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FIXED POINT RESULTS IN EXTENDED RECTANGULAR b-METRIC

SPACES WITH AN APPLICATION

Mohammad Asim1, Mohammad Imdad2, Stojan Radenović3

In this paper, we enlarge the class of rectangular b-metric spaces by considering
the class of extended rectangular b-metric spaces and utilize the same to prove our fixed

point results. Our main result extends and improves many results of the existing litera-

ture. We adopt an example to highlight the utility of our main result. Finally, we apply
our result to examine the existence and uniqueness of solution for a system of Fredholm

integral equation.
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1. Introduction

In 1922, Banach proved his classical contraction principle. The investigation of exis-
tence and uniqueness of fixed point for a self-mapping and common fixed points for two or
more mappings has become a very active and natural subject of interest. Many researchers
proved Banach contraction principle in multitude of generalized metric spaces. In 1993, Ste-
fan Czerwik [5] introduced the concept of b-metric space by replacing triangular inequality
with a relatively more general condition which is also utilize to improve generalizing Ba-
nach contraction mapping theorem. In recent years, Imdad [8], Mustafa [10], Suzuki [14],
Wong [15], Piri-Afshari [11] and others proved some fixed point results in b-metric spaces
(see [1,7,13]). Very recently, Kamran et al. [9] introduced a new type of generalized b-metric
space and termed it as extended b-metric space. Thereafter, Samreen et al. [12] also proved
some fixed point results in extended b-metric space via contraction condition involved a new
class of comparison functions.

In 2000, Branciari [2] generalized the idea of metric space by replacing the triangular
inequality with more general inequality, namely, quadrilateral inequality (namely, involving
four points instead of three) for introducing the notion of rectangular metric spaces and
generalized Banach contraction theorem. After eight years, George et al. [6] introduced
rectangular b-metric spaces in order to generalized rectangular metric spaces. Finally, au-
thors proved the analogue of Banach contraction mapping principle in the framework of
rectangular b-metric space.

Inspired by the concepts of extended b-metric space and rectangular b-metric space,
we introduce extended rectangular b-metric space and utilize the same to prove fixed point
result. We, also furnish an example to establish the genuineness of our newly proved result.
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2. Preliminaries

In what follows, we collect relevant definitions needed in our subsequent discussions.

Definition 2.1. [5] Let X be a non-empty set. A mapping σ : X ×X → R+ is said to be
a b-metric with coefficient s ≥ 1, if σ satisfies the following (for all x, y, z ∈ X):

(1) σ(x, y) = 0 if and only if x = y,
(2) σ(x, y) = σ(y, x),
(3) σ(x, y) ≤ s[σ(x, z) + σ(z, y)].

Then the pair (X,σ) is said to be a b-metric space.

Definition 2.2. [9] Let X be a non-empty set and ξ : X × X → [1,∞). A mapping
σξ : X ×X → R+ is said to be an extended b-metric space, if σξ satisfies the following (for
all x, y, z ∈ X):

(1) σξ(x, y) = 0 if and only if x = y,
(2) σξ(x, y) = σξ(y, x),
(3) σξ(x, y) ≤ ξ(x, y)[σξ(x, z) + σξ(z, y)].

Then the pair (X,σξ) is said to be an extended b-metric space.

Definition 2.3. [2] Let X be a non-empty set. A mapping r : X × X → R+ is said to
be a rectangular metric on X if, r satisfies the following (for all x, y ∈ X and all distinct
u, v ∈ X \ {x, y},):

(1) r(x, y) = 0 if and only if x = y,
(2) r(x, y) = r(y, x),
(3) r(x, y) ≤ r(x, u) + r(u, v) + r(v, y).

Then the pair (X, r) is said to be a rectangular metric space.

Definition 2.4. [6] Let X be a non-empty set with the coefficient s ≥ 1. A mapping
rb : X ×X → R+ is said to be a rectangular b-metric on X if, rb satisfies the following (for
all x, y ∈ X and all distinct u, v ∈ X \ {x, y}):

(1) rb(x, y) = 0 if and only if x = y,
(2) rb(x, y) = rb(y, x),
(3) rb(x, y) ≤ s[rb(x, u) + rb(u, v) + rb(v, y)].

Then the pair (X, rb) is said to be a rectangular b-metric space.

3. Results

In this section, we introduce yet another type of generalized metric space, which we
refer as extended rectangular b-metric space. We also establish a fixed point theorem besides
deducing natural corollaries.

Definition 3.1. LetX be a non-empty set and ξ : X×X → [1,∞). A mapping rξ : X×X →
R+ is said to be an extended rectangular b-metric on X if, rξ satisfies the following (for all
x, y ∈ X and all distinct u, v ∈ X \ {x, y}):
(1rξ) rξ(x, y) = 0, if and only if x = y,
(2rξ) rξ(x, y) = rξ(y, x),
(3rξ) rξ(x, y) ≤ ξ(x, y)

[
rb(x, u) + rξ(u, v) + rξ(v, y)

]
.

Then the pair (X, rξ) is said to be an extended rectangular b-metric space.

The following implications amongst several generalized metric spaces defined earlier
are natural. However, the inverse implications need not be true.
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m.s. b-m.s. extended b-m.s.

rectangular m.s. rectangular b-m.s. extended rectangular b-m.s.

The following example demonstrates that the results proved in this paper are gen-
uinely new.

Example 3.1. Consider X = {1, 2, 3, 4, 5}. Define ξ : X ×X → [1,∞) by:

ξ(x, y) = x+ y + 1, for all x, y ∈ X.
Define rξ : X ×X → R+ by:

rξ(x, x) = 0, for all x ∈ X;

rξ(x, y) = rξ(y, x), for all x, y ∈ X;

rξ(1, 3) = rξ(2, 5) = 70, rξ(1, 4) = 1000 and rξ(1, 5) = 1200;

rξ(1, 2) = rξ(2, 3) = rξ(3, 4) = 60, rξ(3, 5) = rξ(4, 5) = rξ(2, 4) = 400.

Now, we show that rξ is an extended rectangular b-metric space. Here, (1rξ) and (2rξ) are
trivial. Now, for (3rξ), we have

rξ(1, 5) = 1200, ξ(1, 5)
[
rξ(1, 3) + rξ(3, 2) + rξ(2, 5)

]
= 7(70 + 60 + 70) = 1400

and

rξ(1, 4) = 1000, ξ(1, 4)
[
rξ(1, 2) + rξ(2, 3) + rξ(3, 4)

]
= 6(60 + 60 + 60) = 1080.

Similarly, other cases can also be argued. Thus, for all x, y ∈ X with distinct u, v ∈ X\{x, y},
we get

rξ(x, y) ≤ ξ(x, y)
[
rb(x, u) + rξ(u, v) + rξ(v, y)

]
.

Hence, (X, rξ) is extended rectangular b-metric space with ξ.

In an extended rectangular b-metric space, the concepts of basic topological notions,
such as: Cauchy sequence, convergent sequence and complete extended rectangular b-metric
space can be easily adopted as under.

Definition 3.2. A sequence {xn} in (X, rξ) is said to be Cauchy if

lim
n,m→∞

rξ(xn, xm) = 0.

Definition 3.3. A sequence {xn} in (X, rξ) is said to be convergent to x ∈ X if

lim
n→∞

rξ(xn, x) = 0.

Definition 3.4. An extended rectangular b-metric space (X, rξ) is said to be a complete if
every Cauchy in X is convergent to some point in X.

The following lemma is needed in the proof of our main result.

Lemma 3.1. Let (X, rξ) be an extended rectangular b-metric space and {xn} a Cauchy
sequence in X such that xn 6= xm whenever m 6= n. Then {xn} converges at most one point.

Proof. Let a sequence {xn} in X has two limit point x, y ∈ X, that is, lim
n→∞

rξ(xn, x) = 0

and lim
n→∞

rξ(xn, y) = 0. Since, {xn} is Cauchy then for xn 6= xm whenever m 6= n, so from

(3rξ), we have

rξ(x, y) ≤ ξ(x, y)[rξ(x, xn) + rξ(xn, xm) + rξ(xm, y)]

→ 0 as n,m→∞.
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which implies that

rξ(x, y) = 0,

Therefore, {xn} converges at unique limit point. �

In 1974, Ćirić considered the concept of orbit and proved some fixed point results
(see [3]).

Definition 3.5. [3] Let (X, rξ) be an extended rectangular b-metric space. For a self-
mapping f : X → X, we define (for x ∈ X and n ∈ N)

O(x;n) = {x, fx, ..., fnx} and O(x;∞) = {x, fx, ..., fnx, ..}.

The set O(x;∞) or simply O(x) is called an orbit of f.

Our main theorem is an analogue of Banach contraction principle in the setting of
extended rectangular b-metric space. All through this section, for a mapping f : X → X
and x ∈ X, we consider an orbit O(x) = {x, fx, ..., fnx, ..}.

Definition 3.6. Let (X, rξ) be an extended rectangular b-metric space. A self-mapping
f : X → X is called orbitally continuous if lim

k→∞
fnkx = x for some x ∈ X implies

lim
k→∞

f(fnkx) = fx. Besides, (X, rξ) is called f -orbitally complete if every Cauchy sequence

which is obtained in {x, fx, ..., fnx, ..} for some x ∈ X converges to X.

Now, we state and prove our main result as follows:

Theorem 3.1. Let (X, rξ) be an extended rectangular b-metric space and f : X → X.
Suppose that the following conditions hold:

(i) for all x, y ∈ X, we have

rξ(fx, fy) ≤ λrξ(x, y)

where λ ∈ [0, 1),
(ii) lim

n,m→∞
ξ(xn, xm) < 1

λ ,

(iii) (X, rξ) is f -orbitally complete,
(iv) f is orbitally continuous.

Then f has a unique fixed point.

Proof. With initial point x0 ∈ X, construct an iterative sequence {xn} by:

x1 = fx0, x2 = f2x0, x3 = f3x0, ..., xn = fnx0, ...

Now, we assert that lim
n→∞

rξ(xn, xn+1) = 0. On setting x = xn and y = xn+1 in condition

(i), we get

rξ(f
nx0, f

n+1x0) = rξ(fxn, fxn+1)

≤ λrξ(xn, xn+1)

≤ λnrξ(x0, x1),

which on making n→∞, gives rise

lim
n→∞

rξ(f
nx0, f

n+1x0) = 0

and lim
n→∞

rξ(f
nx0, f

n+2x0) = 0.

Now, we show that {xn} is a Cauchy sequence in (X, rξ). In doing so, we distinguish two
cases as under:
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Case 1. Firstly let p is odd, that is p = 2m+ 1 for any m ≥ 1. Now using (3rξ) for
any n ∈ N, we have

rξ(xn, xn+2m+1) ≤ ξ(xn, xn+2m+1)
[
rξ(xn, xn+1) + rξ(xn+1, xn+2) + rξ(xn+2, xn+2m+1)

]
≤ ξ(xn, xn+2m+1)

[
λnrξ(x0, x1) + λn+1rξ(x0, x1)

]
+ ξ(xn, xn+2m+1)×

rξ(xn+2, xn+2m+1)

= ξ(xn, xn+2m+1)(λn + λn+1)rξ(x0, x1) + ξ(xn, xn+2m+1)×
rξ(xn+2, xn+2m+1)

≤ ξ(xn, xn+2m+1)(λn + λn+1)rξ(x0, x1) + ξ(xn, xn+2m+1)×
ξ(xn+2, xn+2m+1)(λn+2 + λn+3)rξ(x0, x1) + ....+

ξ(xn, xn+2m+1)....ξ(xn+2m−2, xn+2m+1)(λn+2m−2 + λn+2m−1)×
rξ(x0, x1) + ξ(xn, xn+2m+1)...ξ(xn+2m−2, xn+2m+1)λn+2mrξ(x0, x1)

= λn(1 + λ)rξ(x0, x1)

m−1∑
i=0

λ2i
i∏

j=0

ξ(xn+2j , xn+2m+1) +

λn+2m
m−1∏
j=0

ξ(xn+2j , xn+2m+1)rξ(x0, x1),

yielding thereby

m−1∑
i=0

λ2i
i∏

j=0

ξ(xn+2j , xn+2m+1) ≤
m−1∑
i=0

λ2i
i∏

j=0

ξ(x2j , xn+2m+1).

As, in view of condition (ii), we have lim
n,m→∞

ξ(xn, xm)λ < 1, therefore utilizing the ratio test,

we conclude that the series
∑∞
i=0 λ

2i
∏i
j=0 ξ(x2j , xn+2m+1) is convergent for each m ∈ N.

Assume that

S =

∞∑
i=0

λ2i
i∏

j=0

ξ(x2j , xn+2m+1), Sn =

n∑
i=0

λ2i
i∏

j=0

ξ(x2j , xn+2m+1).

Therefore, from the above inequality, we have

rξ(xn, xn+2m+1) ≤ λn(1 + λ)rξ(x0, x1)[Sm−1 − Sn−1] +

λn+2m
m−1∏
j=0

ξ(xn+2j , xn+2m+1)rξ(x0, x1). (3.1)

Letting n→∞ in equation (3.1), we conclude that rξ(xn, xn+2m+1)→ 0.
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Case 2. Secondly, assume that p is even, that is p = 2m for any m ≥ 1. Then

rξ(xn, xn+2m) ≤ ξ(xn, xn+2m)
[
rξ(xn, xn+1) + rξ(xn+1, xn+2) + rξ(xn+2, xn+2m)

]
≤ ξ(xn, xn+2m)

[
λnrξ(x0, x1) + λn+1rξ(x0, x1)

]
+ ξ(xn, xn+2m)×

rξ(xn+2, xn+2m)

= ξ(xn, xn+2m)(λn + λn+1)rξ(x0, x1) + ξ(xn, xn+2m)rξ(xn+2, xn+2m)

≤ ξ(xn, xn+2m)(λn + λn+1)rξ(x0, x1) + ξ(xn, xn+2m)×
ξ(xn+2, xn+2m)(λn+2 + λn+3)rξ(x0, x1) + ....+

ξ(xn, xn+2m)....ξ(xn+2m−2, xn+2m)(λn+2m−2 + λn+2m−1)rξ(x0, x1) +

ξ(xn, xn+2m+1)...ξ(xn+2m−2, xn+2m+1)λn+2mrξ(x0, x1)

= λn(1 + λ)rξ(x0, x1)

m−1∑
i=0

λ2i
i∏

j=0

ξ(xn+2j , xn+2m) +

λn+2m−2
m−1∏
j=0

ξ(xn+2j , xn+2m)rξ(x0, x2),

so that

rξ(xn, xn+2m) ≤ λn(1 + λ)rξ(x0, x1)[Sm−1 − Sn−1] +

λn+2m−2
m−1∏
j=0

ξ(xn+2j , xn+2m)rξ(x0, x2). (3.2)

Taking limit n → ∞, in (3.2), we get rξ(xn, xn+2m) → 0. Therefore, in both the cases, we
have

lim
n→∞

rξ(xn, xn+p) = 0,

which shows that the sequence {xn} is Cauchy in X. Since X is f -orbitally complete then
there exists x ∈ X such that xn → x. Since, f is orbitally continuous so, we have

rξ(fx, x) ≤ ξ(fx, x)
[
rb(fx, xn) + rξ(xn, xn+1) + rξ(xn+1, x)

]
≤ ξ(fx, x)

[
rb(fx, xn) + rξ(fxn−1, fxn) + rξ(xn+1, x)

]
= ξ(fx, x)

[
rb(fx, xn) + λrξ(xn−1, xn) + rξ(xn+1, x)

]
which are making as n→∞ gives rise

rξ(fx, x)→ 0,

so that, rξ(fx, x) = 0. Therefore, fx = x. Hence, x is a fixed point of f. Observe that, in
view of Lemma 3.1, a sequence {xn} converges uniquely at point x ∈ X. �

Now, we present an example which illustrates the utility of our newly proved result:

Example 3.2. Let X = [0, 1]. Define, rξ(x, y) = |x − y|2 and ξ(x, y) = x + y + 3, for all
x, y ∈ X. Then, (X, rξ) is a complete extended rectangular b-metric space. Define a mapping
f : X → X by fx = x

2 .

Observe that, all the conditions of Theorem 3.1 are satisfied and x = 0 is a unique
fixed point of the involved map f .

The following corollary deduce form Theorem 3.1 remains a new result (due to im-
provement in orbital consideration).
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Corollary 3.1. Let (X, rξ) be an extended rectangular b-metric space and f : X → X.
Suppose that the following conditions hold:

(i) for all x, y ∈ X, we have rξ(fx, fy) ≤ λrξ(x, y) where λ ∈ [0, 1),
(ii) lim

n,m→∞
ξ(xn, xm) < 1

λ ,

(iii) (X, rξ) is complete,
(iv) f is continuous.

Then f has a unique fixed point.

By setting ξ(x, y) = s ≥ 1 (for all x, y ∈ X) in Theorem 3.1, we deduce a sharpened
version of Theorem 2.1 due to George et al. [6]

Corollary 3.2. Let (X, rb) be a rectangular b-metric space with s ≥ 1 and f : X → X.
Suppose that the following conditions hold:

(i) for all x, y ∈ X, we have rb(fx, fy) ≤ λrb(x, y), where λ ∈ [0, 1
s ),

(ii) (X, r) is f -orbitally complete,
(iii) f is orbitally continuous.

Then f has a unique fixed point.

On setting ξ(x, y) = 1 for all x, y ∈ X in Theorem 3.1, we get the following corollary
due to Das and Lakshmi [4], in 2007.

Corollary 3.3. Let (X, r) be a rectangular metric spacef : X → X. Suppose that the
following conditions hold:

(i) for all x, y ∈ X, we have r(fx, fy) ≤ λr(x, y), where λ ∈ [0, 1),
(ii) (X, r) is f -orbitally complete,

(iii) f is orbitally continuous.

Then f has a unique fixed point.

4. Application

In this section, we endeavor to apply Theorem 3.1 to prove the existence and unique-
ness of solution of the following integral equation of Fredholm type:

x(t) =

∫ b

a

G(t, s, x(s))ds+ h(t) for t, s ∈ [a, b] (4.1)

where, G, h ∈ C([a, b],R) (say X = C([a, b],R)). Define rξ : X ×X → R+ by

rξ(x, y) = sup
t∈[a,b]

|x(t)− y(t)|2 and ξ(x, y) = x+ y + 3, for all x, y ∈ X,

where ξ : X×X → [1,∞). Then, (X, rξ) is a complete extended rectangular b-metric space.
Now, we are equipped to state and prove our result as follows:

Theorem 4.1. Assume that (for all x, y ∈ C([a, b],R))

|G(t, s, x(s))−G(t, s, y(s))| ≤ 1

3(b− a)
|x(s)− y(s)|, (4.2)

for all t, s ∈ [a, b]. Then the integral equation (4.1) has a unique solution.

Proof. Define f : X → X by fx(t) =
∫ b
a
G(t, s, x(s))ds + h(t) for all t, s ∈ [a, b]. It is clear

that, x is a fixed point of the operator f if and only if it is a solution of the integral equation
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(4.1). Now, for all x, y ∈ X, we have

|fx(t)− fy(t)|2 ≤
(∫ b

a

|G(t, s, x(s))−G(t, s, y(s))|ds
)2

≤
(∫ b

a

1

3(b− a)
|x(s)− y(s)|ds

)2

≤ 1

9(b− a)2
sup
t∈[a,b]

|x(t)− y(t)|2
(∫ b

a

ds
)2

≤ 1

9
rξ(x, y).

Thus, the condition (4.2) is satisfied with λ = 1
3(b−a) ∈ [0, 1). Hence, the operator f has a

unique fixed point, that is, the Fredholm integral Equation (4.1) has a unique solution. �

5. Conclusion

As the rectangular b-metric space is relatively new addition to the existing literature,
therefore, in this note, we endeavor to further enrich this notion by introducing the idea of
extended rectangular b-metric spaces wherein we generalized the constant s ≥ 1 by a function
ξ(x, y) in quadrilateral inequality. Our main result (i.e., Theorem 3.1) is an analogue of
Banach contraction principle wherein we have also exploited the idea of orbit. An example
is also adopted to highlight the realized improvements in our newly proved result. Finally,
we apply Theorem 3.1 to examine the existence and uniqueness of solution for a system of
Fredholm integral equation.
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