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A, —SCALAR OPERATORS

Mariana ZAMFIR', loan BACALU>

In aceastd lucrare studiem o clasd noud de operatori numii Ayg -scalari.
Acestia apar in mod natural, ca o generalizare a operatorilor A -scalari introdusi
in [4] si se definesc cu ajutorul homomorfismelor S —spectrale (functii Ag -

spectrale), care, la randul lor, sunt generalizari ale homomorfismelor spectrale
(functii A -spectrale) din [4). Pe parcursul lucrdrii sunt prezentate unele
proprietdti ale acestor operatori, dintre care, cea mai semnificativa este aceea cum
ca sunt S -decompozabili, in sensul din [1].

This paper is devoted to the study of a new class of operators, called Ag -
scalar operators, naturally appearing as a generalization of the A -scalar
operators [4]. This study uses the concept of Ag -spectral homomorphism which is
also the generalization of the spectral homomorphism (A -spectral function)
studied in [4]. Furthermore, we prove some properties concerning the Ag -scalar

operators; their main quality is that of being S —decomposable [1].

Keywords: scalar (4 -scalar); spectral (4 -spectral); Ag -scalar operator; Ag -
spectral function; restriction and quotient of an operator.

1. Introduction

Let X be a Banach space, let B(X ) be the algebra of all linear bounded
operators on X and let C be the complex plane. If 7eB(X) and Y X isa
(closed) subspace invariant to 7, let us denote by 7| Y the restriction of 7 to Y,

respectively by T the operator induced by 7' in the quotient space X =X /Y . In
what follows, by subspace of X we understand a closed linear manifold of X .
Recall that Y is a spectral maximal space of T if it is an invariant subspace to 7'
such that for any other subspace Z c— X, also invariant to 7', the inclusion
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n

o(T|Z)co(T|Y) implies Z <Y ([6]). A family of open sets Gg U{G,}_, is

i=l
GiNS=0 (i=1,2,..,n) (where S = C is also closed) ([11]).
The operator T € B(.X) is S —decomposable (where S < o(T) compact)

n
said to be an § —covering of the closed set c c C if Gg U{U Gl} S>olUS and

if for any finite open § —covering Gg U{Gi}?:l of O'(T ), there is a system

Yg U{Yi}le of spectral maximal spaces of 7 such that o(T|Yg)c=Gy,

n
o(TY;)=G; (i=12,.,n) and X =Yg+>Y; ([1]). If S=O, then T is
i=l
decomposable ([6]). An open set QQ c C is said to be a set of analytic uniqueness
for T e B(X ) if for any open set @ — Q and any analytic function fj:@w—> X

satisfying the equation (17-T)f(4)=0, it follows that f((1)=0 in @
([10]). For T e B(X ) there is a unique maximal open set Qg of analytic
uniqueness (2.1., [10]). We denote by S; =CQp =C\Qy the analytic spectral
residuum of T . For xe X ,apoint 4 isin 67 (x) if in a neighborhood ¥, of 2
there is at least an analytic X -valued function f, (called T -associated to x)
such that (,uI—T)fx(,u) =x, forall ueV,. We shall put
rr(x)=C57(x), pr(x)=07(x)NQ7, o7 (x)=Cor(x)=y7(x)US7 and
Xr(F)={xeX;op(x)cF},where Sy = F =C ([10], [11]).

An operator T eB(X) is said to have the single-valued extension
property if for any analytic function f:@w—> X (where wc C open), with
(A -T)f(2)=0, it results that f(A)=0 ([5]). T has the single-valued
extension property if and only if S =(J; then we have GT(x) = )/T(x) and there
isin pz(x)=067(x) an unique analytic function x(A1), T —associated to x, for
any xe X ([10]). We recall that if TeB(X), S; 2@, Sy cF and X7 (F) is
closed, for ' C closed, then X T(F ) is a spectral maximal space of T' and
O'(T | X 1 (F)) c F ([10], Propositions 2.4. and 3.4.).
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We remind that a set 4 < C is of dimension 0 (totally disconnected) if any
subset of it is both open and closed in the relative topology of A4, or, equivalently,
if any connected component of A4 is reduced to a single point ([9]).

2. Preliminaries

Definition 2.1. Let Q be a set of the complex plane C and let S Qbea
compact subset. An algebra 4¢ of C-valued functions defined on Q is called

S -normal if for any finite open S -covering Gg U{Gi}:.l:l of 5, there are the
functions fg, f; € Ag (1<i<n) such that:

) fs(Q)<[01], f;(Q)<[0,1] (1<i<n);

2) supp(fs)<=Gg, supp(f;) = G; (1<i<n);

n
3) fS+Zf,.=1 on Q,
i=1
where the support of f € Ag is defined as: supp( f) = {,u eQ; f(pu)= O} .
Definition 2.2. An algebra 4g of C-valued functions defined on Q is
called S -admissible if:
1) 4,1e Ag (where 4,1 denote the functions f(4)=24, f(4)=1);
2) Ag is S -normal;
3) forany f e Ag and any & ¢ supp( f), the function fe:Q—>C

/()
fg(ﬂ)Z ar for/leQ\{f}
0, forleQﬂ{f}

belongs to 4.

Definition 2.3. An operator 7 € B(X) is said to be 4 -scalar if there are
an S -admissible algebra 4¢ and an algebraic homomorphism U: 4¢ — B(X )
such that U;=/ and U, =T (where 1 is the function f(A)=1 on C,
respectively A is the identical function f (l) =4 on C). The application U is

called Ag-spectral homomorphism ( Ag-spectral function or Ag -functional
calculus) for T .
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If §=, then we put 4= Ay and we obtain an 4 -spectral function and an

A -scalar operator ([4]).
Definition 2.4. A subspace Y of X is said to be invariant with respect to

an A -spectral function U : Ag — B(X) if UsYcY,forany fe Ag.
Definition 2.5. The support of an Ag-spectral function U is denoted by
supp(U ) and it is defined as the smallest closed subset of Q such that U r=0

forany /e Ag with supp(f)Nsupp(U)=D .

We recall several important proprieties of an _4 -spectral function U (see
[4]), because we want to obtain similar properties for an 4 -spectral function:

1) supp(U)=0(U,), where 4 is the identical function f(1)=1;

2) U, has the single-valued extension property;

3) oy, (fo)csupp(f), forany fe 4 and xe X ;

4) oy, (x)Nsupp(f)=DB=U s(x)=0;

5) xe Xy, (F)=Ujy(x)=0,forany f e 4 with property:
supp(/)NF =D, F = Q closed;

6) U, is decomposable.

3. Ag-spectral functions and 4 -scalar operators

Theorem 3.1. Let T € B(X) be an Ag-scalar operator and let U be an

Ag -spectral function for T . Then we have the relations:
supp(U) < o(T)US and o(T) < supp(U)US.

Proof. Let us consider f e Ag such that supp(f)ﬂ(a(T)US) =g. If
&esupp( /) and A is the identical function f(1)= A, then we have

(§1-T)U, =(e1-Up)Uy, =U(e_p)y, =Us
whence

Uy, = R(ET)U g, for & e p(T)NCsupp(f).

The function F:C — B(X)
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R(E,T)U g, for £ e p(T)
F =
(5) {Ufg’ for £ e ESUPP(f)
is entire and

lim |F(&)|=0,

&l
therefore F =0. It follows that U s, =0on Csupp(f) and U =0, accordingly
supp(U)co(T)US.

Let now &, ¢ supp(U ) Us, let V§0 be an open neighborhood of & and
let 7 be an open neighborhood of supp(U)US such that ¥z MW =Q. The
algebra Ag being S-normal, there is a function /e 4¢ with f(u)=1 for
ueW and f(p)=0 for ue Ve, - Therefore

supp(l—f)ﬂ(supp(U)US) =3,

whence
Uy =0,hence Uy =1.

It follows that
Uy, (SoI-T)=Uy (S01-U;)=
=(ol-U Uy, =U(g-2)r, =Ur=1
therefore we finally have &) ¢ (U ;) = o(T) and hence o (T) < supp(U)US.
Lemma 3.1. If(lOI—Ul)xO =0, with xy #0 and f e Ag with f(/t) =
=c,for L.e GNQ, where G is an open neighborhood of A , then
U pxg=cxgp.
Proof. From the equality U ;xo = Agx(, with xq # 0, it results that A is
the eigenvalue of U ; corresponding to the eigenvector x(), hence
deo,(Uy)ca(Uy)csupp(U)UScQ
whence GNQ# & (where o, (U ) is the point spectrum of U, i.e. the set of
all eigevalues of U ;). If we denote g = f —c, then we can write
foo —CX =ngO :U(ﬂ’o_ﬂ")gloxo ZUgio (//LOI_Uﬂ)xO =0

and consequently U x( = cxg.
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Theorem 3.2. If U is an Ag-spectral function for T €B(X), then
Sy < S . Moreover, if dim(S) <1, we have Sy = (i.e. T has the single-valued

extension property).
Proof. Let f:G r2>X (Grc C open, G r (1S =) be an analytic function

such that (1 -T) f(£)=0.

Let us suppose that there is £y € Gy = G r (G is a connected component
of Gy) with f(£y)#0. Then f(&)#0, for & e Dy < Gy, where Dy is a disk
with center in &y. If Dy =D(&y,rg) and D =D(&y,r), 0<r<ry, the algebra
Ag being S -normal, it results that there is a function g € 4 ¢ such that

1, for e QN D
g(&)= :
0, for £ € Q\(QN Dy)

According to Lemma 3.1, we have
f(&), for £ e Gy D
Ugf(é): ( ) 0 )
0, for £ € Gy \ Dy

By analytic extension, it results that U, f (f ) =0, for £eGg, hence
f(§)=U,f(&)=0, for £€G( and thus we have obtained a contradiction.
Consequently, f(f) =0 on Gz, therefore CScQp,ie SpcS.

Proposition 3.1. If U is an Ag-spectral function for T B(X) , then
)/T(fo)c supp(f),forany feAgand xe X.

Moreover, if supp(f)> S, then o (fo) < supp( f).

Proof. For any &¢ supp( f ) , we have f g€ Ag and the X -valued
function £ > U f:X is analytic. Consequently,

(§I—T)Uf§x = (g‘]—Uﬂ)Uféx =Ux,
therefore & e dr (U‘fx), hence yp (fo) < supp( f).
Moreover, for f e Ag with supp(/)> S, it follows that
O'T(fo)=ST U;/T(fo)CSU}/T<fo)csupp(f).
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Proposition 3.2. Let T e B(X) be an Ag-scalar operator having an
Ag-spectral function U and let Y be a spectral maximal space of T such that
Y=Xy(F),for FcC closed, F 5 S.Then T|Y is an Ag-scalar operator.

Proof. A spectral maximal space Y of T is also an ultrainvariant subspace
to T, therefore Y is invariant to U s, for any f € Ag. It is easy to prove that

UlY:Ag —>B(Y) is an Ag-spectral function for 7|Y eB(Y), hence T|Y is
Ag-scalar.

Theorem 3.3. Let T € B(X) be an Ag-scalar operator and let U be an
Ag -spectral function for T . Then T is an S -decomposable operator.

Poof. According to some results studied in [1] and [2], it is enough to
show that T is (1,S)-decomposable, i.e. for any open (1,5)-covering {Gg,G}
of the complex plane C, there is a system {Y S,Yl} of invariant subspaces to T
such that

o(T|Ys)cGg, o(T|Y)) =Gy and X =Yg +1Y.

(1,8)-covering {Gg,G;} of the complex plane C is also an S -covering
of Q, thus there are the functions £ s, f1 € Ag such that

0< fg(4), f1(A)<1, supp(fs)<= Gy, supp(f1) =Gy, fs+f1=10nQ.

For every x € X we have the relation
not

x=U1x=Ufo+Uf1x =ys+y.
Let F — C be closed suchthat FNS=Y or F oS and
é’(F)zﬂ{kerUf;feﬂS,supp(f)ﬂFz@}z

={xeX;fej45,supp(f)ﬂFz@:UpczO}.
Obviously, & (F) are closed subspaces of X invariant to 7.
Let us show that O'(T|é’(F))cF. For £ C\F, there is a function

feAg such that f=1 on F(N1Q and f=0 on V(Q, for an open suitable
neighborhood 7 of & (when F(1S=C and £eS, we must take V' > S).

Therefore supp(1- /) NFNQ=T, Ul_fx:(I—Uf)xzo, for any x e £(F);
consequently U px=x or Uy |£(F)=1.
But (§-2)fs(4)=/(2) (1€Q), hence
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U(é_ﬂ)fg :Uf =(§]—T)Uf§
In the last equality, if we consider the restriction to & (F ) , it results that
§ep(T|é’(F)) and thus O'(T|é"(F))cF. Then, for any xe€ X, it follows
that
Vs :Ufsxeé’(supp(fs))cf(Gs)
y=Upxe é’(supp(fl)) c 5(51) and
X =& (supp(fs))+<& (supp( /1))

and on account of the above results we deduce that 7" is S -decomposable.
Remark 3.1. If TeB(X) is an Ag-scalar operator and U is an Ag-

spectral function for 7', then 7 is S -decomposable, hence S c O'(T ) and on
account of Theorem 3.1, it results that supp(U) < o(T).

Example 3.1. Let Te B(X) be an _4-scalar operator and let
U: 4> B(X ) be its 4 -spectral function; let also ¥ be a closed invariant

subspace to T, which is not invariant with respect to U (i.e. there is a function
/€A suchthat Y is not invariant to U ).

Then the quotient operator T induced by T in the quotient space
X=X/Y is an Ag-scalar operator, where S=o(T|Y) and Ag is the
subalgebra of 4 composed by all functions f e _4 which have one of the
following properties:

(1) supp(f)NS=9;

(2) supp(f)>S and U Y Y.

If the functions f € A satisfy the condition (1), then for yeY, we have the
relation supp(f)Nor(y)=D. Accordingly Uy =0 and U  makes sense,

where U r 1is the operator induced by Uy eB(X ) in the quotient space

X=X/Y.
If the functions f € A4 satisfy the condition (2), then the functions g=1-f

verify the relation supp(g)NS = . Therefore for y €Y we have U,y =0, i..
Uysy=y. Since for &esupp(f)>o(T|Y), Y is invariant to the resolvent
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function R(&,T) of T, it results that f € Ag and hence the operators U 12

U /: make sense also in this case.
It is easy to verify that the application U: Ag —)B(X ) defined by

U(f) = Uf, feAg,isan Ag-spectral function for T e B(X) , therefore T is
Ag-scalar.

Example 3.2. Let T € B(.X) be an 1 -scalar operator, let U: 4 — B(X)

be its 4 -spectral function and let also ¥ be a closed invariant subspace to 7',
which is not invariant to U .

Then the restriction 7'|Y is an _4g-scalar operator, where S = O'(T ) and

Ag is an § -admissible subalgebra of 4 composed by all functions f° which
have one of the following properties:

(1) supp(f)NS=D;

2) supp(f) oS.

The functions /€ 4 with the properties supp( )N S #< and S & supp(f), do
not belong to the algebra Ag.

It can be easily to verify that the restriction U | Ag: Ag — B(Y ) defined
by Ul Ag(f)=Uys, feAg, is an Ag-spectral function for 7'|Y €B(Y),
therefore T'|Y is Ag-scalar.

Remark 3.2. If T e B(.X) is an 4 -scalar operator, U : 4 — B(.X) is an
A -spectral function for 7and Y is a closed subspace invariant to both 7 and U,
then the restriction 7 |Y and the quotient T induced by T in the quotient space
X=X/Y are A -scalar operators.

If S <o (T) is totally disconnected (i.e. dim S =0), then the topology 7

of C induces a topology 7, of countable metric space on §. It is shown that 7

has a basis composed by spectral sets for 7. According to the Lindel6f theorem,
we obtain for 7, a countable basis (&), )neN of spectral sets for 7' (aset 6 c C is

said to be a spectral set for T if 6o (T) is both open and closed in (7)) and
we define the projector E(&) by the relation
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1
E(0)=—|R(A,T)dA
(9)= o [w(a.7)
C
for any o in the field £ of all spectral sets, where C is a Jordan curve

(admissible contour) containing & () G(T ) and does not contain “inside” another

points of o(T).

Example 3.3. If an operator 7 € B(.X) has the spectrum o(T)=SUS&,
with dimS>1 and § =0 (T)\S, with dimd=0, S and & being spectral sets
for T, then, according to Example 1.20, Chapter 3, [4], the operator T | £ (5 )X is
A -scalar, with o(T| E(é‘)X) =& and the operator 7| E(S)X has the spectrum
equal to §. It is easy to verify that 7 is 4g-scalar.
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