ Γ(D̄1), U1 ∈ Γ(kerϑ∗) and A
′
1 ∈ Γ(D̄2),

ii. (▽ϑ∗)(A3, U1) has no component in D2 such that

SPϑ∗A4(.)gN2(ϑ∗A3, Pϑ∗A
′

3) = η(▽N1
ϑ∗A3

ϑ∗A4)η(A
′

3)

for A2, A3, A4 ∈ Γ(D̄2), U1 ∈ Γ(kerϑ∗) and A
′
3 ∈ Γ(D̄2).

Proof. The proof is clear by Proposition (3.1) and Definition (3.4). □

Theorem 3.7. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to a
cosymplectic manifold (N2, P, ξ, η, gN2) such that dim(rangeϑ∗) > 1. Then the
base manifold is locally product manifold N2rangeϑ∗

×N2
(rangeϑ∗)⊥

if and only if

0 = gN2(ϑ∗(▽N2
A1
ϕϑ∗A1), β1B1) + gN2(ϑ∗(▽ϑ⊥

A1
ωϑ∗A1, β2B1)

+gN2(Sβ2B1ϑ∗A1, ϕϑ∗A1) + η(▽N2
ϑ∗A1

ϑ∗A1)η(B1)

for A1 ∈ Γ(D̄1) and B1 ∈ Γ(rangeϑ∗)
⊥.

Proof. Since N2 is cosymplectic manifold, using (3) we have

gN2(▽N2
ϑ∗A1

ϑ∗A1, B1)

= gN2(▽N2
ϑ∗A1

Pϑ∗A1, PB1) + η(▽N2
ϑ∗A1

ϑ∗A1)η(B1),
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for ϑ∗A1 ∈ Γ(rangeϑ∗) and B1 ∈ Γ(rangeϑ∗)
⊥. Using (14), (15), (8) and

then (7) we have

gN2(▽N2
ϑ∗A1

ϑ∗A1, B1)

= gN2((▽ϑ∗)(A1,
∗ ϑ∗(ϕϑ∗A1)), β1B1)

+gN2(Sβ2B1ϑ∗A1, ϕϑ∗A1) + gN2(▽ϑ⊥
A1

ωϑ∗A1, β2B1)

+η(▽N2
ϑ∗A1

ϑ∗A1)η(B1).

From Definition (3.4), the proof is completed. □

Now, we will examine the harmonicity of csiRm from a Riemannian man-
ifold (N1, gN1) to cosymplectic manifold (N2, P, ξ, η, gN2) in the following the-
orem.

Theorem 3.8. Let ϑ be a csiRm from a Riemannian manifold (N1, gN1) to a
cosymplectic manifold (N2, P, ξ, η, gN2). Then ϑ is harmonic if and only if the
following conditions are satisfied

i. The fibres are minimal,
ii.

0 = traceϕSωϑ∗A1A1 − β1 ▽ϑ⊥
A1

ωϑ∗A1

−ϑ∗(▽N1
A1
A1)− (▽N2Pϕϑ∗A1)

rangeϑ∗ ,

iii.

0 = traceωSωϑ∗A1A1 − α1 ▽ϑ⊥
A1

ωϑ∗A1

−(▽N2
A1
Pϕϑ∗A1)

(rangeϑ∗)⊥ + η((▽ϑ∗)(A1, A1)
(rangeϑ∗)⊥)ξ,

for A1 ∈ (kerϑ∗)
⊥.

Proof. For U1 ∈ kerϑ∗, since ϑ∗U1 = 0, using (7) we get

(▽ϑ∗)(U1, U1) = −ϑ∗(▽N1
U1
U1), (20)

For A1 ∈ (kerϑ∗)
⊥ using (3), (7), (15), (12) and (8) we have

(▽ϑ∗)(A1, A1)

= −▽N2
A1

Pϕϑ∗A1 − P (−Sωϑ∗A1ϑ∗A1 +▽ϑ⊥
A1

ωϑ∗A1)

−ϑ∗(▽N1
A1
A1) + η(▽N2

A1
ϑ∗A1)ξ.

Since ϑ is a cRm, from (14), (15) and taking rangeϑ∗ and (rangeϑ∗)
⊥

components we have

(▽ϑ∗)(A1, A1)
rangeϑ (21)

= ϕSωϑ∗A1ϑ∗A1 − β1 ▽ϑ⊥
A1

ωϑ∗A1

−ϑ∗(▽N1
A1
A1)− (▽N2

A1
Pϕϑ∗A1)

rangeϑ
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and

(▽ϑ∗)(A1, A1)
(rangeϑ∗)⊥ (22)

= ωSωϑ∗ϑ∗A1ϑ∗A1 − α1 ▽ϑ⊥
A1

ωϑ∗A1

−(▽N2
A1
Pϕϑ∗A1)

(rangeϑ∗)⊥

+η((▽ϑ∗)(A1, A1)
(rangeϑ∗)⊥)ξ.

Thus the proof is completed from (20), (21) and (22). □
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