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LINEAR STABILITY ANALYSIS OF A PLANE-POISEUILLE 
HYDROMAGNETIC FLOW USING ADOMIAN 

DECOMPOSITION METHOD 
 

Samuel O. ADESANYA1 

In this paper, the small-disturbances stability of plane-Poiseuille flow of an 
electrically conducting fluid in the presence of a transverse magnetic field is 
studied.  Using the mode approach, the fourth order differential equation for the 
flow is derived and solved analytically using Adomian decomposition method 
(ADM) and the result obtained showed a good agreement with previously obtained 
result by Multideck asymptotic techniques. 
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1. Introduction 

 Adomian decomposition method [1, 5, 10-16] was developed in the 80’s. It 
possesses great potential in solving different kinds of differential equations. The 
major strength of the method is that it avoids linearization, transformation and 
discretization. The main objective of this paper is to apply Adomian 
decomposition method (ADM) to study the temporal stability analysis for 
hydromagnetic Plane – Poiseuille flow. 
Now consider the standard operator 

gNuRuLu =++ ,    (1.1) 
Where u is the unknown function, L is the highest order derivative, which is 
assumed easily invertible, R is a linear differential operator of order less than L, 
Nu represents the nonlinear terms, and g is the source term. Applying the inverse 
operator 1−L  to both sides of (1.1) and using the given conditions we obtain  

( ) ( ) ( )NuLRuLyhu 11 −− −−= ,    (1.2) 
where ( )yh  represents the terms arising from integrating the source term g and 
from the boundary conditions, The standard ADM defines the solution u by the 
series 

∑
∞

=

=
0n

nuu ,    (1.3) 

moreover, the nonlinear term series 
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∑
∞

=

=
0n

nANu ,    (1.4) 

where nA  are the Adomian polynomials determined formally from the relation  
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If the nonlinear term is expressed as a nonlinear function f(u), the Adomian 
polynomials are arranged into the form 
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The components ,...,, 210 uuu are then determined recursively by using the relation 
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where 0u is referred to as the zeroth component. The partial sum of the series is 
thus obtained as  

( ) ( )∑
=

=
k

n
n yuyu

0

    (1.8) 

The convergence results for the Adomian decomposition method has been studied 
extensively in the works by Cherraultz et al [6, 7 and 8]. 
 

2. Mathematical formulation 

Consider the flow of an electrically conducting viscous incompressible fluid 
through a two – dimensional channel under the influence of a transverse magnetic 
field. The governing equations are [2]; 
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together with the boundary conditions 
( ) ( ) 01,01 =+=+ vu     (2.4) 

The flow quantities in equation (2.1)-(2.4) have been non-dimensionalized as 
follows: 
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Where x and y are the streamwise and normal coordinates respectively, u and v are 
the streamwise and normal velocity respectively, t-time, p – pressure, Re – 
Reynolds number and H is the Hartmann’s number, 0U  is the characteristic 
velocity of the fluid, a is the characteristic half width of the channel, υ  is the 
kinematic fluid viscosity and ρ is the fluid density, eσ is the fluid electrical 
conductivity. 
The equation and the boundary conditions for the basic flow are  

( ) 01;2
2

2

=±−=− UAUH
dy

Ud     (2.6) 

By Adomian decomposition, equation (2.6) admits a series solution of the form 

( ) ( )yUyU
n

n∑
∞

=

=
0

    (2.7) 

using (2.7) in (2.6) we obtain the zeroth component as 

( ) ∫ ∫−=
y y

AdydyayU
0 0

00     (2.8) 

While other components can be easily obtained using the recursive relation  

( ) ∫ ∫=+

y y

nn dydyUHyU
0 0

2
1     (2.9) 

obtaining few terms of (2.9) we get 
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Summing up (2.10) leads to the partial sum  

( )∑
=

3

0n
n yU      (2.11) 

as the approximate solution.  
Using ( ) 01 =U , the unknown constant is determined to be 
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Therefore, the series converges to the exact solution obtained in [2] 
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If we assume that 10 <<< H  then (2.13) leads to  
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3. Computational Approach 

 
By Squire Theorem [3, 4, 9, 17], we impose a 2-Dimensional disturbance in the 
form 
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Where ( )yU  is the solution of the basic flow equation (2.13) and ',',' pvu  are the 
small disturbances, substituting (2.15) into (2.1)-(2.3) and neglecting all quadratic 
terms, we get 
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  (2.16) 

We now seek a mode solution in the form 
( ) ( ) ( ) ( ) ( ) tctcxictxi IR eeyeytyx ααα φφ −− ==Ψ ,,   (2.17) 

Where IR iccc +=  is complex valued function and α  is real, it is clear from 
(2.17) that when 0>Ic the disturbance grows and the flow become unstable. For 

0<Ic  the disturbance decays and the flow become stable and neutrally stable 
when 0=Ic . Additionally 0>Rc  enhances the flow stability, So that the velocity 
components can be obtained as 
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Putting (2.18) in (2.16) and eliminating ( )tyxp ,,' , we obtain the fourth order 
ordinary differential equation 

( ) ( )
( ) ( )φααφαα

φαφααφ

''ReRe
''Re''Re2

243

22
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HUiciiv

+−−+

++−=
 (2.19) 

subject to the boundary conditions 
( ) ( ) 01'1 =−=− φφ     (2.20) 
( ) ( ) 011' == φφ      (2.21) 

In the limiting case as 0→H , equation (2.19) reduces to the well-known Orr- 
Sommerfield equation. 
 
By ADM the solution of (2.19) - (2.21) can be written as 
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where the unknown constants are to be evaluated using the boundary condition 
(2.21).  
To obtain the eigenvalues of the approximate solution, the partial sum

( ) ( )∑
=

=
k

n
n yy

0
φφ is solved using the boundary conditions (2.21). This returns two 

equations as functions of 0b and 1b . Using Mathematica, the two constants are 
eliminated, and we obtain the following results for the wave speed (c) when 4=k . 
The numerical results of (2.22) are shown as Tables 1- 3 for different parameter 
values. 

4. Results and Discussion 
 

 Table 1 shows the effect of an increase in Hartmann’s number on the flow 
stability. The result shows that the value of ic  reduces with an increase in 
Hartmann’s number in a quadratic manner, this is true due to the retarding effect 
of Lorentz forces on the flow applied across the channel. Therefore, increasing 
magnetic field intensity enhances the flow stability. This behaviour validates the 
previously obtained result by [2]. 

Table 1 
Computation showing variations in wave speed 410Re,1 ==α  

H 
rc  ic  

1 1.88324 -1.00754i 
5 18.743 -25.2347i 
10 321.096 -100.938i 
15 1647.78 -227.109i 
20 5232.96 -403.749i 
25 12804.4 -630.858i 
30 26583.7 -908.434i 
35 49285.8 -1236.48i 
40 84119.7 -1614.99i 
45 134788.0 -2043.98i 
50 205486.0 -2523.43i 
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Table 2 
Computation showing variations in wave speed 1,1 == Hα  

Re 
rc  ic  

10,000 0.188324 -1.00754i 
20,000 0.188331 -1.00737i 
30,000 0.188334 -1.00731i 
40,000 0.188335 -1.00729i 
50,000 0.188336 -1.00727i 
60,000 0.188337 -1.00726i 
70,000 0.188337 -1.00725i 
80,000 0.188337 -1.00724i 
90,000 0.188338 -1.00724i 

1,000,000 0.188339 -1.0072i 
1,000,000,000 0.188339 -1.0072i 

 
Table 3 

Computation showing variations in wave speed 410Re,1 ==H  
α  

rc  ic  
1 0.188324 -1.00754i 
5 0.323685 -0.328911i 

10 0.283335 -0.13684i 
15 0.238024 0.0291119i 
20 0.260771 0.0143511i 
25 0.264298 0.00594748i 
30 0.26487 0.00189868i 
35 0.264779 -0.000385081i 
40 0.26456 -0.00187533i 
45 0.264341 -0.0029701i 
50 0.264154 -0.00385024i 

 
In Table 2, it is observed that as the Reynolds number increases there is increase 
in the rc  while there is decrease in the value of ic  this brings about instability. 
Finally, Table 3 shows that both rc and ic  oscillates with increase in the wave 
number α . 
 

5. Conclusion 
 

 In this paper, the ADM is used to study the temporal development of small 
disturbances in hydromagnetic fluid flow. The criteria for the onset of instability 
have been presented theoretically and confirmed analytically. It is observed that 
increase in Hartmann’s number stabilizes the flow while the Reynolds number has 
destabilizing effect on the flow.  
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