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A KERNEL-BASED SUPPORT TENSOR DATA
DESCRIPTION FOR ONE-CLASS CLASSIFICATION

Xue WANG!, Minghui WANG?, Kuaini WANG?, Yanyan CHEN**

The issue of one-class classification has got a great deal of studies. However,
the classical algorithms represented by Support Vector Data Description (SVDD)
have restrictions when the input is not vector. Therefore, we present a nonlinear
tensor-based data description that is named as Kernel-based Support Tensor Data
Description (KSTDD). The basic thought of KSTDD is to seek for an enclosing
hypersphere of smallest volume that contains most of target objects. KSTDD uses
tensor as input, and it has the ability to keep more data topology. Meanwhile, the
number of parameters that need to be estimated by KSTDD is reduced considerably,
which makes KSTDD more fit for small-sample learning. KSTDD s iteratively
solved, and the computation complexity and the convergence of the corresponding
iterative algorithm are provided respectively. We prove that KSTDD is equivalent to
One-Class Support Tensor Machine (OCSTM) for Gaussian-based kernel matrix.
However, the two algorithms cannot be completely equivalent to each other since
they are quite different for other kernel matrices. Therefore, we evaluate KSTDD
with different kernel matrices including Gaussian-based kernel matrices and
polynomial-based kernel matrices. Experiments have verified the efficiency of the
KSTDD.

Keywords: Support Tensor Data Description; Support Vector Domain
Description; Kernel matrix; One-class classification

1. Introduction

Inspired by support vector machine (SVM) [1], Tax et al. proposed a
support vector domain description which seeks for an enclosing ball with the
minimum volume to contain most target objects [2]. In recent years, SVDD has
been used for many real-world applications [3,4], such as anomaly detection [5],
face recognition [6], medical imaging [7] and other studies on SVDD [8,9].

In many fields, a lot of objects are described as tensors. When the input is
tensor, the classical vector-based data description represented by SVDD can not
work directly. Despite tensor can be converted to vector, it has been shown that
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structural information of data may be lost, and at the same time, small sample size
problem and curse of dimensionality may be occurred [10,11].

To solve the above problem, researches on data representation have
attracted widespread interest in the past few years Wu et al. gave Supervised
Tensor Learning (STL) framework [12]. Cai et al. extended SVM to fit for tensor
representation, and the tensor model was used for text categorization and named
as Support Tensor Machine (STM) [13]. By combining the advantages of C-SVM
and rank one decomposition of tensor, a Support Higher-order Tensor Machine
was established in [14]. As a matter of course, researchers were interested in
extending the SVM algorithms to tensor space by establishing multilinear
algorithms [15-19]. As for kernel methods for tensor, one can refer to references
[20-22].

For handling one-class classification with tensor input, one of naturel ideas
is to search a separating hyperplane which pursues a maximal margin between
target class and the origin. This thought has been proposed as One-Class Support
Tensor Machines (OCSTM) [23, 24]. Another thought is to find an enclosing
hypersphere that contains most of target objects, we also have proposed a linear
support tensor domain description [25] for higher order tensor.

Utilizing the advantages of support vector data domain and the STL
framework, we derive an effective nonlinear tensor-based algorithm in this paper,
named Kernel-based Support Tensor Data Description (KSTDD). We present
KSTDD models with two clear and convenient kernel matrices. Compared with
vector-based algorithms, KSTDD more fits for the small sample size problem due
to the considerable reduction of parameters that need to be estimated. Therefore,
we test KSTDD on several datasets that are truly small size and high
dimensionality. We further prove that KSTDD proposed in this paper and
OCSTM are equivalent for Gaussian-based kernel matrix. The later experiments
also verified the fact. But that doesn't mean there is no necessary to study
KSTDD, since it has different performance along with other kernel matrices.

2. Relevant Research
2.1 Support Vector Data Description

Denote R the radius of the hypersphere, and Cthe center, respectively.
The aim of SVDD is to minimize the volume of hypersphere by minimizing R”.
Denote training data, X; €0 " i=1...,1 . SVDD gets the classifier by solving:

NP .
min R +ﬁ;§i
st [p(x)-c <R?+¢ @)
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where v is a parameter which controls balance of the errors and the volume. The
corresponding dual problem of (1) is:

main IZ aiajk(xi’xi)—zl:aik(xi,xi)

ij=1
|
st. a, =1
2 2
0<g Si, i=1..,1
vl

where k() is the kernel function which needs to satisfy the Mercer's theorem.

With the solution ¢ = iai¢(xi) , the decision function can be described as:

i=1

f (x) =sgn(R* - ZI: aa k(X X;)+ ZZI:aik(x, X.) —K(X,X)) (3)

ij=1

where R? is computed from any support vector x, with 0< ¢, < il
14

2.2 Kernel Matrix for Tensor

For nonlinear cases, kernel method is an essential way to deal with it. For
2nd-order tensor X, e ™ ® ™, let a nonlinear function @() maps X;into a tensor

feature space: ®(X;) =[p(x,), (%), - 9(x, )", where X; is the r-th row of X;. By
introducing vector kernel function to the element o(x,)e(x, )" of kernel

matrix[24], one can obtain the Gaussian-based kernel matrix and Polynomial-
based kernel matrix as follows:

Gaussian-based kernel matrix
AV U Vi
K(X;, X;) = : s (4)
efHXWnHZ/ZUZ efowijz/Zaz
Polynomial-based kernel matrix
(XX, +1)d e (X +1)d
K(X, X;) = : : (5)

(xmlleT +1)d (x X T+1)
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3. Kernel-based Support Tensor Data Description
3.1 Kernel-based Support Tensor Data Description

Given that training samples X,X,,---X, e0"*®0J™, 0™and 0™ are two
vector spaces. For tensor data description, the hypersphere is characterized by the
radius R>0 and the centerC e0™ ®0 ™, and the center C is replaced by the rank
one tensor uv' (ued™,ved™). Therefore, the corresponding decision function is

f(X) :sgn(R2 —||<1>(X)—uvT ||2) (6)

By minimizing R? the volume of the hypersphere can be minimized. Then,
Kernel-based Support Tensor Data Description (KSTDD) solves the following
OFP:

. , 14
Ue,m,Vem!r]Reufeul R +JIZ:1:§I
st. ||(I)(Xi )—uv’ ||2 <R*+¢ @)
¢ >0,i=1...,1

We solve the OP (7) by constructing the Lagrangian function with
multipliers «,,3,i=1,..,1 :

L(u,v,R,&,a, ) = R? +%Z; +Zai (”cD(Xi)—uvT [F-r? —;)—Zﬁié (8)
Since
@ (X;)—uv’ ||2 = trace[(®(X; )—uv’ )T (@(X;)-uv" )]
=trace[®(X; ) @(X; )" ]-2trace[vu" @ (X, )] +(vv)(u"u) 9)
substituting (9) in (8), we get

T

L(u,v,R,&,a,B) =R® +ilzll.§i +Z|:ai (VTV)(uTu)+ZI:aitrace[(I)(Xi )P(X) 1
VIia i=1 i=1
| | | | (10)
—ZZOQtrace[vuT(I)(Xi )]_Za‘RZ —Zaifi —Zﬁi;
From KKT conditions, one can obtain:
oL 1
oL !
a—Rzo = ;ai = (12)
oL 0 =>u= L leaiGD(Xi)v (13)

- M=
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oL
—=0=vV 2ZchQD(X)u (14)
v ul’

We notice that u andv in (13) and (14) are dependent on each other. The

alternating projection method introduced by Cai [13] can be employed to solve.
We firstly fixu, and let 4 =|u|’. According to (11)- (14), (10) can be

rewritten as:
|
L=> atrace[®(X;) ]——Zaa u' (X, )@ (X; )T u (15)
i=1

i,j=1
We can derive the foIIowmg dual OP.
|
min = Z oK (X, X )Ju = egtrace[K (X, X; )]
i=1

i,j=1
st. Zai =1, (16)
i=1

0<g¢ Si, i=1..,1
vl

where K(-,-) is defined by (4) or (5). When (16) is solved, we can obtain:

||v||2=—2a UK (X, X; )u (17)

i,j=1

Then we can calculate uin the next passage. Let x, =|v|’ , then

X, =®(X,)v= ileai*QD(XJ.)GD(Xi)Tu

= i jr N

Note that trace[vu'®(X;)]=u"®(X;)v, the optimization problem is

derived in the dual in the similar Iines as:
|

min —Zaax X Z trace[K (X;, X; )]

i

a ,Uz i,j=1 i=1
st. Zdi =1, (19)
i=1
0<é <, i=1..]
vl

From (19), we can get the new u=—z &%, . Thus, u can be achieved

i=1 1
by iteratively solving (16) and (19).
The optimal boundary (6) is determined by:
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f (X) =sgn(R* —trace[K (X, X)]
1 o« st 2 .1 (20)
=Y & o UK (X, X Ju+ =Y g uTK (X, X, )u)
Hij=1 H iz
and ¢ is the solution of (16), the training samples X, withg" =0 are support

tensors. In addition, the radius R? can be calculated from:
R* = mean(”cD(X. )—uv’ ||2) (21)

i_sv

where X , is the support tensor.
3.2 Relationship with OCSTM

For the two vector-based one-class classifiers, Scholkopf had shown that
for kernels k(x,y) depending on x-y, the optimization problems of SVDD and
One-Class Support Vector Machine (OCSVM) turn out to be equivalent.

We can obtain the similar conclusion for KSTDD and OCSTM. The
optimization problem of OCSTM can be iteratively solved with following dual
problem:

. 1
min ai;aiajuTK(Xi,Xj)u
|
OCSTM-v: St > a =1 (22)
i=1
OSaiSi, i=1..1
vi
min iZI“olo?xTx
a it
I ~
OCSTM-u: st X& =1 (23)
i=1
Ogdigi, i=1..1
vi

For Gaussian kernel matrix (4), the elements in the diagonal of the
K (X, %;)are: o(x, )o(x, )" _g a2 =1, thus traceK (X;,X;) in the dual objective
function (16) and (19) is a constant. In this case, the problem (16) and (19) turn
out to be equivalent to (22) and (23), respectively. Hence, the two tensor-based
one-class classification algorithms coincide in this case.

However, since different kernel matrix leads to different result, it means
that the two algorithms cannot be completely equivalent to each other. Therefore,
we concentrate on the performance of KSTDD with different kernel matrices in
the numerical experiments.
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3.3 Proof of convergence

Theorem 1 The objective function values of (7) are monotone decreasing
as optimization problems (16) and (19) are solved iteratively. Hence KSTDD
algorithm converges.

Proof Define:

2, 1 I T2 1<
f(uv)=R +ﬁ;§‘ =mean(||d)(xifsv)—uv I )+ﬁ;§i (25)

Given that u, the initial value. We can get an expression of v, by (16).
Then, we yield u, through solving (19) by fixing v,. Note that (16) and (19) are
convex, and they have global solutions. Thus, we can obtain:

f (ul’vl) 2 f(UZ,Vl) > f (UZ,VZ) 2 f(us’vz)"'
Since f is bounded from below by 0, it converges.

4. Experiments on Vector-Based Datasets
4.1 Preparations

There are 9 considered publicly available vector-based datasets, all of
them from the UCI repository on LIBSVM webpage [24]. All features are scaled
to [-1,1]. Table 1 also gives the considered target classes which we focus on.
Normally, we can convert a vector sample xeO" to a 2nd-order tensor
Xel™®0", based on the idea of [13].

In order to test whether tensor-based algorithms fit for small sample
learning with large dimensionality, we use small sizes of training data as in
[10,21]. The considered training sizes include 4, 6, 8, and 10 samples,
respectively. For statistical significance, we report the average results of fifty
random splits. To test the KSTDD, we employ two kinds of kernel matrices (4),
(5). To distinguish the KSTDD with these two kernel matrices, we call them
gSTDD and pSTDD, respectively. We use k(x,y)=e /2 and k(x,y) = (X"y +12)°
for the standard SVDD. Similarly, they are shorted as gSVDD and pSVDD in the
following passage, respectively. We employ both TPR and AUC as evaluation
criteria to compare the performance of algorithms.

In parameters selection, we set k equals to the sizes of training sets for k-
fold cross-validation, since the training sets are too small. In our experiments,
there exist 3 parameters need to be selected: v, o and d, which are from the sets v
={0.1, 0.2, 0.3, 0.4, 05, 0.6, 0.7, 0.8, 0.9}, +={2° 24 ..., 2% 2°} and
d={1,2,3,4,5,6,7,8,9}.
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4.2 Experimental Results and Analysis

In this part, we evaluate gSTDD, pSTDD, gSVDD, and pSVDD on all
vector-based datasets given in Table 1. To avoid repetition, we only demonstrate
the results when there are 10 training samples. The classification results with
respect to the other training set sizes will be shown in Fig.1.

Table 1 has summarized the results of both averaged TPRs and AUCs on
various datasets. The best ones are shown in boldfaces. Table 2 also includes the
experimental results of OCSTM with Gaussian-based kernel matrix. As can be
seen, generally, TPRs have been improved greatly by STDD and AUCs between
STDD and SVDD have no remarkable difference. Moreover, paired comparisons
of different kernel methods are also given in Table 2. We can see that the TPRs of
gSTDD and pSTDD are better than those of gSVDD and pSVDD in all
comparisons, respectively. For AUC, we see that pSTDD is better than or similar
to pSVDD in 9 out of 10 comparisons. The AUCs of gSTDD are similar to those
of gSVDD in 5 comparisons and not much worse in 5 comparisons. Furthermore,
the two kernel systems make very little difference to STDD rather than to SVDD
in all the 10 datasets. In addition, it was also verified by the experiments that
OCSTM and STDD turn to be equivalent for Gaussian-based kernel matrix.

Table 1
Averaged TPRs and AUCs of 9 datasets, 10 samples.

Targe (a) (C)

Datacets ; gOCST gSTD gSVD V  pSTD  pSVD  V
Chass M D@ D() S D( D@ S

(b) (d)

BREAST. 2 T:S 0.7525 07525 06757 > 07601 06943 >
CANCER © 09669 09669 09740 ~ 09681 09704 ~
TPR 07477 07477 06370 > 07409 06099 >

ABALONE 1

© A o7 07703 07585 ~ 07789 07667 ~

TPR 07116 07116 05125 > 07172 04979 >

HEART 1

ACU 07133 07133 07681 < 06754 06777 ~

TPR 06102 06102 04392 > 06064 04665 >

HEPATITIS > AU

O 06376 06376 07027 < 06601 06992 ~

TPR 07588 0.7588 05528 > 07608 0.6633 >

IMPORTS 1 A oo 06916 07051 ~ 06820 06018 >
ONOSPHERE T:S 07552 07552 06160 > 07620 07152 >
S 07196 07196 07979 < 07340 07524 ~

SPECTF 2 TPR  0.7088 0.7088 0.4807 > 0.7055 0.5281 >
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DELFTPUMP 2

USPS 2

AU
C
TPR
AU
C
TPR
AU
C

0.7537  0.7537
0.7844  0.7844
0.5781  0.5781
0.8722  0.8722
0.9612  0.9612

0.8108
0.3730
0.6721
0.6965
0.9783

0.7363  0.7787
0.8030 0.7252
0.5750  0.5285
0.7949 0.7241
0.9747  0.9777

To show the performances of the four algorithms on the different training
sizes, we tested gSTDD, gSVDD, pSTDD and pSVDD over 4, 6, 8, and 10
samples for all datasets shown in Table 1. To give a clear display, we present the

experimental results in Fig. 1.

BREAST-CANCER Dataset

= STDD
=O- gSVDD
- E-pSTDD
pSVDD

6 §
Number of training samples
HEPATITIS Dataset

10

—y—STDD
=0~ gSVDD
- B-pSTDD
pSVDD

6
Number of training samples
SPECTF Dataset

== STDD
-0~ gSVDD

=B =pSTDD
®  psVDD

3 8
Number of training samples

10

ABALONE Dataset

HEART Dataset

—g—u5TDD
0 -0 gSVDD
al . -m-psTDD | |
) ® pSVDD
8 10 4 8 10

6
Number of training samples
IMPORTS Dataset

6 8
Number of training samples
IONOSPHERE Dataset

= STDD
-0~ gSVDD
- B =pSTDD
®. pSVDD

6 8
Number of training samples

== STDD
0~ gSVDD
= B =pSTDD
@ pSVDD

10

6
Number of training samples

USPS Dataset

== :5TDD
-0~ gSVDD
=B =pSTDD

®. pSVDD

6 & 10
Number of training samples

Fig. 1. Averaged TPRs: gSTDD, gSVDD, pSTDD and pSVDD on various

It can be seen that the averaged TPRs of gSTDD and pSTDD are much
better than those of gSVDD and pSVDD, especially for small training set. When
the number of training samples increases, the TPRs of the four algorithms tend to

get close.

datasets with the different training sizes.
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5. Experiments on Tensor-Based Datasets

This section focuses on human face images on the YALE dataset [19].
They are all grayscale images which can be represented as second order tensors. It
has fifteen people's faces with eleven images for each one, we show some
examples for each dataset in Figure 2. The images in YALE are size of 100 X 100,
and all the features are scaled to [0,1].

FISFTWTTEE

B R kA
S T
k)

Fig. 2. YALE human faces dataset.

We utilize the 5-fold cross validation to optimize the parameters. Since
there are 3 testing samples in each fold of cross validation, it is more meaningful
to concentrate on the true positive rate (TPR), which are reported in Table 2.

Table 2
Averaged TPRs of YALE dataset.

g?;fset gSTDD  gSVDD  pSTDD  pSVDD
1 09333 07333 09333  0.8667
2 09333 04667 07333  0.9333
3 09333 07333  0.7333 0.8

4 09333 06667 09333  0.8667
5 09333  0.8667  0.8667  0.8667
6 0.9333 0.8 0.8667  0.9333
7 0.8667 0.4 0.8 0.4667
8 09333 07333 09333 0.8

9 0.9333 0.6 0.9333 0.8

10 0.9333 0.4 1 0.6667
11 0.8667 07333  0.8667  0.8667
12 0.8667 07333  0.8667  0.8667
13 0.8667  0.8667  0.8667  0.8667
14 0.9333 0.8 0.8 0.8667
15 05333 05333 05333 0.6
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Table 2 summarize the averaged TPRs of each target class. The best
classification results are shown in boldfaces. We can see that the result of the
STDD is also well on tensor dataset. But it has some difference from ORL.
gSTDD has achieved almost all the best TPRs, except in the experiments on face
10 and 15. The averaged TPR of 15 experiments of gSTDD is 0.8889, which is
much better than 0.6711 of gSVDD. On the contrary, the averaged TPR of 15
experiments of pSTDD is 0.8444, which is a little better than 0.8044 of pSVDD.
These indicate that the different kernel matrices may lead to different
classification performance.

6. Conclusions

In the paper, we present a tensor-based data description named Support
Tensor Data Description. KSTDD finds a hypersphere with smallest volume in
tensor feature space with kernel trick, that can involve most data of the target
class. Since the input of KSTDD is tensor, KSTDD has the advantages of
efficiently keeping data topology and considerably reducing the number of
parameters. We evaluate KSTDD on both Gaussian and polynomia kernel
matrices. As to be expected, KSTDD shows better generalization capability.

However, the new algorithm has some drawbacks. KSTDD costs longer
training time than SVDD since it is iterative to solve parameters involved in the
alternative projection algorithm. It is worth investigating more faster methods to
solve KSTDD’s optimization problems. In addition, further study includes the
kernel technology on KSTDD for high order tensors.
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