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DIRICHLET BOUNDARY VALUE PROBLEMS VIA

VARIATIONAL METHODS
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In this paper, a second order nonlinear difference equation with Jacobi
operators is considered. Using the critical point theory, we obtain the existence
and multiplicity of solutions of Dirichlet boundary value problems and give some
new results.
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1. Introduction

The second order forward-backward differential-difference equation

c2u′′(t) = V ′(u(t+ 1)− u(t))− V ′(u(t)− u(t− 1)), t ∈ R (1)

has been studied extensively by many scholars. For example, Smets and Willem [25]
have obtained the existence of solitary waves of Eq. (1).

A generalization of Eq. (1) is the following equation

Su(t) = f(t, u(t+ 1), u(t), u(t− 1)), t ∈ R. (2)

Here S is the Sturm-Liouville differential expression and f ∈ C(R4,R).
Consider the second order difference equation

Lun = f(n, un+1, un, un−1), (3)

with boundary value conditions

u0 = A, uk+1 = B, (4)

where the operator L is the Jacobi operator

Lun = anun+1 + an−1un−1 + bnun,
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an and bn are real valued for each n ∈ Z, f ∈ C(R4,R), A and B are constants.
Eq. (3) can be considered as a discrete analogue of Eq. (2). L leads to a symmetric
matrix representation.

The theory of nonlinear difference equations has been widely used to study
discrete models appearing in many fields such as computer science, economics, neural
network, ecology, cybernetics, etc. For example, the simple logistic equation

un+1 = run

is a formula for approximating the evolution of an animal population over time,
where un is the number of animals this year, un+1 is the number next year and r is
the growth rate or fecundity. The the price-demand curve of cobweb phenomenon

Dn = −mdpn + bd, md > 0, bd > 0

is the economics application of difference equations, where Dn is the number of
units demanded in period n, pn is the price per unit in period n and md represents
the sensitivity of consumers to price. Since the last decade, there has been much
literature on qualitative properties of difference equations, those studies over many
of the branches of difference equations, such as [1,3,11,15,19,24] and the references
therein.

Let N, Z and R denote the sets of all natural numbers, integers and real
numbers respectively. For a, b ∈ Z, define Z(a) = {a, a + 1, · · · }, Z(a, b) = {a, a +
1, · · · , b} when a ≤ b. ∆ is the forward difference operator defined by ∆un =
un+1 − un. k is a positive integer and * is the transpose sign for a vector.

In recent years, the study of boundary value problems for differential equations
develops at relatively rapid rate. By using various methods and techniques, such as
Schauder fixed point theorem, the cone theoretic fixed point theorem, the method
of upper and lower solutions, coincidence degree theory, a series of existence results
of nontrivial solutions for differential equations have been obtained in literatures,
we refer to [2,4-8,13,26,29]. And critical point theory is also an important tool
to deal with problems on differential equations [18,22,29]. Because of applications
in many areas for difference equations [1,16,20,21,23], recently, a few authors have
gradually paid attention to applying critical point theory to deal with boundary
value problems on discrete systems, see [3,27,28,30]. We also refer to [27,28] for the
discrete boundary value problems.

Since the last decade, there has been much progress on the qualitative proper-
ties of difference equations, which included results on stability and attractivity and
results on oscillation and other topics, see [1,3,4,9,12-14,17,27-30]. However, to our
best knowledge, no similar results are obtained in the literature for the boundary
value problem (BVP) (3) with (4). Since f in Eq. (3) depends on un+1 and un−1,
the traditional ways of establishing the functional in [3,27-29] are inapplicable to
our case.

Our aim in this paper is to use the critical point theory to give some sufficient
conditions for the existence and multiplicity of the BVP (3) with (4). The main idea
in this paper is to transfer the existence of the BVP (3) with (4) into the existence
of the critical points of some functional.

Our main results are as follows.
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Let

pmax = max{an : n ∈ Z(0, k)}, pmin = min{an : n ∈ Z(0, k)},
p = max{|an| : n ∈ Z(0, k)}, q = max{|bn + an−1 + an| : n ∈ Z(1, k)}.

Theorem 1.1. Assume that there exist constants R1 > 0, β > 2 and a functional
F (n, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),

0 < βF (n, v1, v2) ≤
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)

∂v2
v2, ∀

√
v21 + v22 ≥ R1. (5)

Then the BVP (3) with (4) possesses at least one solution.

Remark 1.1. (5) implies that there exist constants a1 > 0 and a2 > 0 such that

F (n, v1, v2) ≥ a1

(√
v21 + v22

)β

− a2, ∀n ∈ Z(1, k).

Theorem 1.2. Assume that B = 0 and the following hypotheses are satisfied:

(F1) there exists a functional F (n, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such that

lim
r→0

F (n, v1, v2)

r2
= 0, r =

√
v21 + v22, ∀n ∈ Z(1, k);

(F2) there exists a constant β > 2 such that for any n ∈ Z(1, k),

∂F (n− 1, v2, v3)

∂v2
+

∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),

∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)

∂v2
v2 ≤ βF (n, v1, v2) < 0, ∀(v1, v2) ̸= 0; (6)

(F3) an > 0, bn + an−1 + an ≡ 0, ∀n ∈ Z(1, k).

Then the BVP (3) with (4) possesses at least two nontrivial solutions.

Remark 1.2. (6) implies that there exist constants a1 > 0 and a2 > 0 such that

F (n, v1, v2) ≤ −a1

(√
v21 + v22

)β

+ a2, ∀n ∈ Z(1, k). (7)

The rest of the paper is organized as follows. In Section 2 we shall establish
the variational framework for the BVP (3) with (4) in order to apply the critical
point method and give some useful lemmas. In Section 3 we shall complete the proof
of the main results and give an example to illustrate the result.

2. Variational structure and some lemmas

In order to apply the critical point theory, we shall establish the corresponding
variational framework for the BVP (3) with (4) and give some basic notations and
useful lemmas.

LetRk be the real Euclidean space with dimension k. Define the inner product
on Rk as follows:

⟨u, v⟩ =
k∑

j=1

ujvj , ∀u, v ∈ Rk, (8)
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by which the norm ∥ · ∥ can be induced by

∥u∥ =

 k∑
j=1

u2j

 1
2

, ∀u ∈ Rk. (9)

On the other hand, we define the norm ∥ · ∥r on Rk as follows:

∥u∥r =

 k∑
j=1

|uj |r
 1

r

, (10)

for all u ∈ Rk and r > 1.
Since ∥u∥r and ∥u∥2 are equivalent, there exist constants c1, c2 such that

c2 ≥ c1 > 0, and
c1∥u∥2 ≤ ∥u∥r ≤ c2∥u∥2, ∀u ∈ Rk. (11)

Clearly, ∥u∥ = ∥u∥2. For the BVP (3) with (4), consider the functional J on
Rk as follows:

J(u) =
1

2

k∑
n=0

an(∆un)
2 − 1

2

k∑
n=1

(bn + an−1 + an)u
2
n +

k∑
n=1

F (n, un+1, un), (12)

∀u = (u1, u2, · · · , uk)∗ ∈ Rk, u0 = A, uk+1 = B.
Clearly, J ∈ C1(Rk,R) and for any u = {un}n∈Z(1,k) ∈ Rk, by using u0 =

A, uk+1 = B, we can compute the partial derivative as

∂J

∂un
= −an∆un + an−1∆un−1 − (bn + an−1 + an)un + f(n, un+1, un, un−1)

= −Lun + f(n, un+1, un, un−1), n ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

Lun = f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

We reduce the existence of the BVP (3) with (4) to the existence of critical points
of J on Rk. That is, the functional J is just the variational framework of the BVP
(3) with (4).

Denote

W = {(u1, u2, · · · , uk)∗ ∈ Rk|un ≡ v, v ∈ R, n ∈ Z(1, k)}
and Y be the direct orthogonal complement of Rk to W , i.e., Rk = Y ⊕W .

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition[10] for short) if any sequence

{
u(k)

}
⊂ E for which

{
J
(
u(k)

)}
is

bounded and J ′ (u(k))→ 0(k → ∞) possesses a convergent subsequence in E.
Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its

boundary.

Lemma 2.1. (Linking Theorem [18,22]). Let E be a real Banach space, E =
E1 ⊕ E2, where E1 is finite dimensional. Suppose that J ∈ C1(E,R) satisfies the
P.S. condition and
(J1) there exist constants a > 0 and ρ > 0 such that J |∂Bρ∩E2 ≥ a;
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(J2) there exists an e ∈ ∂B1 ∩E2 and a constant R0 ≥ ρ such that J |∂Q ≤ 0, where
Q = (B̄R0 ∩ E1)⊕ {re|0 < r < R0}.
Then J possesses a critical value c ≥ a, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄, E) | h|∂Q = id}, where id denotes the identity operator.

Lemma 2.2. Assume that B = 0 and (F1)− (F3) are satisfied. Then the functional
J is bounded from above in Rk.

Proof. For any u ∈ Rk,

J(u) =
1

2

k∑
n=0

an(∆un)
2 +

k∑
n=1

F (n, un+1, un)

≤ pmax

k∑
n=0

(
u2n+1 + u2n

)
− a1

k∑
n=1

(√
u2n+1 + u2n

)β

+ a2k

≤ 2pmax

k∑
n=0

u2n − a1

k∑
n=1

|un|β + a2k

≤ 2pmax∥u∥2 + 2pmaxA
2 − a1c

β
1∥u∥

β + a2k. (13)

Since β > 2, there exists a constant M > 0 such that J(u) ≤ M, ∀u ∈ Rk. The
proof of Lemma 2.2 is complete.

Lemma 2.3. Assume that B = 0 and (F1)− (F3) are satisfied. Then the functional
J satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J
(
u(l)
)}

is bounded. Then
there exists a positive constant M1 such that

−M1 ≤ J
(
u(l)
)
≤ M1, ∀l ∈ N.

By the proof of Lemma 2.2, it is easy to see that

−M1 ≤ J
(
u(l)
)
≤ 2pmax

∥∥∥u(l)∥∥∥2 − a1c
β
1

∥∥∥u(l)∥∥∥β + 2pmaxA
2 + a2k.

That is,

a1c
β
1

∥∥∥u(l)∥∥∥β − 2pmax

∥∥∥u(l)∥∥∥2 ≤ M1 + 2pmaxA
2 + a2k.

Since β > 2, there exists a constant M2 > 0 such that∥∥∥u(l)∥∥∥ ≤ M2, ∀l ∈ N.

Therefore,
{
u(l)
}
is bounded on Rk. As a consequence,

{
u(l)
}
possesses a conver-

gence subsequence in Rk. And thus the P.S. condition is verified.
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3. Proof of the main results

Proof of Theorem 1.1. For any u = (u1, u2, · · · , uk)∗ ∈ Rk,
√

u2n+1 + u2n ≥
R1, we have

J(u) =
1

2

k∑
n=0

an(∆un)
2 − 1

2

k∑
n=1

(bn + an−1 + an)u
2
n +

k∑
n=1

F (n, un+1, un)

≥ −p

2

k∑
n=0

(∆un)
2 − q

2

k∑
n=1

u2n + a1

k∑
n=1

(√
u2n+1 + u2n

)β

− a2k

≥ −p

k∑
n=0

(
u2n+1 + u2n

)
− q

2
∥u∥2 + a1

k∑
n=1

|un|β − a2k

≥ −2p

k∑
n=1

u2n − p
(
A2 +B2

)
− q

2
∥u∥2 + a1c

β
1∥u∥

β − a2k

= −
(
2p+

q

2

)
∥u∥2 − p

(
A2 +B2

)
+ a1c

β
1∥u∥

β − a2k

→ +∞(∥u∥ → +∞).
By continuity of J on Rk and above argument, there exists ū ∈ Rk such that
J(ū) = min

{
J(u)|u ∈ Rk

}
. Clearly, ū is a critical point of the functional J . The

proof of Theorem 1.1 is finished.
Proof of Theorem 1.2. Assumptions (F1) and (F2) imply that F (n, 0) = 0

and f(n, 0) = 0 for n ∈ Z(1, k). Then u = 0 is a trivial solution of the BVP (3) with
(4).

By Lemma 2.2, J is bounded from the upper onRk. We define c0 = sup
u∈Rk

J(u).

The proof of Lemma 2.2 implies lim
∥u∥→+∞

J(u) = −∞. This means that −J(u) is

coercive. By the continuity of J(u), there exists ū ∈ Rk such that J(ū) = c0.
Clearly, ū is a critical point of J .

We claim that c0 > 0. Indeed, by (F1), for any ϵ = 1
8pminλ2(λ2 can be referred

to (14)), there exists ρ > 0, such that

|F (n, v1, v2)| ≤
1

8
pminλ2

(
v21 + v22

)
, ∀n ∈ Z(1, k),

for
√

v21 + v22 ≤
√
2ρ.

For any u = (u1, u2, · · · , uk)∗ ∈ Y and ∥u∥ ≤ ρ, we have |un| ≤ ρ, n ∈ Z(1, k).
When k ≥ 2,

J(u) =
1

2

k∑
n=0

an(un+1 − un)
2 +

k∑
n=1

F (n, un+1, un)

≥ 1

2
pmin

k∑
n=0

(un+1 − un)
2 − 1

8
pminλ2

k∑
n=1

(
u2n+1 + u2n

)
≥ 1

2
pmin(y

∗Dy)− 1

4
pminλ2∥u∥2,



Existence and multiple solutions for discrete Dirichlet boundary value problems via variational methods 53

where y∗ = (A, u1, u2, · · · , uk, 0), y ∈ Rk+2,

D =


1 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 1


(k+2)×(k+2).

Clearly, λ1 = 0 is an eigenvalue of D and ξ = (v, v, · · · , v) ∈ Rk+2(v ̸= 0, v ∈
R) is an eigenvector of D corresponding to 0. Let λ2, λ3, · · · , λk+2 be the other
eigenvalues of D. Applying matrix theory, we know λj > 0, j = 2, 3, · · · , k + 2.
Without loss of generality, we may assume that

0 = λ1 < λ2 ≤ · · · ≤ λk+2, (14)

then for any u ∈ Y , defining

∥y∥ =

(
k+1∑
i=0

u2i

) 1
2

=
(
∥u∥2 +A2

) 1
2 ,

we have

J(u) ≥ 1

2
pminλ2∥y∥2 −

1

4
pminλ2∥u∥2

≥ 1

4
pminλ2∥u∥2.

Take a , 1
4pminλ2∥ρ∥2 > 0. Therefore,

J(u) ≥ a > 0, ∀u ∈ Y ∩ ∂Bρ.

At the same time, we have also proved that there exist constants a > 0 and ρ > 0
such that J |Y ∩∂Bρ ≥ a. That is to say, J satisfies the condition (J1) of the Linking
Theorem.

In order to exploit the Linking Theorem in critical point theory, we need to
verify other conditions of the Linking Theorem. By Lemma 2.3, J satisfies the P.S.
condition. So it suffices to verify the condition (J2).

Take e ∈ ∂B1 ∩ Y , for any w ∈ W and r ∈ R, let u = re+ w. Then

J(u) =
1

2

k−1∑
n=1

an(ren+1+wn+1−ren−wn)
2+

a0
2
(re1+w1−A)2+

ak
2
(0−rek−wk)

2

+

k∑
n=1

F (n, ren+1 + wn+1, ren + wn)

≤ pmaxr
2

2

k−1∑
n=1

(en+1 − en)
2 +

3a0
2

[
(re1)

2 + w2
1 +A2

]
+

3ak
2

[
(rek)

2 + w2
k

]
−a1

k∑
n=1

[√
(ren+1 + wn+1)2 + (ren + wn)2

]β
+ a2k
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≤ 2(k− 1)pmaxr
2+

3pmax

2

(
2r2 +A2 + 2w2

1

)
− a1c

β
1

(
k∑

n=1

|ren + wn|2
)β

2

+ a2k

= [2(k − 1)pmax + 3pmax] r
2 +

3pmax

2

(
A2 + 2w2

1

)
− a1c

β
1

(
r2 + ∥w∥2

)β
2 + a2k

≤ (2k + 1)pmaxr
2 +

3pmax

2
A2 − a1c

β
1r

β − a1c
β
1∥w∥

β + 3pmax∥w∥2 + a2k.

Let

g1(r) = (2k + 1)pmaxr
2 +

3pmax

2
A2 − a1c

β
1r

β, g2(t) = −a1c
β
1 t

β + 3pmaxt
2 + a2k.

Then

lim
r→+∞

g1(r) = −∞, lim
t→+∞

g2(t) = −∞,

g1(r) and g2(t) are bounded from above. It is easy to see that there exists a positive
constant R2 > ρ such that for any u ∈ ∂Q, J(u) ≤ 0, where

Q = (B̄R2 ∩W )⊕ {re|0 < r < R2}.

By the Linking Theorem, J possesses a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
u∈Q

J(h(u)),

and Γ = {h ∈ C(Q̄,Rk) | h|∂Q = id}.
Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e.,

J(ũ) = c. If ũ ̸= ū, then the conclusion of Theorem 1.2 holds. Otherwise, ũ = ū.

Then c0 = J(ū) = J(ũ) = c, that is sup
u∈Rk

J(u) = inf
h∈Γ

sup
u∈Q

J(h(u)). Choosing h = id,

we have sup
u∈Q

J(u) = c0. Since the choice of e ∈ ∂B1 ∩ Y is arbitrary, we can take

−e ∈ ∂B1 ∩ Y . Similarly, there exists a positive number R3 > ρ, for any u ∈ ∂Q1,

J(u) ≤ 0, where

Q1 = (B̄R3 ∩W )⊕ {−re|0 < r < R3}.
Again, by the Linking Theorem, J possesses a critical value c′ ≥ a > 0, where

c′ = inf
h∈Γ1

sup
u∈Q1

J(h(u)),

and Γ1 = {h ∈ C(Q̄1,R
k) | h|∂Q1 = id}.

If c′ ̸= c0, then the proof is finished. If c′ = c0, then sup
u∈Q1

J(u) = c0. Due to the

fact J |∂Q ≤ 0 and J |∂Q1 ≤ 0, J attains its maximum at some points in the interior

of sets Q and Q1. However, Q ∩Q1 ⊂ W and J(u) ≤ 0 for any u ∈ W . Therefore,
there must be a point u′ ∈ Rk, u′ ̸= ũ and J(u′) = c′ = c0. The above argument
implies that the BVP (3) with (4) possesses at least two nontrivial solutions when
k ≥ 2.

In the case k = 1, it is easy to complete the proof of Theorem 1.2.
The proof of Theorem 1.2 is complete.



Existence and multiple solutions for discrete Dirichlet boundary value problems via variational methods 55

4. Example

As an application of Theorem 1.2, finally, we give an example to illustrate our
main result.

For n ∈ Z(1, k), assume that

un+1 + un−1 − 2un = −βun

[
φ(n)

(
u2n+1 + u2n

)β
2
−1

+ φ(n− 1)
(
u2n + u2n−1

)β
2
−1
]
(15)

with boundary value conditions

u0 = 6, uk+1 = 0, (16)

where β > 2, φ is continuously differentiable and φ(n) > 0, n ∈ Z(1, k) with
φ(0) = 0.

We have

an = an−1 ≡ 1, bn ≡ −2,

f(n, v1, v2, v3) = −βv2

[
φ(n)

(
v21 + v22

)β
2
−1

+ φ(n− 1)
(
v22 + v23

)β
2
−1
]

and

F (n, v1, v2) = −φ(n)
(
v21 + v22

)β
2 .

Then

∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2
= −βv2

[
φ(n)

(
v21 + v22

)β
2
−1

+ φ(n− 1)
(
v22 + v23

)β
2
−1
]
.

It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then the
BVP (15) with (16) possesses at least two nontrivial solutions.
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