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LINEAR STABILITY ANALYSIS OF A PLANE-POISEUILLE
HYDROMAGNETIC FLOW USING ADOMIAN
DECOMPOSITION METHOD

Samuel O. ADESANYA!

In this paper, the small-disturbances stability of plane-Poiseuille flow of an
electrically conducting fluid in the presence of a transverse magnetic field is
studied. Using the mode approach, the fourth order differential equation for the
flow is derived and solved analytically using Adomian decomposition method
(ADM) and the result obtained showed a good agreement with previously obtained
result by Multideck asymptotic techniques.
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1. Introduction

Adomian decomposition method [1, 5, 10-16] was developed in the 80’s. It
possesses great potential in solving different kinds of differential equations. The
major strength of the method is that it avoids linearization, transformation and
discretization. The main objective of this paper is to apply Adomian
decomposition method (ADM) to study the temporal stability analysis for
hydromagnetic Plane — Poiseuille flow.

Now consider the standard operator

Lu+Ru+Nu=g, (1.2)
Where u is the unknown function, L is the highest order derivative, which is
assumed easily invertible, R is a linear differential operator of order less than L,
Nu represents the nonlinear terms, and g is the source term. Applying the inverse

operator L™ to both sides of (1.1) and using the given conditions we obtain
u=h(y)-L*(Ru)-L™*(Nu), (1.2)
where h(y) represents the terms arising from integrating the source term g and

from the boundary conditions, The standard ADM defines the solution u by the
series

u= iun , (1.3)

moreover, the nonlinear term series
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Nu=SA,, (1.4)

where A, are the Adomian polynomials determined formally from the relation

Az

If the nonlinear term is expressed as a nonlinear function f(u), the Adomian
polynomials are arranged into the form

A = f(uo)
A =u, f O (uy)
A, :uzf(l)(uo)"'%ulzf(z)(uo) (1.6)

Aa =U, f (1)(u0)+u1u2 f m(”o)"‘%uf f (3)(uo)

The components u,,u,,u,,...are then determined recursively by using the relation

, 1.7
Ue, =—L"'Ru, —L*A k=0 .1

where u, is referred to as the zeroth component. The partial sum of the series is
thus obtained as

u(y)= gun(y) (1.8)

The convergence results for the Adomian decomposition method has been studied
extensively in the works by Cherraultz et al [6, 7 and 8].

{uo =h(y)

2. Mathematical formulation

Consider the flow of an electrically conducting viscous incompressible fluid
through a two — dimensional channel under the influence of a transverse magnetic
field. The governing equations are [2];

ML N 2.1)

2 2
ou 6U+V8U 3 6p+i(3 u+6_u]_qu (2.2)

ot x oy ox Relox? oy
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&N v v op 1(ov o
— U — AV = o (2.3)
ot ox oy oy Relox® oy

together with the boundary conditions

u(+1)=0,v(+1)=0 (2.4)
The flow quantities in equation (2.1)-(2.4) have been non-dimensionalized as
follows:

u v X y P U,f U,a Bia
L,Vzlyxziyyzl,p: pz,t= 0 ,Re = 0 ,H = 0-9—0(25)
U, U, a a oYU, a v pU,

Where x and y are the streamwise and normal coordinates respectively, u and v are
the streamwise and normal velocity respectively, t-time, p — pressure, Re —

Reynolds number and H is the Hartmann’s number, U, is the characteristic
velocity of the fluid, a is the characteristic half width of the channel, v is the
kinematic fluid viscosity and pis the fluid density, o,is the fluid electrical

conductivity.
The equation and the boundary conditions for the basic flow are

d’u

u=

o H?U =-A; U(x1)=0 (2.6)
By Adomian decomposition, equation (2.6) admits a series solution of the form
U(y)=2U,(y) 27)
using (2.7) in (2.6) we ogtoain the zeroth component as
Uo(y)=a, - f y Adydy (2.8)
While other components can t;)eoeasily obtained using the recursive relation
U,.(y)= ﬁ H?U ,dydy (2.9)
00

obtaining few terms of (2.9) we get
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A
Uo(y)zao _Eyz

2 4
U,(y)=a,H? L - an L

2 41
A 2y’
U,(y)=a,H TR
% 6 Y
U,(y)=a,H 5 A S
Summing up (2.10) leads to the partial sum

3.,

as the approximate solution.
Using U (1) = 0, the unknown constant is determined to be

1 H?*> H* H°
S+ —
2 4 4l 6!

aO: H4 H6
(1+H2++J
4

6!
Therefore, the series converges to the exact solution obtained in [2]
A Cosh(Hy)
Uly)=—|1-——=
v) H? ( Cosh(H)j
If we assume that 0 < H <<1 then (2.13) leads to

U(y,H <<l)=§(l— y2)+ A2H42 (_5+6y2 _y4)

AH*
720

+ (61-75y2 +15y* —y¢)+O(H®)

3.Computational Approach

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

By Squire Theorem [3, 4, 9, 17], we impose a 2-Dimensional disturbance in the

form
u(x,y,t)=U(y)+u'(x y.t),
v(X, y,t)=0+V'(x, y,t),
p(x,y,t)= P(x)+ p'(x, y.t),

(2.15)
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Where U(y) is the solution of the basic flow equation (2.13) and u', v', p' are the

small disturbances, substituting (2.15) into (2.1)-(2.3) and neglecting all quadratic
terms, we get

ou'  ov'
—+—=0
ov oy
[ 2,1 2.
CLENVRLRNUL S S A R (2.16)
ot OX oy ox Rel ox oy

N ap 1 (azv' azvj
+tU—=—"""-+— +—

ot X oy Relox® oy?
We now seek a mode solution in the form

W(x,y,t) =gy = g(y)e'«t et (2.17)
Where c=c, +ic, is complex valued function and « is real, it is clear from
(2.17) that when c, > Othe disturbance grows and the flow become unstable. For
c, <0 the disturbance decays and the flow become stable and neutrally stable
whenc, =0. Additionally c; >0 enhances the flow stability, So that the velocity
components can be obtained as

u'(x, y,t) =gyt
V(% y,t) = —iag(y)e' (2.18)
p'(x,y,t)=h(y)e".
Putting (2.18) in (2.16) and eliminating p'(x, y,t), we obtain the fourth order
ordinary differential equation
" =(2a° —iaRec)p"+{iaU + H?)Reg"

+(ic*Rec—a* Jp—iaRe(aU +U")p (219

subject to the boundary conditions
#-1)=¢(-1)=0 (2.20)
#(1)=4@)=0 (2.21)

In the limiting case asH — 0, equation (2.19) reduces to the well-known Orr-
Sommerfield equation.

By ADM the solution of (2.19) - (2.21) can be written as
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¢)n+1<y)=
yyyy dZ¢ d2¢)
j j j j ((Zaz—iaRc) -+ H* +iaU)R ”+(io:3Rc—a4)gon—iaR(ofU+U“)gon]dydydydy
1111 dyz dyz

(2.22)
where the unknown constants are to be evaluated using the boundary condition

(2.21).
To obtain the eigenvalues of the approximate solution, the partial sum

k
#(y)=">_4,(y)is solved using the boundary conditions (2.21). This returns two
n=0

equations as functions ofb,andb,. Using Mathematica, the two constants are

eliminated, and we obtain the following results for the wave speed (c) whenk = 4.
The numerical results of (2.22) are shown as Tables 1- 3 for different parameter
values.

4. Results and Discussion

Table 1 shows the effect of an increase in Hartmann’s number on the flow
stability. The result shows that the value of c;, reduces with an increase in

Hartmann’s number in a quadratic manner, this is true due to the retarding effect
of Lorentz forces on the flow applied across the channel. Therefore, increasing
magnetic field intensity enhances the flow stability. This behaviour validates the
previously obtained result by [2].

Table 1
Computation showing variations in wave speed =1, Re =10*

H Cr Ci

1 1.88324 -1.00754i
5 18.743 -25.2347i
10 321.096 -100.938i
15 1647.78 -227.109i
20 5232.96 -403.749i
25 12804.4 -630.858i
30 26583.7 -908.434i
35 49285.8 -1236.48i
40 84119.7 -1614.99i
45 134788.0 -2043.98i
50 205486.0 -2523.43i
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Table 2
Computation showing variations in wave speed ¢ =1, H =1
Re Cr Ci
10,000 0.188324 -1.00754i
20,000 0.188331 -1.00737i
30,000 0.188334 -1.00731i
40,000 0.188335 -1.00729i
50,000 0.188336 -1.00727i
60,000 0.188337 -1.00726i
70,000 0.188337 -1.00725i
80,000 0.188337 -1.00724i
90,000 0.188338 -1.00724i
1,000,000 0.188339 -1.0072i
1,000,000,000 0.188339 -1.0072i
Table 3
Computation showing variations in wave speed H =1, Re =10*
@ C, Ci
1 0.188324 -1.00754i
5 0.323685 -0.328911i
10 0.283335 -0.13684i
15 0.238024 0.0291119i
20 0.260771 0.0143511i
25 0.264298 0.00594748i
30 0.26487 0.00189868i
35 0.264779 -0.000385081i
40 0.26456 -0.00187533i
45 0.264341 -0.0029701i
50 0.264154 -0.00385024i

In Table 2, it is observed that as the Reynolds number increases there is increase
in the ¢, while there is decrease in the value of c; this brings about instability.

Finally, Table 3 shows that both c,and c, oscillates with increase in the wave

number « .

5. Conclusion

In this paper, the ADM is used to study the temporal development of small

disturbances in hydromagnetic fluid flow. The criteria for the onset of instability
have been presented theoretically and confirmed analytically. It is observed that
increase in Hartmann’s number stabilizes the flow while the Reynolds number has
destabilizing effect on the flow.
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