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UNSTEADY MHD CONVECTION OF A RADIATING FLUID 
PAST A MOVING PERMEABLE VERTICAL PLATE IN A 

POROUS MEDIUM 
 

Satish Kumar SINGH1, Daniel Oluwole MAKINDE2, Adetayo Samuel 
EEGUNJOBI3* 

In the present paper, the authors have considered the unsteady MHD convection of 
a radiating viscous incompressible electrically conducting fluid past a moving permeable 
vertical plate maintained at a variable temperature. The governing partial differential 
equations are obtained and analytically tackled using the Laplace transform technique 
numerically via the finite difference method. Pertinent results depicting the effects of various 
emerging parameters on the fluid velocity, temperature profiles, skin friction, and Nusselt 
number are displayed graphically and in tables. It is found that both skin friction and Nusselt 
number upsurge with a rise in fluid suction and magnetic field intensity, while a boost in 
thermal radiation, buoyancy force, and heat source lessened the skin friction and Nusselt 
number 
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1. Introduction 

Studying viscous incompressible fluid flow past porous media is fascinating 
and important in fluid dynamics and porous material science. This complex 
phenomenon occurs when a viscous fluid hits a media containing linked empty 
spaces, such as soils, rocks, or biological tissues. Complex flow patterns result from 
fluid-porous structure interaction, making it of great scientific and practical interest. 
This fascinating interaction affects groundwater flow through soil in environmental 
engineering and blood flow through porous tissues in biomedical engineering. 
Understanding the dynamics of viscous incompressible fluid flow via porous media 
can solve problems in oil reservoir engineering, filtration, and heat exchanger 
optimization. Stokes [1] investigated the flow of a viscous incompressible fluid past 
an impulsively started infinite horizontal flat plate within its own plane. Bassant 
and Clement [2] investigated the magnetohydrodynamics (MHD) natural 
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convection flow of fluids with different Prandtl numbers in the Stokes problem for 
a vertical porous plate. The equations are solved semi-analytically using the 
Laplace transform technique and the Riemann-sum approximation method. The 
effects of various flow parameters on velocity, temperature, skin friction, and heat 
transfer rate are discussed with graphs. They extended the scope of earlier results 
and validated the Riemann-sum approximation method. 

Exploring free convection flow, the movement of an electrically conducting 
fluid against an endless vertical plate is important in many engineering and applied 
science domains. This research has led to novel MHD accelerators and power 
generation devices. The study of free convection flow is also important in nuclear 
reactor cooling, where fluid dynamics are key for heat dissipation. This research 
contributes to astrophysics by revealing star and planet structure dynamics. Studies 
of free convection flow past an infinite vertical plate are crucial to solving terrestrial 
and celestial engineering problems. Reddy and Makinde [3] discussed the impact 
of Newtonian heating on MHD unsteady free convection boundary layer flow past 
an oscillating vertical porous plate with thermal radiation, chemical reaction, and 
heat absorption. The study analyzed dimensionless velocity, temperature, 
concentration profiles, skin friction coefficient, Nusselt number, and Sherwood 
number. Results revealed that thermal and mass buoyancy effects support velocity, 
while increased magnetic field strength had a reverse effect. The concept of model 
problem holds excellent relevance in engineering and industry, with applications 
ranging from ceramic and glassware manufacturing to polymer production, food 
processing, heat exchangers, nuclear power plants, and gas turbines. Sulemana et 
al. [4] presented a chemically reactive fluid's hydrodynamic boundary layer flow 
over an exponentially stretching vertical surface with a transverse magnetic field in 
an unsteady porous medium. They used an approximate analytic method to solve 
the dimensional partial differential equations, and the results are presented 
graphically and numerically. They concluded that the controlling parameters 
effectively reduce skin friction in a chemically reactive magnetic porous medium, 
which was relevant in practical applications such as solar energy collector systems 
and material processing. 

Eegunjobi and Makinde [5] investigated the effects of various parameters 
on the unsteady mixed convection flow of an electrically conducting fluid past a 
stretching sheet in a porous medium. The governing equations were transformed 
and solved numerically. Their findings unveiled that the augmentation of buoyancy 
forces resulted in increased heat and mass transfer rates and reduced the thermal 
and concentration boundary layer density. Ajay et al. [6] investigated the influence 
of radiation and internal heat generation (absorption) on the dynamics of unsteady 
laminar natural convective boundary layer flows over a truncated cone. They 
derived a set of coupled nonlinear partial differential equations by applying 
appropriate transformations to describe the flow and heat transfer governing 
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principles. Their numerical results highlighted the substantial impact of pressure 
work, internal heat generation (absorption), radiation, and magnetic field on skin 
friction and heat transfer in the system. Comprehensive research investigations 
encompassing various scenarios have been conducted on viscous incompressible 
fluid flow, which are detailed in [7-10]. 

The interaction between MHD and moving plates represents a fascinating 
and consequential area of study within fluid dynamics. MHD, a discipline at the 
intersection of magnetism and fluid mechanics, explores the behavior of electrically 
conducting fluids in the presence of magnetic fields. These are applicable in various 
scientific and engineering domains, including astrophysics, geophysics, and the 
design of advanced technological systems. The numerical investigation by 
Hasanuzzaman et al. [11] explored the effects of thermal diffusion and Dufour on 
a time-dependent free MHD convective transport flow over an inclined permeable 
plate. The transformed dimensionless ordinary differential equations were 
systematically solved using the finite difference method and the Shooting technique 
implemented through MATLAB software. The outcomes revealed a reduction in 
fluid velocity as the inclined angle increased, highlighting the significant influence 
of thermal diffusion and Dufour effects on the convective transport flow. The study 
by Erik et al. [12] explored the dynamics of two-dimensional unsteady MHD flow 
within a viscous fluid confined between two parallel plates in motion. The authors 
considered scenarios where the plates moved both together and apart, representing 
a squeezing flow problem when moving together. By transforming the governing 
Navier–Stokes equations into a fourth-order nonlinear ordinary differential 
equation (ODE), they applied the homotopy analysis method to derive analytical 
solutions. The findings indicated that the flow exhibited significant sensitivity to 
both the magnetic field strength and the fluid density. The investigation into steady 
and unsteady MHD Couette flows between two parallel infinite plates was 
conducted by Hatami el al. [13] using the numerical Differential Quadrature 
Method (DQM) and the analytical Differential Transformation Method (DTM), 
respectively. In the coupled equations, they incorporated the viscosity effects of the 
two phases for both fixed and moving plates. Their findings indicated that, with a 
fixed magnetic source relative to the moving plate, an increase in the Hartmann 
number led to elevated velocity profiles for both phases. Conversely, an inverse 
trend was observed when the magnetic source was fixed relative to the fluid. Some 
studies on MHD and moving plates across various dimensions can be found in 
references [14-16]. 

The primary aim of this study is to examine the unsteady MHD convection 
of a radiating viscous incompressible electrically conducting fluid adjacent to a 
mobile permeable vertical plate within an environment characterized by variable 
temperature. The investigation utilizes the Laplace transform technique, 
implemented numerically through the finite difference method, to solve the 
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governing partial differential equations. The results are presented graphically and 
in tabular form, illustrating the impact of diverse emerging parameters on fluid 
velocity and temperature profiles, along with skin friction and Nusselt number. 

The present article is organized as follows: Section 2 introduces the 
governing equations of the problem. Section 3 outlines the analytical approach 
employed, utilizing the Laplace Transform method. Section 4  elucidates the 
numerical approach. Subsequently, Section 5 presents and discusses the numerical 
computational results. Finally, Section 6 encapsulates the study's conclusions. 

2. Mathematical formulation 

Consider an unsteady laminar flow of a viscous incompressible electrically 
conducting   fluid past an uniformly accelerating infinite vertical plate heating with 
variable temperature. The 𝑥𝑥′-axis is taken along the plate and 𝑦𝑦′-axis is normal to 
it. Initially, the plate and the adjacent fluid are at the same temperature 𝑇𝑇∞′  
everywhere. At time 𝑡𝑡′ > 0, heat is supplied from the surface of the plate to variable 
temperature, and the fluid is maintained temperature 𝑇𝑇𝑤𝑤′ .  A uniform inclined 
magnetic field 𝐵𝐵0 is applied on plate with angle 𝛼𝛼.  The plate is infinite in length so 
all the physical quantities are function of 𝑦𝑦′ and 𝑡𝑡′ only. Thus, with usual 
Boussinesq approximation, the flow is governed by the following equations. 

 
𝜕𝜕𝑢𝑢′

𝜕𝜕𝑡𝑡′
− 𝑉𝑉 𝜕𝜕𝑢𝑢′

𝜕𝜕𝑦𝑦′
= 𝜗𝜗 𝜕𝜕2𝑢𝑢′

𝜕𝜕𝑦𝑦′2
+ 𝑔𝑔𝑔𝑔(𝑇𝑇′ − 𝑇𝑇∞′ ) − 𝜎𝜎𝐵𝐵02 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛼𝛼

𝜌𝜌
𝑢𝑢′ − 𝜗𝜗

𝜅𝜅
𝑢𝑢′,                     (1) 

 
𝜕𝜕𝑇𝑇′

𝜕𝜕𝑡𝑡′
− 𝑉𝑉 𝜕𝜕𝑇𝑇′

𝜕𝜕𝑦𝑦′
= 𝑘𝑘

𝜌𝜌𝐶𝐶𝑝𝑝
�1 + 16𝜎𝜎∗𝑇𝑇∞′

3𝑘𝑘𝑘𝑘∗
� 𝜕𝜕

2𝑇𝑇′

𝜕𝜕𝑦𝑦′2
+ 𝑄𝑄0

𝜌𝜌𝐶𝐶𝑝𝑝
(𝑇𝑇′ − 𝑇𝑇∞′ ),                              (2) 

with the initial and boundary conditions given as 
𝑡𝑡′ ≤ 0,   𝑢𝑢′ = 0,   𝑇𝑇′ = 𝑇𝑇∞′ ,                               𝑎𝑎𝑎𝑎     𝑦𝑦′ ≥ 0, 

𝑡𝑡′ ≥ 0,   𝑢𝑢′ = �
𝑈𝑈2𝑛𝑛+1

𝜗𝜗𝑛𝑛
� 𝑡𝑡′𝑛𝑛,𝑇𝑇′ = 𝑇𝑇∞′ + (𝑇𝑇𝑤𝑤′ − 𝑇𝑇∞′ )

𝑈𝑈2𝑡𝑡′

𝜗𝜗
, 𝑎𝑎𝑎𝑎  𝑦𝑦′ = 0, 

              𝑢𝑢′ ⟶ 0,𝑇𝑇′ ⟶ 𝑇𝑇∞′ ,                                                 𝑎𝑎𝑎𝑎 𝑦𝑦′ ⟶ ∞.                      (3) 
The above equations are non-dimensionalised with the following variables 

and parameters; 
  𝑢𝑢 = 𝑢𝑢′

𝑈𝑈
,𝑦𝑦 = 𝑈𝑈𝑈𝑈′

𝜗𝜗
,𝑅𝑅 = 16𝜎𝜎∗𝑇𝑇∞′

3𝑘𝑘𝑘𝑘∗
,𝜃𝜃 = 𝑇𝑇′−𝑇𝑇∞′

𝑇𝑇𝑤𝑤′ −𝑇𝑇∞′
,𝑀𝑀 = 𝜎𝜎𝜗𝜗𝜗𝜗02 𝑠𝑠𝑠𝑠𝑠𝑠2 𝛼𝛼

𝜌𝜌𝑈𝑈2
,𝐾𝐾 = 𝜗𝜗2

𝜅𝜅𝑈𝑈2
, 𝑡𝑡 = 𝑈𝑈2𝑡𝑡′

𝜗𝜗
 

𝑆𝑆 = 𝑉𝑉
𝑈𝑈

,𝑃𝑃𝑃𝑃 = 𝜗𝜗𝜗𝜗𝐶𝐶𝑝𝑝
𝑘𝑘

,𝑈𝑈 = �𝑔𝑔𝑔𝑔𝑔𝑔(𝑇𝑇𝑤𝑤′ − 𝑇𝑇∞′ )�
1
3, 𝑄𝑄 = 𝑄𝑄0𝜗𝜗

𝑈𝑈2𝜌𝜌𝐶𝐶𝑝𝑝
,𝐺𝐺𝐺𝐺 = 𝑔𝑔𝑔𝑔𝑔𝑔�𝑇𝑇𝑤𝑤′ −𝑇𝑇∞′ �

𝑈𝑈3
,      

𝑀𝑀1 = 𝑀𝑀 + 1
𝐾𝐾

.                                                                                                           (4) 
Here 𝑢𝑢′  is the fluid velocity of fluid, 𝑇𝑇′the temperature of fluid, 𝑇𝑇𝑤𝑤′  is  is 

the plate surface temperature, 𝑇𝑇∞′  is the free stream temperature, 𝑈𝑈 is the plate 
surface velocity coefficient, 𝑉𝑉 is the plate surface suction/injection velocity, 𝜗𝜗 the 
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coefficient of kinematic viscosity, 𝜅𝜅 is the porous medium permeability, 𝜎𝜎 is the 
fluid electrical conductivity, 𝑀𝑀 is the  magnetic field parameter, 𝐾𝐾 is the porous 
medium  parameter or Darcy number, 𝑆𝑆 is the suction /injection parameter, 𝑄𝑄 is the 
heat source parameter, 𝑄𝑄0 is the heat source coefficient, 𝑅𝑅 is the thermal radiation 
parameter, 𝐺𝐺𝐺𝐺 is the thermal Grashof number, 𝑃𝑃𝑃𝑃 is the Prandtl number, 𝜌𝜌 is the 
fluid density, 𝐶𝐶𝑝𝑝 is the specific heat capacity at constant pressure, 𝑘𝑘 is the thermal 
conductivity, 𝛽𝛽 is volumetric thermal expansion coefficient, 𝑔𝑔 is acceleration due 
to gravity, 𝜎𝜎∗ and 𝑘𝑘∗ are  the Stefan-Boltzmann and mean absorption coefficients 
respectively. The governing equations in the non-dimensional form are obtained as 

 
  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑆𝑆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜕𝜕2𝑢𝑢

𝜕𝜕𝑦𝑦2
+ 𝐺𝐺𝐺𝐺𝐺𝐺 −𝑀𝑀1𝑢𝑢,                                                                 (5) 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑆𝑆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= (1+𝑅𝑅)

𝑃𝑃𝑃𝑃
𝜕𝜕2𝜃𝜃
𝜕𝜕𝑦𝑦2

+ 𝑄𝑄𝑄𝑄,                                                                     (6) 
with the initial and boundary conditions given as 

𝑡𝑡 ≤ 0,    𝑢𝑢 = 0,   𝜃𝜃 = 0,                               𝑎𝑎𝑎𝑎     𝑦𝑦 ≥ 0, 
𝑡𝑡 ≥ 0,𝑢𝑢 = 𝑡𝑡𝑛𝑛,𝜃𝜃 = 𝑡𝑡,                                    𝑎𝑎𝑎𝑎  𝑦𝑦 = 0, 

                         𝑢𝑢 ⟶ 0,     𝜃𝜃 ⟶ 0,                                            𝑎𝑎𝑎𝑎 𝑦𝑦 ⟶ ∞.                      (7) 
Other important quantities of interest are the skin friction �𝐶𝐶𝑓𝑓� and Nusselt 

number (𝑁𝑁𝑁𝑁) and they are given as follows: 
𝐶𝐶𝑓𝑓 = −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

,𝑁𝑁𝑁𝑁 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

.                                                                 (9) 

 
3. Analytical Approach: Laplace Transform Method 
 
The Laplace transform of a given function 𝐺𝐺(𝑡𝑡,𝑦𝑦) with respect to 𝑡𝑡 is 

defined as 
𝐺𝐺(𝑟𝑟,𝑦𝑦) = ∫ 𝐺𝐺(𝑡𝑡,𝑦𝑦)𝑒𝑒−𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑.∞

0                                                                        (9) 
Taking Laplace transform of equations (5)-(7), we obtain 
𝑑𝑑2𝑢𝑢
𝑑𝑑𝑦𝑦2

+ 𝑆𝑆 𝑑𝑑𝑢𝑢
𝑑𝑑𝑑𝑑
− (𝑟𝑟 + 𝑀𝑀1)𝑢𝑢 = −𝐺𝐺𝐺𝐺

𝑟𝑟2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑦𝑦�𝑆𝑆+�𝑆𝑆2+4𝛿𝛿(𝑟𝑟+𝑄𝑄)�

2𝛿𝛿
�,                        (10) 

(1+𝑅𝑅)
𝑃𝑃𝑃𝑃

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑦𝑦2

+ 𝑆𝑆 𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑
− (𝑟𝑟 + 𝑄𝑄)𝜃𝜃 = 0,                                                              (11) 

subject to the following boundary conditions 
𝑢𝑢 = (𝑛𝑛)!

𝑟𝑟𝑛𝑛+1
,𝜃𝜃 = 1

𝑟𝑟2
        𝑎𝑎𝑎𝑎   𝑦𝑦 = 0, 𝑢𝑢 → 0,𝜃𝜃 → 0,     𝑎𝑎𝑎𝑎  𝑦𝑦 → ∞.                              (12) 

Equations (10)- (11) are solved subject to boundary conditions (12) and we 
obtain 

𝜃𝜃 = 1
𝑟𝑟2
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑦𝑦�𝑆𝑆+�𝑆𝑆2+4𝛿𝛿(𝑟𝑟+𝑄𝑄)�

2𝛿𝛿
�.                                                                      (13) 
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𝑢𝑢 = �
𝑛𝑛!
𝑟𝑟𝑛𝑛+1

+
𝐺𝐺𝐺𝐺

(𝐵𝐵2 − 𝐵𝐵𝐵𝐵 −𝑀𝑀1 − 𝑟𝑟)𝑟𝑟2
� 𝑒𝑒𝑒𝑒𝑒𝑒�−�

𝑆𝑆
2

+ �𝑆𝑆
2

4
+ 𝑀𝑀1 + 𝑟𝑟�𝑦𝑦� 

                 − 𝐺𝐺𝐺𝐺∗𝑒𝑒𝑒𝑒𝑒𝑒(−𝐵𝐵𝐵𝐵)
(𝐵𝐵2−𝐵𝐵𝐵𝐵−𝑀𝑀1−𝑟𝑟)𝑟𝑟2

,                                                                                  (14) 

where 𝐵𝐵 = 𝑟𝑟
2𝛿𝛿

+ �𝑆𝑆2

𝛿𝛿2
+ 𝑟𝑟−𝑄𝑄

𝛿𝛿
. 

Taking inverse Laplace transform of equation (13), we obtain 
 
𝜃𝜃 = �𝑡𝑡

2
− 𝑦𝑦

4𝑐𝑐
� 𝑒𝑒−𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑦𝑦

2√𝑡𝑡
− 𝑐𝑐𝑐𝑐� + �𝑡𝑡

2
+ 𝑦𝑦

4𝑐𝑐
� 𝑒𝑒−𝑦𝑦𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 � 𝑦𝑦

2√𝑡𝑡
+ 𝑐𝑐𝑐𝑐�.     (15) 

The inverse Laplace transform of equation (14) is given approximately as 
𝑢𝑢(𝑦𝑦, 𝑡𝑡) = 𝑒𝑒𝜖𝜖𝜖𝜖

𝑡𝑡
�1
2
𝑢𝑢(𝑦𝑦, 𝜖𝜖) + 𝑅𝑅𝑒𝑒 ∑ 𝑢𝑢 �𝑦𝑦, 𝜖𝜖 + 𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡
� (−1)𝐾𝐾𝑁𝑁

𝐾𝐾=1 �,                        (16) 
where 𝑅𝑅𝑒𝑒 refers to the real part, 𝑖𝑖 = √−1 is the imaginary number , 𝑁𝑁 is the number 
of terms used in the Riemann-sum approximation, 𝑟𝑟 is the Laplace transform 
variable, 𝑛𝑛 is the accelerating surface exponent, 𝜖𝜖 is the real part of the Bromwich 

contour that is used in inverting Laplace transform , 𝛿𝛿 = 1+𝑅𝑅
𝑃𝑃𝑃𝑃

 and  𝑐𝑐 = �𝑆𝑆2

4𝛿𝛿
− 𝑄𝑄. 

4. Numerical Approach: Finite Difference Method 

A numerical resolution of the governing equations (5) - (6) which satisfied 
the initial and boundary conditions in equations (7) based on the finite difference 
method is implemented. The discretization is done as follows: 

• Forward difference for temporal derivatives 
• Central difference for space derivatives. 

The model discretized equations are tackled iteratively on a computer using 
MAPLE software. The computations are carried out with a grid size of Δ𝑦𝑦 = 0.1 
and time step Δ𝑡𝑡 = 0.1. The computations consider the default values: 𝑆𝑆 =
𝑂𝑂. 1,𝐺𝐺𝐺𝐺 = 0.1,𝑀𝑀 = 0.1,𝐾𝐾 = 1,𝑛𝑛 = 1,𝑅𝑅 = 0.1,𝑃𝑃𝑃𝑃 = 0.71,𝑄𝑄 = 0.1 and 𝑡𝑡 = 0.5. 

5. Results and Discussion 

The fundamental physical parameters govern the flow dynamics include the 
magnetic field parameter (𝑀𝑀), porous medium parameter (𝐾𝐾), Prandtl number 
(𝑃𝑃𝑃𝑃), suction parameter (𝑆𝑆), Grashof number (𝐺𝐺𝐺𝐺),  thermal radiation parameter 
(𝑅𝑅),  and heat source parameter (𝑄𝑄). The figs. (1-7) illustrate the variations in 
velocity fields corresponding to different parameters, while figs. (8-12) depict the 
variations in temperature profiles associated with those parameters. The numerical 
values for skin friction and heat transfer rate are tabulated in table (1-2).  
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The graphical representation of the velocity profile for various values of 
parameter (𝑛𝑛), is presented in Fig.1. It is evident from the figure that as the value 
of 𝑛𝑛 increases, there is a notable decrease in velocity. Fig.2 illustrates the impact of 
time (𝑡𝑡), on the velocity profile. Notably, the observation reveals that an increment 
in time corresponds to a decline in velocity.  

In Fig.3, we examine the impact of the Suction/Injection parameter (𝑆𝑆), on 
the velocity profile. The findings reveal a noteworthy correlation, showcasing that 
as the Suction/Injection parameter (𝑆𝑆), undergoes an increase, there is a 
corresponding decrease in the fluid velocity.  

An increase in suction parameter signifies an enhanced fluid removal, 
resulting in a decrease in fluid velocity. Fig. 4 depicts the velocity response 
influenced by the thermal Grashof number (𝐺𝐺𝐺𝐺).  Notably, as the Grashof number 
increases, there is a notable enhancement in the velocity profile. The heightened 
Grashof number signifies an augmentation in the thermal buoyancy forces, 
contributing to the intensified fluid motion evident in the expanded velocity profile. 
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Fig.5 illustrates the impact of parameter (𝐾𝐾), on the velocity profile. The 

findings indicate that as the value of 𝐾𝐾, increases, the velocity profile has a 
concurrent rise. The elevated value of parameter 𝐾𝐾,  corresponds to an amplified 
flow through the porous medium, leading to the observed increase in the velocity 
profile. The velocity profile depicted in Fig.6 illustrates the variations in velocity 
corresponding to changes in the Magnetic parameter 𝑀𝑀. It is evident from the graph 
that the velocity experiences a discernible decrease in response to the influence 
exerted by 𝑀𝑀. Fig.7 depicts the velocity profile in relation to the Prandtl number 
(𝑃𝑃𝑃𝑃). Notably, this figure illustrates a noteworthy trend wherein the velocity 
experiences a decrement with an increase in the Prandtl number. 

         
 
Fig.8 depicts the effects of increasing Prandtl number (𝑃𝑃𝑃𝑃) on the 

temperature profiles. As the Prandtl number rises, the thermal diffusivity is low 
compared to momentum diffusivity. This implies that heat diffuses slowly 
compared to momentum. This results in a thinner thermal boundary layer, steeper 
temperature gradients near surfaces, and potentially higher heat transfer efficiency 
in convective processes. These effects are crucial in designing systems for efficient 
thermal management, such as in heat exchangers, cooling systems, and various 
industrial processes. The observed slightly negative temperature at high Prandtl 
number (𝑃𝑃𝑃𝑃 = 7.1) may be attributed to the cooling effects of the fluid resulting 
from a steep temperature gradient. Fig.9 demonstrates the temperature profile 
against the distance from the plate (𝑦𝑦) at different values of time 𝑡𝑡. The graph shows 
that as time t increases, the temperature also increases. Fig.10 demonstrates the 
influence of the radiation parameter (𝑅𝑅) on the temperature profile. The graph 
shows that as the value of 𝑅𝑅 increases, the temperature also increases. This is due 
to the fact that 𝑅𝑅 is responsible for the thermal boundary thickening, which leads to 
an increase in the temperature gradient at the surface. As a result, the heat transfer 
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rate decreases for increasing, causing the fluid to lose heat energy from the flow 
region. This results in an increase in temperature as the value of R increases. 

          

       
 
Fig.11 portrays the influence of various suction parameters 𝑆𝑆 on temperature 

concerning y. The figure distinctly illustrates that the temperature reaches its 
maximum at the plate, undergoes a rapid decline in proximity to the plate, and tends 
towards zero asymptotically. In Fig.12, the impact of the heat source parameter 𝑄𝑄 
on the temperature field is depicted. The results suggest that as the source parameter 
increases, there is a corresponding rise in fluid temperature. 

The computed coefficient of skin friction at time 𝑡𝑡 = 0.5 along with the 
impact of diverse physical parameters, is presented in Table 1. An examination of 
the table reveals that skin friction diminishes with an escalation of parameters 
𝑛𝑛,𝑀𝑀,𝑅𝑅 and  𝑄𝑄, while it increases with rising values of parameters 𝑆𝑆 and 𝐾𝐾. Table 2 
depicts the numerical values of the Nusselt number at time 𝑡𝑡 = 0.5 for various 
parameters. The table shows that the value of the Nusselt number decreases with an 
increase in 𝑅𝑅 and 𝑄𝑄, while it increases with an increase in  𝑃𝑃𝑃𝑃 and  𝑆𝑆. 
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Table 1 

Computations showing the parameters effects on skin friction when 𝒕𝒕 = 𝟎𝟎.𝟓𝟓. 
𝒏𝒏 𝑺𝑺 𝐺𝐺𝐺𝐺 𝑴𝑴 𝑲𝑲 𝑷𝑷𝑷𝑷 𝑹𝑹 𝑸𝑸 𝑪𝑪𝒇𝒇 

0 0.1 0.1 0.1 1.0 0.71 0.1 0.1 1.9706064 
0.5 0.1 0.1 0.1 1.0 0.71 0.1 0.1 1.3907698 
1.0 0.1 0.1 0.1 1.0 0.71 0.1 0.1 0.9807633 
1.0 0.5 0.1 0.1 1.0 0.71 0.1 0.1 1.0557947 
1.0 1.0 0.1 0.1 1.0 0.71 0.1 0.1 1.1553758 
1.0 0.1 0.5 0.1 1.0 0.71 0.1 0.1 0.9444447 
1.0 0.1 1.0 0.1 1.0 0.71 0.1 0.1 0.8991094 
1.0 0.1 0.1 0.5 1.0 0.71 0.1 0.1 1.0072197 
1.0 0.1 0.1 1.0 1.0 0.71 0.1 0.1 1.0378089 
1.0 0.1 0.1 0.1 5.0 0.71 0.1 0.1 0.9215297 
1.0 0.1 0.1 0.1 10 0.71 0.1 0.1 0.9135056 
1.0 0.1 0.1 0.1 1.0 3.0 0.1 0.1 0.9855481 
1.0 0.1 0.1 0.1 1.0 7.1 0.1 0.1 0.9877414 
1.0 0.1 0.1 0.1 1.0 0.71 0.5 0.1 0.9798364 
1.0 0.1 0.1 0.1 1.0 0.71 1.0 0.1 0.9789513 
1.0 0.1 0.1 0.1 1.0 0.71 0.1 0.5 0.9804976 
1.0 0.1 0.1 0.1 1.0 0.71 0.1 1.0 0.9800231 

Table 2 
Computations showing the parameters effects on Nusselt number when 𝒕𝒕 = 𝟎𝟎.𝟓𝟓. 

𝑹𝑹 𝑺𝑺 𝑸𝑸 𝑷𝑷𝑷𝑷 𝑵𝑵𝑵𝑵 
0.1 0.1 0.1 0.71 0.749752 
0.5 0.1 0.1 0.71 0.654130 
1.0 0.1 0.1 0.71 0.573674 
0.1 0.5 0.1 0.71 0.806960 
0.1 1.0 0.1 0.71 0.883380 
0.1 0.1 0.5 0.71 0.716829 
0.1 0.1 1.0 0.71 0.671609 
0.1 0.1 0.1 3.0 1.266099 
0.1 0.1 0.1 7.1 1.540968 
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6. Conclusions 

The present study investigated the effects of various parameters on the 
velocity and temperature profiles, as well as the skin friction and Nusselt number. 
These parameters include 𝑀𝑀,𝐺𝐺𝐺𝐺,𝑃𝑃𝑃𝑃, 𝑆𝑆,𝑅𝑅,𝐾𝐾,𝑄𝑄 and 𝑛𝑛. The results show that skin 
friction increases with an increase in the parameter values of 𝑆𝑆,𝑀𝑀 and 𝑃𝑃𝑃𝑃, but 
decreases with an increase in the parameter values of 𝑛𝑛,𝐺𝐺𝐺𝐺,𝐾𝐾,𝑅𝑅 and 𝑄𝑄.  A boost in 
the values of 𝑆𝑆  and 𝑃𝑃𝑃𝑃 augment the Nusselt number, while a rise in 𝑅𝑅 and 𝑄𝑄 lessens 
it. Generally, the fluid velocity and temperature attained their maximum value at 
the plate surface and thereafter decreased to the free stream values satisfying the 
prescribed boundary conditions. An increase in 𝑡𝑡,𝐺𝐺𝐺𝐺 and 𝐾𝐾 boosts the velocity 
profiles, while a rise in 𝑛𝑛, 𝑆𝑆,𝑀𝑀 and 𝑃𝑃𝑃𝑃 lessens it. The fluid temperature rises with 
𝑅𝑅,𝑄𝑄 and 𝑡𝑡 but declines with 𝑆𝑆 and 𝑃𝑃𝑃𝑃. 
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