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THE PLANE PARTITION FUNCTION ABIDES BY BENFORD’S LAW

Katherine Douglass1, Ken Ono2

In 2011, Anderson, Rolen and Stoehr proved the beautiful theorem that the
partition function p(n) abides by “Benford’s Law”, which means that

lim
X→+∞

#{0 ≤ n ≤ X : p(n) in base b begins with string f}
X

= logb(f + 1)− logb(f) (mod 1).

Here we prove that MacMahon’s plane partition function PL(n) also abides by Benford’s

Law. This result is obtained by applying their general method to strong asymptotics for
PL(n).
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1. Introduction

A partition of a non-negative integer n is any non-increasing sequence of positive
integers that sums to n, and the partition function p(n) counts their number. For example,
the partitions of 5 are:

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

and so we have that p(5) = 7. Ramanujan’s celebrated congruences [18, 19] assert, for every
non-negative integer n, that

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

These congruences have inspired many works (for example, see [1, 2, 4, 5, 6, 7, 10, 11, 13,
14, 16, 20] to name a few). These congruences can be thought of as arithmetic properties of
the “insignificant” digits of p(n) when written in base 5, 7, and 11. Indeed, Ramanujan’s
congruence modulo 5 is the assertion that every fifth partition number, beginning with p(4),
has units digit 0 when written in base 5.

It is natural to speculate on the arithmetic properties of the “significant digits”. For
example, in the usual base 10, what can be said about the distribution of the values of the
first digit, an integer in {1, 2, 3, . . . , 9}. A naive guess would be that the values of p(n) begin
with each of the nine possible values with equal likelihood (i.e. asympotically one ninth of
the time). After all, why would one expect certain digits to be favored over others?
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Minimal numerics immediately cast significant doubt on this naive guess. To make
this precise, for an integer sequence {a(0), a(1), . . . } we define

Ba(f, b;X) :=
#{0 ≤ n < X : a(n) in base b begins with the string f}

X
. (1)

For base b = 10, Table 1 suggests that the naive guess is badly false, where for convenience
we let Bf (X) := Bp(f, 10;X).

Table 1. Distribution of the first base 10 digit of p(n)

X B1(X) B2(X) B3(X) B4(X) B5(X) B6(X) B7(X) B8(X) B9(X)

102 0.33 0.16 0.14 0.09 0.07 0.06 0.07 0.05 0.03

103 0.305 0.177 0.127 0.094 0.076 0.068 0.057 0.052 0.044

104 0.302 0.177 0.126 0.096 0.078 0.067 0.057 0.051 0.046
...

...
...

...
...

...
...

...
...

...

In a beautiful paper, Anderson, Rolen and Stoehr [3] determined the limiting distribu-
tion of arbitrary initial strings of the partition function in every base b. They proved (see
Corollary 2 of [3]) that p(n) satisfies Benford’s Law1 in every base b, which means that

lim
X→+∞

Bp(f, b;X) ≡ logb(f + 1)− logb(f) (mod 1). (2)

This phenomenon is nicely illustrated by comparing Table 1 with the entries in Table 2,
where we let Lf := log10(f + 1)− log10(f).

Table 2. Benford’s Law for the first base 10 digit of p(n)

f 1 2 3 4 5 6 7 8 9

L10(f) 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Here we show that their result also holds for plane partitions (for background, see
[4]). A plane partition of size n is an array of non-negative integers π := (πi,j) for which
|π| :=

∑
i,j πi,j = n, in which the rows and columns are weakly decreasing. The figure below

offers a 3-dimensional rendering of a plane partition.

Figure 1. Example of a plane partition

1Benford famously observed [8] that certain data sets seem to empirically satisfy “logarithmic distributions.”
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If PL(n) is the number of size n plane partitions, then MacMahon [12] proved that

F (x) =

∞∑
n=0

PL(n)xn :=

∞∏
n=1

1

(1− xn)n
= 1+ x+3x2 +6x3 +13x4 +24x5 +48x6 + . . . . (3)

Remark 1.1. Plane partitions appear prominently in physics in connection with the enu-
meration of small black holes in string theory. Indeed, F (x) is the generating function (see
Appendix E of [9]) for the number of BPS bound states between a D6 brane and D0 branes
on C3.

In analogy with the result of Anderson, Rolen and Stoehr for the partition function
p(n), we prove the following for MacMahon’s plane partition function PL(n).

Theorem 1.1. The plane partition function PL(n) abides by Benford’s Law.

Example 1.1. Here we illustrate Theorem 1.1 in base 2 (i.e. binary), which means n =
dm ·2m+dm−1 ·2m−1+ · · ·+d1 ·21+d0, where each dj ∈ {02, 12}. Every integer n ≥ 4 has at
least 3 digits in binary, and for them we can study the distribution of the initial 3 digits strings,
which must be one of the four possibilities f ∈ {120202, 120212, 121202, 121212} = {4, 5, 6, 7}.
Table 3 includes some numerical data,

Table 3. Distribution of the initial 3 binary digits of PL(n)

X BPL(120202, 2;X) BPL(120212, 2;X) BPL(121202, 2;X) BPL(121212, 2;X)

200 0.345 0.244 0.269 0.142

400 0.333 0.255 0.252 0.161

600 0.327 0.255 0.246 0.173

800 0.326 0.255 0.237 0.178

1000 0.333 0.250 0.237 0.181
...

...
...

...
...

1500 0.331 0.251 0.235 0.184

Theorem 1.1 is nicely illustrated by comparing Table 3 with the entries in Table 4, where we
let L2(f) := log2(f + 1)− log2(f).

Table 4. Benford’s Law for the initial 3 binary digits of PL(n)

f 4 5 6 7

L2(f) 0.322 0.263 0.222 0.193

Theorem 1.1 implies that every possible string f occurs as the initial string for a
positive proportion of n. Therefore, it is natural to ask for an effective upper bound for the
first such n.

Problem. For each string f in base b, determine a bound N(f ; b) with the property that
there is a non-negative integer n ≤ N(f, b) for which PL(n) begins with string f in base b.

To prove Theorem 1.1, we make use of a general criterion for “Benfordness” that was
obtained by Anderson, Rolen and Stoehr [3] (see Section 2.2). This criterion requires strong
information about the asymptotics of PL(n). Namely, we require precise limiting statements
regarding continuous functions that enjoy the same asymptotics as PL(n). To this end, we
give strong asymptotics for PL(n) in Section 2.1. Using these asymptotics, we are able to
employ this criterion to prove Theorem 1.1 in Section 2.3.
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2. The proof

2.1. Asymptotics for the plane partition function

The key device for proving that p(n) abides by Benford’s Law is the generating function

∞∑
n=0

p(n)xn =

∞∏
n=1

1

1− xn
= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + . . . . (4)

As is well known, this generating function is essentially given by the weight -1/2 modular
form

1

η(z)
=

q−
1
24∏∞

n=1(1− qn)
=

∞∑
n=0

p(n)qn−
1
24 ,

where q := e2πiz and η(z) is Dededkind’s eta-function (for example, see [15]). Anderson,
Rolen and Stoehr prove the Benfordness of p(n) using the Hardy-Ramanujan asymptotic
formula

p(n) ∼ 1

4n
√
3
· eπ

√
2n/3,

that is derived from the modularity above.
Similarly, to prove Theorem 1.1, we require a strong asymptotic formula for PL(n).

In the 1930s, Wright [21] adapted the “circle method” of Hardy and Ramanujan to prove
asymptotic formulas for PL(n). He obtained such a formula for every positive integer r,
where the implied error terms are smaller with larger choices of r for large n.

In recent work, Pujahari, Rolen and the second author [17] made this result effective
and explicit. Namely, they explicitly bounded the error in the approximation for each r. To
state these formulas, we require the constants

A := ζ(3) ≈ 1.202056 . . . and c := 2

∫ ∞

0

y log y

e2πy − 1
dy = ζ ′(−1) ≈ −0.16542 . . . . (5)

Furthermore, for any pair of non-negative integers s and m, we define coefficients cs,m(n)

by (1+y)2s+2m+13
12

(3+2y)(m+1
2
)

=:
∑∞

n=0 cs,m(n)yn. In terms of these coefficients, we define the important

numbers

bs,m := cs,m(2m). (6)

The asymptotic formulas are defined in terms of special numbers β0, β1, . . . . To define them,
for every positive integer s we let

αs :=
2Γ(2s+ 2)ζ(2s)ζ(2s+ 2)

s(2π)4s+2
, (7)

where ζ(s) is Riemann’s zeta-function. The real numbers βs are the Taylor coefficients of

exp

(
−

∞∑
i=1

αiy
i

)
=:

∞∑
n=0

βsy
s. (8)

For positive integers r, and using the numbers β0, . . . , βr+1, we recall the following
recent explicit asymptotic formulae due to Pujahari, Rolen and the second author.

Theorem 2.1 (Thm. 1.3 of [17]). If r ∈ Z+, then for every integer n ≥ max(nr, ℓr, 87) (see
(2.8) and (2.9) of [17]) we have

PL(n) =
ec+3AN2

n

2π

r+1∑
s=0

r+1∑
m=0

(−1)mβsbs,mΓ
(
m+ 1

2

)
Am+ 1

2N
2s+2m+ 25

12
n

+ Emaj
r (n) + Emin(n),



The plane partition function abides by Benford’s Law 127

where |Emaj
r (n)| ≤ Êmaj

r (n) (see definition (2.36) of [17]), Nn := ( n
2A )

1
3 and

|Emin(n)| ≤ exp

((
3A− 2

5

)
n2/(2A)

2
3

)
.

2.2. Work by Anderson, Rolen and Stoehr

Anderson, Rolen and Stoehr determined analytical properties for integer sequences
that guarantee Benfordness. Namely, they made the following crucial definition.

Definition 2.1. We say that an integer sequence {a(0), a(1), . . . } is good whenever a(n) ∼
b(n)ec(n) (where f(x) ∼ g(x) means that limx→+∞ f(x)/g(x) = 1) and the following condi-
tions are satisfied:
(1) There exists some integer h ≥ 1 such that c(n) is h-differentiable and c(h)(n) tends to

zero monotonically for sufficiently large n.
(2) We have that

lim
n→+∞

n|c(h)(n)| = +∞.

(3) We have that

lim
n→+∞

D(h)(log b(n))

c(h)(n)
= 0,

where D(h) denotes the hth derivative.

The following theorem is their main technical result in [3].

Theorem 2.2 (Thm. 1.1 of [3]). Good integer sequences abide by Benford’s Law.

2.3. Proof of Theorem 1.1

We use Theorem 2.2 to prove Theorem 1.1. Although PL(n) is not a continuous and
differentiable function in n, we can make use of Theorem 2.1 to replace it by a differentiable
function in n that has the same initial strings for all sufficiently large n, as they satisfy the
same asymptotics.

To this end, we let s = m = 0 in Theorem 2.1, and we obtain the asymptotic

PL(n) ∼ (225A7)
1
36 ec√

12π · n 25
36

exp

(
3

√
27An2

4

)
.

In the notation of Theorem 2.2, we have that

PL(n) ∼ b(n)ec(n),

where we have

b(n) :=
(225A7)

1
36 ec√

12π · n 25
36

= β · n− 25
36 and c(n) :=

3

√
27An2

4
= γn

2
3 , (9)

where β, γ > 0. Now we check the conditions for “goodness” one-by-one with h = 1.
We find that

c′(n) =
2γ

3 3
√
n

Obviously, we have that 1/ 3
√
n → 0 monotonically as n → ∞, confirming the first condition

in the definition. Similarly, one directly finds that

lim
n→+∞

n|c′(n)| = lim
n→+∞

2γn
2
3

3
= +∞.
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The second condition follows as n
2
3 → +∞ as n → +∞. Finally, we check the third and final

condition as follows

lim
n→+∞

d
dn (log b(n))

c′(n)
= − lim

n→+∞

25

24γn
2
3

= 0,

confirming the third condition, and the fact that PL(n) is good. Therefore, Theorem 2.2
implies that PL(n) abides by Benford’s Law, completing the proof of the theorem.
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