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A KERNEL-BASED SUPPORT TENSOR DATA 

DESCRIPTION FOR ONE-CLASS CLASSIFICATION 

Xue WANG1, Minghui WANG2, Kuaini WANG3, Yanyan CHEN4* 

The issue of one-class classification has got a great deal of studies. However, 

the classical algorithms represented by Support Vector Data Description (SVDD) 

have restrictions when the input is not vector. Therefore, we present a nonlinear 

tensor-based data description that is named as Kernel-based Support Tensor Data 

Description (KSTDD). The basic thought of KSTDD is to seek for an enclosing 

hypersphere of smallest volume that contains most of target objects. KSTDD uses 

tensor as input, and it has the ability to keep more data topology. Meanwhile, the 

number of parameters that need to be estimated by KSTDD is reduced considerably, 

which makes KSTDD more fit for small-sample learning. KSTDD is iteratively 

solved, and the computation complexity and the convergence of the corresponding 

iterative algorithm are provided respectively. We prove that KSTDD is equivalent to 

One-Class Support Tensor Machine (OCSTM) for Gaussian-based kernel matrix. 

However, the two algorithms cannot be completely equivalent to each other since 

they are quite different for other kernel matrices. Therefore, we evaluate KSTDD 

with different kernel matrices including Gaussian-based kernel matrices and 

polynomial-based kernel matrices. Experiments have verified the efficiency of the 

KSTDD. 

Keywords: Support Tensor Data Description; Support Vector Domain 

Description; Kernel matrix; One-class classification 

1. Introduction 

Inspired by support vector machine (SVM) [1], Tax et al. proposed a 

support vector domain description which seeks for an enclosing ball with the 

minimum volume to contain most target objects [2]. In recent years, SVDD has 

been used for many real-world applications [3,4], such as anomaly detection [5], 

face recognition [6], medical imaging [7] and other studies on SVDD [8,9]. 

In many fields, a lot of objects are described as tensors. When the input is 

tensor, the classical vector-based data description represented by SVDD can not 

work directly. Despite tensor can be converted to vector, it has been shown that 
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structural information of data may be lost, and at the same time, small sample size 

problem and curse of dimensionality may be occurred [10,11]. 

To solve the above problem, researches on data representation have 

attracted widespread interest in the past few years Wu et al. gave Supervised 

Tensor Learning (STL) framework [12]. Cai et al. extended SVM to fit for tensor 

representation, and the tensor model was used for text categorization and named 

as Support Tensor Machine (STM) [13]. By combining the advantages of C-SVM 

and rank one decomposition of tensor, a Support Higher-order Tensor Machine 

was established in [14]. As a matter of course, researchers were interested in 

extending the SVM algorithms to tensor space by establishing multilinear 

algorithms [15-19]. As for kernel methods for tensor, one can refer to references 

[20-22]. 

For handling one-class classification with tensor input, one of naturel ideas 

is to search a separating hyperplane which pursues a maximal margin between 

target class and the origin. This thought has been proposed as One-Class Support 

Tensor Machines (OCSTM) [23, 24]. Another thought is to find an enclosing 

hypersphere that contains most of target objects, we also have proposed a linear 

support tensor domain description [25] for higher order tensor. 

Utilizing the advantages of support vector data domain and the STL 

framework, we derive an effective nonlinear tensor-based algorithm in this paper, 

named Kernel-based Support Tensor Data Description (KSTDD). We present 

KSTDD models with two clear and convenient kernel matrices. Compared with 

vector-based algorithms, KSTDD more fits for the small sample size problem due 

to the considerable reduction of parameters that need to be estimated. Therefore, 

we test KSTDD on several datasets that are truly small size and high 

dimensionality. We further prove that KSTDD proposed in this paper and 

OCSTM are equivalent for Gaussian-based kernel matrix. The later experiments 

also verified the fact. But that doesn't mean there is no necessary to study 

KSTDD, since it has different performance along with other kernel matrices. 

2. Relevant Research 

2.1 Support Vector Data Description 

Denote R the radius of the hypersphere, and c the center, respectively. 

The aim of SVDD is to minimize the volume of hypersphere by minimizing 
2R . 

Denote training data,  n

ix , 1,...,=i l . SVDD gets the classifier by solving: 
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where   is a parameter which controls balance of the errors and the volume. The 

corresponding dual problem of (1) is: 
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where ( , )k    is the kernel function which needs to satisfy the Mercer's theorem. 

With the solution 
1

( )x
l

i i
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= , the decision function can be described as: 
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where 2R  is computed from any support vector xi  with 
1

0 i
l




  . 

2.2 Kernel Matrix for Tensor 

For nonlinear cases, kernel method is an essential way to deal with it. For 

2nd-order tensor 1 2X
n n

i   , let a nonlinear function ( )    maps X i into a tensor 

feature space: 
11 2( ) [ ( ), ( ), ( )]X

T

i i i inx x x   = , where irx is the r -th row of X i . By 

introducing vector kernel function to the element 
1 2

( ) ( )T

ir irx x   of kernel 

matrix[24], one can obtain the Gaussian-based kernel matrix and Polynomial-

based kernel matrix as follows: 
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3. Kernel-based Support Tensor Data Description 

3.1 Kernel-based Support Tensor Data Description 

Given that training samples 1 2

1 2, ,X X X
n n

l   , 1n and 2n  are two 

vector spaces. For tensor data description, the hypersphere is characterized by the 

radius 0R   and the center 1 2n nC  , and the center C is replaced by the rank 

one tensor uv
T ( 1 2u , v

n n
  ). Therefore, the corresponding decision function is 

( )2
2( ) sgn ( )X X uv

Tf R= −  −                                   (6) 

By minimizing 2R  the volume of the hypersphere can be minimized. Then, 

Kernel-based Support Tensor Data Description (KSTDD) solves the following 

OP: 
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We solve the OP (7) by constructing the Lagrangian function with 

multipliers , , 1,...,i i i l  =  : 
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From KKT conditions, one can obtain: 
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We notice that u  and v  in (13) and (14) are dependent on each other. The 

alternating projection method introduced by Cai [13] can be employed to solve. 

We firstly fix u , and let 
2

1 u = . According to (11)- (14), (10) can be 

rewritten as: 
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We can derive the following dual OP: 
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where ( ),K    is defined by (4) or (5).  When (16) is solved, we can obtain: 
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Note that ( ) ( )[ ]vu X u X v
T T

i itrace  =  , the optimization problem is 

derived in the dual in the similar lines as: 
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From (19), we can get the new 
2

*1

1
ˆu x

l

i ii


=
=  . Thus, u  can be achieved 

by iteratively solving (16) and (19). 

The optimal boundary (6) is determined by: 
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and *

i is the solution of (16), the training samples X i  with * 0i   are support 

tensors. In addition, the radius 2R  can be calculated from: 

( )2
2
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T

i svR mean=  −                               (21) 

where 
_Xi sv

 is the support tensor. 

3.2 Relationship with OCSTM 

For the two vector-based one-class classifiers, Scholkopf had shown that 

for kernels ( , )x yk  depending on x y− , the optimization problems of SVDD and 

One-Class Support Vector Machine (OCSVM) turn out to be equivalent. 

We can obtain the similar conclusion for KSTDD and OCSTM. The 

optimization problem of OCSTM can be iteratively solved with following dual 

problem: 
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For Gaussian kernel matrix (4), the elements in the diagonal of the 

( ),X Xi iK are: 
2 2

1 2

1 2

2
( ) ( ) 1e

ir irx xT

ir irx x


 
− −

= = , thus ( ),X Xi itraceK  in the dual objective 

function (16) and (19) is a constant. In this case, the problem (16) and (19) turn 

out to be equivalent to (22) and (23), respectively. Hence, the two tensor-based 

one-class classification algorithms coincide in this case. 

However, since different kernel matrix leads to different result, it means 

that the two algorithms cannot be completely equivalent to each other. Therefore, 

we concentrate on the performance of KSTDD with different kernel matrices in 

the numerical experiments. 
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3.3 Proof of convergence 

Theorem 1 The objective function values of (7) are monotone decreasing 

as optimization problems (16) and (19) are solved iteratively. Hence KSTDD 

algorithm converges. 

Proof Define: 
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i i
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Given that 1u  the initial value. We can get an expression of 1v  by (16). 

Then, we yield 2u through solving  (19) by fixing 1v . Note that (16) and (19) are 

convex, and they have global solutions. Thus, we can obtain: 

1 1 2 1 2 2 3 2( ) ( ) ( ) ( )u ,v u ,v u ,v u ,vf f f f    

Since f  is bounded from below by 0, it converges. 

4. Experiments on Vector-Based Datasets 

4.1 Preparations 

There are 9 considered publicly available vector-based datasets, all of 

them from the UCI repository on LIBSVM webpage [24]. All features are scaled 

to [-1,1]. Table 1 also gives the considered target classes which we focus on. 

Normally, we can convert a vector sample x
n

  to a 2nd-order tensor 
1 2X

n n  , based on the idea of [13]. 

In order to test whether tensor-based algorithms fit for small sample 

learning with large dimensionality, we use small sizes of training data as in 

[10,21]. The considered training sizes include 4, 6, 8, and 10 samples, 

respectively. For statistical significance, we report the average results of fifty 

random splits. To test the KSTDD, we employ two kinds of kernel matrices (4), 

(5). To distinguish the KSTDD with these two kernel matrices, we call them 

gSTDD and pSTDD, respectively. We use 
2 22

( , )
x y

x y ek
− −

= and ( , ) ( 1)x y x y
T dk = +  

for the standard SVDD. Similarly, they are shorted as gSVDD and pSVDD in the 

following passage, respectively. We employ both TPR and AUC as evaluation 

criteria to compare the performance of algorithms.  

In parameters selection, we set k equals to the sizes of training sets for k-

fold cross-validation, since the training sets are too small. In our experiments, 

there exist 3 parameters need to be selected:  , and d, which are from the sets 

={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},  ={2-5, 2-4, …, 24, 25} and 

d={1,2,3,4,5,6,7,8,9}.  
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4.2 Experimental Results and Analysis 

In this part, we evaluate gSTDD, pSTDD, gSVDD, and pSVDD on all 

vector-based datasets given in Table 1. To avoid repetition, we only demonstrate 

the results when there are 10 training samples. The classification results with 

respect to the other training set sizes will be shown in Fig.1. 

Table 1 has summarized the results of both averaged TPRs and AUCs on 

various datasets.  The best ones are shown in boldfaces. Table 2 also includes the 

experimental results of OCSTM with Gaussian-based kernel matrix. As can be 

seen, generally, TPRs have been improved greatly by STDD and AUCs between 

STDD and SVDD have no remarkable difference. Moreover, paired comparisons 

of different kernel methods are also given in Table 2. We can see that the TPRs of 

gSTDD and pSTDD are better than those of gSVDD and pSVDD in all 

comparisons, respectively. For AUC, we see that pSTDD is better than or similar 

to pSVDD in 9 out of 10 comparisons. The AUCs of gSTDD are similar to those 

of gSVDD in 5 comparisons and not much worse in 5 comparisons. Furthermore, 

the two kernel systems make very little difference to STDD rather than to SVDD 

in all the 10 datasets. In addition, it was also verified by the experiments that 

OCSTM and STDD turn to be equivalent for Gaussian-based kernel matrix. 
 

Table 1 

Averaged TPRs and AUCs of 9 datasets, 10 samples. 

Datasets 

Targe

t 

Class 

 
gOCST

M 

gSTD

D (a) 

gSVD

D (b) 

(a) 

V

S 

(b) 

pSTD

D (c) 

pSVD

D (d) 

(c) 

V

S 

(d) 

BREAST-

CANCER 
2 

TPR 0.7525 0.7525 0.6757 > 0.7601 0.6943 > 

AU

C 
0.9669 0.9669 0.9740 ∼ 0.9681 0.9704 ∼ 

ABALONE 1 

TPR 0.7477 0.7477 0.6370 > 0.7409 0.6099 > 

AU

C 
0.7703 0.7703 0.7585 ∼ 0.7789 0.7667 ∼ 

HEART 1 

TPR 0.7116 0.7116 0.5125 > 0.7172 0.4979 > 

AU

C 
0.7133 0.7133 0.7681 < 0.6754 0.6777 ∼ 

HEPATITIS 2 

TPR 0.6102 0.6102 0.4392 > 0.6064 0.4665 > 

AU

C 
0.6376 0.6376 0.7027 < 0.6601 0.6992 ∼ 

IMPORTS 1 

TPR 0.7588 0.7588 0.5528 > 0.7608 0.6633 > 

AU

C 
0.6916 0.6916 0.7051 ∼ 0.6829 0.6018 > 

IONOSPHERE

S 
1 

TPR 0.7552 0.7552 0.6160 > 0.7620 0.7152 > 

AU

C 
0.7196 0.7196 0.7979 < 0.7340 0.7524 ∼ 

SPECTF 2 TPR 0.7088 0.7088 0.4807 > 0.7055 0.5281 > 
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AU

C 
0.7537 0.7537 0.8108 < 0.7363 0.7787 < 

DELFTPUMP 2 

TPR 0.7844 0.7844 0.3730 > 0.8030 0.7252 > 

AU

C 
0.5781 0.5781 0.6721 < 0.5750 0.5285 > 

USPS 2 

TPR 0.8722 0.8722 0.6965 > 0.7949 0.7241 > 

AU

C 
0.9612 0.9612 0.9783 ∼ 0.9747 0.9777 ∼ 

 

To show the performances of the four algorithms on the different training 

sizes, we tested gSTDD, gSVDD, pSTDD and pSVDD over 4, 6, 8, and 10 

samples for all datasets shown in Table 1. To give a clear display, we present the 

experimental results in Fig. 1. 

 

   

   

   
Fig. 1. Averaged TPRs: gSTDD, gSVDD, pSTDD and pSVDD on various 

datasets with the different training sizes. 

 

It can be seen that the averaged TPRs of gSTDD and pSTDD are much 

better than those of gSVDD and pSVDD, especially for small training set. When 

the number of training samples increases, the TPRs of the four algorithms tend to 

get close. 
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5. Experiments on Tensor-Based Datasets 

This section focuses on human face images on the YALE dataset [19]. 

They are all grayscale images which can be represented as second order tensors. It 

has fifteen people's faces with eleven images for each one, we show some 

examples for each dataset in Figure 2. The images in YALE are size of 100×100, 

and all the features are scaled to [0,1]. 

 
Fig. 2. YALE human faces dataset. 

 

We utilize the 5-fold cross validation to optimize the parameters. Since 

there are 3 testing samples in each fold of cross validation, it is more meaningful 

to concentrate on the true positive rate (TPR), which are reported in Table 2. 
 

Table 2 

Averaged TPRs of YALE dataset. 

Target 

Class 
gSTDD gSVDD pSTDD pSVDD 

1 0.9333 0.7333 0.9333 0.8667 

2 0.9333 0.4667 0.7333 0.9333 

3 0.9333 0.7333 0.7333 0.8 

4 0.9333 0.6667 0.9333 0.8667 

5 0.9333 0.8667 0.8667 0.8667 

6 0.9333 0.8 0.8667 0.9333 

7 0.8667 0.4 0.8 0.4667 

8 0.9333 0.7333 0.9333 0.8 

9 0.9333 0.6 0.9333 0.8 

10 0.9333 0.4 1 0.6667 

11 0.8667 0.7333 0.8667 0.8667 

12 0.8667 0.7333 0.8667 0.8667 

13 0.8667 0.8667 0.8667 0.8667 

14 0.9333 0.8 0.8 0.8667 

15 0.5333 0.5333 0.5333 0.6 
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Table 2 summarize the averaged TPRs of each target class. The best 

classification results are shown in boldfaces. We can see that the result of the 

STDD is also well on tensor dataset. But it has some difference from ORL. 

gSTDD has achieved almost all the best TPRs, except in the experiments on face 

10 and 15. The averaged TPR of 15 experiments of gSTDD is 0.8889, which is 

much better than 0.6711 of gSVDD. On the contrary, the averaged TPR of 15 

experiments of pSTDD is 0.8444, which is a little better than 0.8044 of pSVDD. 

These indicate that the different kernel matrices may lead to different 

classification performance. 

6. Conclusions 

In the paper, we present a tensor-based data description named Support 

Tensor Data Description. KSTDD finds a hypersphere with smallest volume in 

tensor feature space with kernel trick, that can involve most data of the target 

class. Since the input of KSTDD is tensor, KSTDD has the advantages of 

efficiently keeping data topology and considerably reducing the number of 

parameters. We evaluate KSTDD on both Gaussian and polynomia kernel 

matrices. As to be expected, KSTDD shows better generalization capability. 

However, the new algorithm has some drawbacks. KSTDD costs longer 

training time than SVDD since it is iterative to solve parameters involved in the 

alternative projection algorithm. It is worth investigating more faster methods to 

solve KSTDD’s optimization problems. In addition, further study includes the 

kernel technology on KSTDD for high order tensors. 
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