

\mathcal{A}_S –SCALAR OPERATORS

Mariana ZAMFIR¹, Ioan BACALU²

În această lucrare studiem o clasă nouă de operatori numiți \mathcal{A}_S -scalari. Aceștia apar în mod natural, ca o generalizare a operatorilor \mathcal{A} -scalari introdusi în [4] și se definesc cu ajutorul homomorfismelor S -spectrale (funcții \mathcal{A}_S -spectrale), care, la rândul lor, sunt generalizări ale homomorfismelor spectrale (funcții \mathcal{A} -spectrale) din [4]. Pe parcursul lucrării sunt prezentate unele proprietăți ale acestor operatori, dintre care, cea mai semnificativă este aceea cum că sunt S -decompozabili, în sensul din [1].

This paper is devoted to the study of a new class of operators, called \mathcal{A}_S -scalar operators, naturally appearing as a generalization of the \mathcal{A} -scalar operators [4]. This study uses the concept of \mathcal{A}_S -spectral homomorphism which is also the generalization of the spectral homomorphism (\mathcal{A} -spectral function) studied in [4]. Furthermore, we prove some properties concerning the \mathcal{A}_S -scalar operators; their main quality is that of being S -decomposable [1].

Keywords: scalar (\mathcal{A} -scalar); spectral (\mathcal{A} -spectral); \mathcal{A}_S -scalar operator; \mathcal{A}_S -spectral function; restriction and quotient of an operator.

1. Introduction

Let X be a Banach space, let $\mathbf{B}(X)$ be the algebra of all linear bounded operators on X and let \mathbb{C} be the complex plane. If $T \in \mathbf{B}(X)$ and $Y \subset X$ is a (closed) subspace invariant to T , let us denote by $T|Y$ the restriction of T to Y , respectively by \dot{T} the operator induced by T in the quotient space $\dot{X} = X / Y$. In what follows, by subspace of X we understand a closed linear manifold of X . Recall that Y is a *spectral maximal space* of T if it is an invariant subspace to T such that for any other subspace $Z \subset X$, also invariant to T , the inclusion

¹ Assistant Prof., Departament of Mathematics and Computer Science, Technical University of Civil Engineering of Bucharest, Romania, e-mail: zamfirmariana@yahoo.com

² Associated Prof., Faculty of Applied Sciences, University POLITEHNICA of Bucharest, Romania

$\sigma(T|Z) \subset \sigma(T|Y)$ implies $Z \subset Y$ ([6]). A family of open sets $G_S \cup \{G_i\}_{i=1}^n$ is said to be an S -covering of the closed set $\sigma \subset \mathbb{C}$ if $G_S \cup \left(\bigcup_{i=1}^n G_i \right) \supset \sigma \cup S$ and $\overline{G_i} \cap S = \emptyset$ ($i = 1, 2, \dots, n$) (where $S \subset \mathbb{C}$ is also closed) ([11]).

The operator $T \in \mathbf{B}(X)$ is S -decomposable (where $S \subset \sigma(T)$ compact) if for any finite open S -covering $G_S \cup \{G_i\}_{i=1}^n$ of $\sigma(T)$, there is a system $Y_S \cup \{Y_i\}_{i=1}^n$ of spectral maximal spaces of T such that $\sigma(T|Y_S) \subset G_S$, $\sigma(T|Y_i) \subset G_i$ ($i = 1, 2, \dots, n$) and $X = Y_S + \sum_{i=1}^n Y_i$ ([1]). If $S = \emptyset$, then T is decomposable ([6]). An open set $\Omega \subset \mathbb{C}$ is said to be a set of analytic uniqueness for $T \in \mathbf{B}(X)$ if for any open set $\omega \subset \Omega$ and any analytic function $f_0 : \omega \rightarrow X$ satisfying the equation $(\lambda I - T)f_0(\lambda) \equiv 0$, it follows that $f_0(\lambda) \equiv 0$ in ω ([10]). For $T \in \mathbf{B}(X)$ there is a unique maximal open set Ω_T of analytic uniqueness (2.1., [10]). We denote by $S_T = \mathbb{C} \setminus \Omega_T = \mathbb{C} \setminus \Omega_T$ the analytic spectral residuum of T . For $x \in X$, a point λ is in $\delta_T(x)$ if in a neighborhood V_λ of λ there is at least an analytic X -valued function f_x (called T -associated to x) such that $(\mu I - T)f_x(\mu) \equiv x$, for all $\mu \in V_\lambda$. We shall put

$$\gamma_T(x) = \mathbb{C} \delta_T(x), \rho_T(x) = \delta_T(x) \cap \Omega_T, \sigma_T(x) = \mathbb{C} \rho_T(x) = \gamma_T(x) \cup S_T \text{ and}$$

$$X_T(F) = \{x \in X; \sigma_T(x) \subset F\}, \text{ where } S_T \subset F \subset \mathbb{C} \text{ ([10], [11])}.$$

An operator $T \in \mathbf{B}(X)$ is said to have the single-valued extension property if for any analytic function $f : \omega \rightarrow X$ (where $\omega \subset \mathbb{C}$ open), with $(\lambda I - T)f(\lambda) \equiv 0$, it results that $f(\lambda) \equiv 0$ ([5]). T has the single-valued extension property if and only if $S_T = \emptyset$; then we have $\sigma_T(x) = \gamma_T(x)$ and there is in $\rho_T(x) = \delta_T(x)$ an unique analytic function $x(\lambda)$, T -associated to x , for any $x \in X$ ([10]). We recall that if $T \in \mathbf{B}(X)$, $S_T \neq \emptyset$, $S_T \subset F$ and $X_T(F)$ is closed, for $F \subset \mathbb{C}$ closed, then $X_T(F)$ is a spectral maximal space of T and $\sigma(T|X_T(F)) \subset F$ ([10], Propositions 2.4. and 3.4.).

We remind that a set $A \subset \mathbb{C}$ is of dimension 0 (*totally disconnected*) if any subset of it is both open and closed in the relative topology of A , or, equivalently, if any connected component of A is reduced to a single point ([9]).

2. Preliminaries

Definition 2.1. Let Ω be a set of the complex plane \mathbb{C} and let $S \subset \overline{\Omega}$ be a compact subset. An algebra \mathcal{A}_S of \mathbb{C} -valued functions defined on Ω is called *S-normal* if for any finite open S -covering $G_S \cup \{G_i\}_{i=1}^n$ of $\overline{\Omega}$, there are the functions $f_S, f_i \in \mathcal{A}_S$ ($1 \leq i \leq n$) such that:

- 1) $f_S(\Omega) \subset [0,1], f_i(\Omega) \subset [0,1]$ ($1 \leq i \leq n$);
- 2) $\text{supp}(f_S) \subset G_S, \text{supp}(f_i) \subset G_i$ ($1 \leq i \leq n$);

$$3) f_S + \sum_{i=1}^n f_i = 1 \text{ on } \Omega,$$

where the support of $f \in \mathcal{A}_S$ is defined as: $\text{supp}(f) = \overline{\{\mu \in \Omega; f(\mu) \neq 0\}}$.

Definition 2.2. An algebra \mathcal{A}_S of \mathbb{C} -valued functions defined on Ω is called *S-admissible* if:

- 1) $\lambda, 1 \in \mathcal{A}_S$ (where $\lambda, 1$ denote the functions $f(\lambda) \equiv \lambda, f(\lambda) \equiv 1$);
- 2) \mathcal{A}_S is *S-normal*;
- 3) for any $f \in \mathcal{A}_S$ and any $\xi \notin \text{supp}(f)$, the function $f_\xi : \Omega \rightarrow \mathbb{C}$

$$f_\xi(\lambda) = \begin{cases} \frac{f(\lambda)}{\xi - \lambda}, & \text{for } \lambda \in \Omega \setminus \{\xi\} \\ 0, & \text{for } \lambda \in \Omega \cap \{\xi\} \end{cases}$$

belongs to \mathcal{A}_S .

Definition 2.3. An operator $T \in \mathbf{B}(X)$ is said to be *\mathcal{A}_S -scalar* if there are an *S*-admissible algebra \mathcal{A}_S and an algebraic homomorphism $U : \mathcal{A}_S \rightarrow \mathbf{B}(X)$ such that $U_1 = I$ and $U_\lambda = T$ (where 1 is the function $f(\lambda) \equiv 1$ on \mathbb{C} , respectively λ is the identical function $f(\lambda) \equiv \lambda$ on \mathbb{C}). The application U is called *\mathcal{A}_S -spectral homomorphism* (*\mathcal{A}_S -spectral function* or *\mathcal{A}_S -functional calculus) for T .*

If $S = \emptyset$, then we put $\mathcal{A} = \mathcal{A}_\emptyset$ and we obtain an \mathcal{A} -spectral function and an \mathcal{A} -scalar operator ([4]).

Definition 2.4. A subspace Y of X is said to be *invariant with respect to* an \mathcal{A}_S -spectral function $U : \mathcal{A}_S \rightarrow \mathbf{B}(X)$ if $U_f Y \subseteq Y$, for any $f \in \mathcal{A}_S$.

Definition 2.5. The support of an \mathcal{A}_S -spectral function U is denoted by $\text{supp}(U)$ and it is defined as the smallest closed subset of $\bar{\Omega}$ such that $U_f = 0$ for any $f \in \mathcal{A}_S$ with $\text{supp}(f) \cap \text{supp}(U) = \emptyset$.

We recall several important properties of an \mathcal{A} -spectral function U (see [4]), because we want to obtain similar properties for an \mathcal{A}_S -spectral function:

- 1) $\text{supp}(U) = \sigma(U_\lambda)$, where λ is the identical function $f(\lambda) \equiv \lambda$;
- 2) U_λ has the single-valued extension property;
- 3) $\sigma_{U_\lambda}(U_f x) \subset \text{supp}(f)$, for any $f \in \mathcal{A}$ and $x \in X$;
- 4) $\sigma_{U_\lambda}(x) \cap \text{supp}(f) = \emptyset \Rightarrow U_f(x) = 0$;
- 5) $x \in X_{U_\lambda}(F) \Leftrightarrow U_f(x) = 0$, for any $f \in \mathcal{A}$ with property:
 $\text{supp}(f) \cap F = \emptyset$, $F \subset \Omega$ closed;
- 6) U_λ is decomposable.

3. \mathcal{A}_S -spectral functions and \mathcal{A}_S -scalar operators

Theorem 3.1. Let $T \in \mathbf{B}(X)$ be an \mathcal{A}_S -scalar operator and let U be an \mathcal{A}_S -spectral function for T . Then we have the relations:

$$\text{supp}(U) \subset \sigma(T) \cup S \text{ and } \sigma(T) \subset \text{supp}(U) \cup S.$$

Proof. Let us consider $f \in \mathcal{A}_S$ such that $\text{supp}(f) \cap (\sigma(T) \cup S) = \emptyset$. If $\xi \notin \text{supp}(f)$ and λ is the identical function $f(\lambda) \equiv \lambda$, then we have

$$(\xi I - T)U_{f_\xi} = (\xi I - U_\lambda)U_{f_\xi} = U_{(\xi - \lambda)f_\xi} = U_f$$

whence

$$U_{f_\xi} = \mathfrak{R}(\xi, T)U_f, \text{ for } \xi \in \rho(T) \cap \mathbb{C} \setminus \text{supp}(f).$$

The function $F : \mathbb{C} \rightarrow \mathbf{B}(X)$

$$F(\xi) = \begin{cases} \Re(\xi, T)U_f, & \text{for } \xi \in \rho(T) \\ U_{f_\xi}, & \text{for } \xi \in \mathbb{C}\text{supp}(f) \end{cases}$$

is entire and

$$\lim_{|\xi| \rightarrow \infty} \|F(\xi)\| = 0,$$

therefore $F \equiv 0$. It follows that $U_{f_\xi} = 0$ on $\mathbb{C}\text{supp}(f)$ and $U_f = 0$, accordingly $\text{supp}(U) \subset \sigma(T) \cup S$.

Let now $\xi_0 \notin \text{supp}(U) \cup S$, let V_{ξ_0} be an open neighborhood of ξ_0 and let W be an open neighborhood of $\text{supp}(U) \cup S$ such that $V_{\xi_0} \cap W = \emptyset$. The algebra \mathcal{A}_S being S -normal, there is a function $f \in \mathcal{A}_S$ with $f(\mu) = 1$ for $\mu \in W$ and $f(\mu) = 0$ for $\mu \in V_{\xi_0}$. Therefore

$$\text{supp}(1-f) \cap (\text{supp}(U) \cup S) = \emptyset,$$

whence

$$U_{1-f} = 0, \text{ hence } U_f = I.$$

It follows that

$$\begin{aligned} U_{f_{\xi_0}}(\xi_0 I - T) &= U_{f_{\xi_0}}(\xi_0 I - U_\lambda) = \\ &= (\xi_0 I - U_\lambda)U_{f_{\xi_0}} = U_{(\xi_0 - \lambda)f_{\xi_0}} = U_f = I \end{aligned}$$

therefore we finally have $\xi_0 \notin \sigma(U_\lambda) = \sigma(T)$ and hence $\sigma(T) \subset \text{supp}(U) \cup S$.

Lemma 3.1. *If $(\lambda_0 I - U_\lambda)x_0 = 0$, with $x_0 \neq 0$ and $f \in \mathcal{A}_S$ with $f(\lambda) = c$, for $\lambda \in G \cap \Omega$, where G is an open neighborhood of λ_0 , then*

$$U_f x_0 = cx_0.$$

Proof. From the equality $U_\lambda x_0 = \lambda_0 x_0$, with $x_0 \neq 0$, it results that λ_0 is the eigenvalue of U_λ corresponding to the eigenvector x_0 , hence

$$\lambda_0 \in \sigma_p(U_\lambda) \subset \sigma(U_\lambda) \subset \text{supp}(U) \cup S \subset \Omega$$

whence $G \cap \Omega \neq \emptyset$ (where $\sigma_p(U_\lambda)$ is the point spectrum of U_λ , i.e. the set of all eigenvalues of U_λ). If we denote $g = f - c$, then we can write

$$U_f x_0 - cx_0 = U_g x_0 = U_{(\lambda_0 - \lambda)g_{\lambda_0}} x_0 = U_{g_{\lambda_0}}(\lambda_0 I - U_\lambda)x_0 = 0$$

and consequently $U_f x_0 = cx_0$.

Theorem 3.2. *If U is an \mathcal{A}_S -spectral function for $T \in \mathbf{B}(X)$, then $S_T \subset S$. Moreover, if $\dim(S) \leq 1$, we have $S_T = \emptyset$ (i.e. T has the single-valued extension property).*

Proof. Let $f: G_f \rightarrow X$ ($G_f \subset \mathbb{C}$ open, $G_f \cap S = \emptyset$) be an analytic function such that $(\xi I - T)f(\xi) \equiv 0$.

Let us suppose that there is $\xi_0 \in G_0 \subset G_f$ (G_0 is a connected component of G_f) with $f(\xi_0) \neq 0$. Then $f(\xi) \neq 0$, for $\xi \in D_0 \subset G_0$, where D_0 is a disk with center in ξ_0 . If $D_0 = D(\xi_0, r_0)$ and $D = D(\xi_0, r)$, $0 < r < r_0$, the algebra \mathcal{A}_S being S -normal, it results that there is a function $g \in \mathcal{A}_S$ such that

$$g(\xi) = \begin{cases} 1, & \text{for } \xi \in \Omega \cap \bar{D} \\ 0, & \text{for } \xi \in \Omega \setminus (\Omega \cap D_0) \end{cases}$$

According to Lemma 3.1, we have

$$U_g f(\xi) = \begin{cases} f(\xi), & \text{for } \xi \in G_0 \cap D \\ 0, & \text{for } \xi \in G_0 \setminus D_0 \end{cases}$$

By analytic extension, it results that $U_g f(\xi) = 0$, for $\xi \in G_0$, hence $f(\xi) = U_g f(\xi) = 0$, for $\xi \in G_0$ and thus we have obtained a contradiction. Consequently, $f(\xi) = 0$ on G_f , therefore $\mathcal{L}S \subset \Omega_T$, i.e. $S_T \subset S$.

Proposition 3.1. *If U is an \mathcal{A}_S -spectral function for $T \in \mathbf{B}(X)$, then $\gamma_T(U_f x) \subset \text{supp}(f)$, for any $f \in \mathcal{A}_S$ and $x \in X$.*

Moreover, if $\text{supp}(f) \supset S$, then $\sigma_T(U_f x) \subset \text{supp}(f)$.

Proof. For any $\xi \notin \text{supp}(f)$, we have $f_\xi \in \mathcal{A}_S$ and the X -valued function $\xi \rightarrow U_{f_\xi} x$ is analytic. Consequently,

$$(\xi I - T)U_{f_\xi} x = (\xi I - U_\lambda)U_{f_\xi} x = U_f x,$$

therefore $\xi \in \delta_T(U_f x)$, hence $\gamma_T(U_f x) \subset \text{supp}(f)$.

Moreover, for $f \in \mathcal{A}_S$ with $\text{supp}(f) \supset S$, it follows that

$$\sigma_T(U_f x) = S_T \cup \gamma_T(U_f x) \subset S \cup \gamma_T(U_f x) \subset \text{supp}(f).$$

Proposition 3.2. *Let $T \in \mathbf{B}(X)$ be an \mathcal{A}_S -scalar operator having an \mathcal{A}_S -spectral function U and let Y be a spectral maximal space of T such that $Y = X_T(F)$, for $F \subset \mathbb{C}$ closed, $F \supset S$. Then $T|Y$ is an \mathcal{A}_S -scalar operator.*

Proof. A spectral maximal space Y of T is also an ultrainvariant subspace to T , therefore Y is invariant to U_f , for any $f \in \mathcal{A}_S$. It is easy to prove that $U|Y: \mathcal{A}_S \rightarrow \mathbf{B}(Y)$ is an \mathcal{A}_S -spectral function for $T|Y \in \mathbf{B}(Y)$, hence $T|Y$ is \mathcal{A}_S -scalar.

Theorem 3.3. *Let $T \in \mathbf{B}(X)$ be an \mathcal{A}_S -scalar operator and let U be an \mathcal{A}_S -spectral function for T . Then T is an S -decomposable operator.*

Proof. According to some results studied in [1] and [2], it is enough to show that T is $(1, S)$ -decomposable, i.e. for any open $(1, S)$ -covering $\{G_S, G_1\}$ of the complex plane \mathbb{C} , there is a system $\{Y_S, Y_1\}$ of invariant subspaces to T such that

$$\sigma(T|Y_S) \subset G_S, \sigma(T|Y_1) \subset G_1 \text{ and } X = Y_S + Y_1.$$

$(1, S)$ -covering $\{G_S, G_1\}$ of the complex plane \mathbb{C} is also an S -covering of $\overline{\Omega}$, thus there are the functions $f_S, f_1 \in \mathcal{A}_S$ such that

$$0 \leq f_S(\lambda), f_1(\lambda) \leq 1, \text{ supp}(f_S) \subset G_S, \text{ supp}(f_1) \subset G_1, f_S + f_1 = 1 \text{ on } \Omega.$$

For every $x \in X$ we have the relation

$$x = U_1 x = U_{f_S} x + U_{f_1} x = y_S + y_1.$$

Let $F \subset \mathbb{C}$ be closed such that $F \cap S = \emptyset$ or $F \supset S$ and

$$\mathcal{E}(F) = \bigcap \left\{ \ker U_f; f \in \mathcal{A}_S, \text{ supp}(f) \cap F = \emptyset \right\} =$$

$$= \left\{ x \in X; f \in \mathcal{A}_S, \text{ supp}(f) \cap F = \emptyset \Rightarrow U_f x = 0 \right\}.$$

Obviously, $\mathcal{E}(F)$ are closed subspaces of X invariant to T .

Let us show that $\sigma(T|\mathcal{E}(F)) \subset F$. For $\xi \in \mathbb{C} \setminus F$, there is a function $f \in \mathcal{A}_S$ such that $f = 1$ on $F \cap \Omega$ and $f = 0$ on $V \cap \Omega$, for an open suitable neighborhood V of ξ (when $F \cap S = \emptyset$ and $\xi \in S$, we must take $V \supset S$). Therefore $\text{supp}(1-f) \cap F \cap \Omega = \emptyset$, $U_{1-f} x = (I - U_f)x = 0$, for any $x \in \mathcal{E}(F)$; consequently $U_f x = x$ or $U_f|\mathcal{E}(F) = I$.

But $(\xi - \lambda)f_\xi(\lambda) = f(\lambda)$ ($\lambda \in \Omega$), hence

$$U_{(\xi-\lambda)f_\xi} = U_f = (\xi I - T)U_{f_\xi}.$$

In the last equality, if we consider the restriction to $\mathcal{E}(F)$, it results that $\xi \in \rho(T| \mathcal{E}(F))$ and thus $\sigma(T| \mathcal{E}(F)) \subset F$. Then, for any $x \in X$, it follows that

$$\begin{aligned} y_S &= U_{f_S}x \in \mathcal{E}(\text{supp}(f_S)) \subset \mathcal{E}(\bar{G}_S) \\ y_1 &= U_{f_1}x \in \mathcal{E}(\text{supp}(f_1)) \subset \mathcal{E}(\bar{G}_1) \text{ and} \\ X &= \mathcal{E}(\text{supp}(f_S)) + \mathcal{E}(\text{supp}(f_1)) \end{aligned}$$

and on account of the above results we deduce that T is S -decomposable.

Remark 3.1. If $T \in \mathbf{B}(X)$ is an \mathcal{A}_S -scalar operator and U is an \mathcal{A}_S -spectral function for T , then T is S -decomposable, hence $S \subset \sigma(T)$ and on account of Theorem 3.1, it results that $\text{supp}(U) \subset \sigma(T)$.

Example 3.1. Let $T \in \mathbf{B}(X)$ be an \mathcal{A} -scalar operator and let $U: \mathcal{A} \rightarrow \mathbf{B}(X)$ be its \mathcal{A} -spectral function; let also Y be a closed invariant subspace to T , which is not invariant with respect to U (i.e. there is a function $f \in \mathcal{A}$ such that Y is not invariant to U_f).

Then the quotient operator \dot{T} induced by T in the quotient space $\dot{X} = X / Y$ is an \mathcal{A}_S -scalar operator, where $S = \sigma(T|Y)$ and \mathcal{A}_S is the subalgebra of \mathcal{A} composed by all functions $f \in \mathcal{A}$ which have one of the following properties:

- (1) $\text{supp}(f) \cap S = \emptyset$;
- (2) $\text{supp}(f) \supset S$ and $U_f Y \subset Y$.

If the functions $f \in \mathcal{A}$ satisfy the condition (1), then for $y \in Y$, we have the relation $\text{supp}(f) \cap \sigma_T(y) = \emptyset$. Accordingly $U_f y = 0$ and \dot{U}_f makes sense, where \dot{U}_f is the operator induced by $U_f \in \mathbf{B}(X)$ in the quotient space $\dot{X} = X / Y$.

If the functions $f \in \mathcal{A}$ satisfy the condition (2), then the functions $g = 1 - f$ verify the relation $\text{supp}(g) \cap S = \emptyset$. Therefore for $y \in Y$ we have $U_g y = 0$, i.e. $U_f y = y$. Since for $\xi \notin \text{supp}(f) \supset \sigma(T|Y)$, Y is invariant to the resolvent

function $R(\xi, T)$ of T , it results that $f_\xi \in \mathcal{A}_S$ and hence the operators \dot{U}_f , \dot{U}_{f_ξ} make sense also in this case.

It is easy to verify that the application $\dot{U} : \mathcal{A}_S \rightarrow \mathbf{B}(\dot{X})$ defined by $\dot{U}(f) = \dot{U}_f$, $f \in \mathcal{A}_S$, is an \mathcal{A}_S -spectral function for $\dot{T} \in \mathbf{B}(\dot{X})$, therefore \dot{T} is \mathcal{A}_S -scalar.

Example 3.2. Let $T \in \mathbf{B}(X)$ be an \mathcal{A} -scalar operator, let $U : \mathcal{A} \rightarrow \mathbf{B}(X)$ be its \mathcal{A} -spectral function and let also Y be a closed invariant subspace to T , which is not invariant to U .

Then the restriction $T|Y$ is an \mathcal{A}_S -scalar operator, where $S = \sigma(\dot{T})$ and \mathcal{A}_S is an S -admissible subalgebra of \mathcal{A} composed by all functions f which have one of the following properties:

- (1) $\text{supp}(f) \cap S = \emptyset$;
- (2) $\text{supp}(f) \supset S$.

The functions $f \in \mathcal{A}$ with the properties $\text{supp}(f) \cap S \neq \emptyset$ and $S \not\subset \text{supp}(f)$, do not belong to the algebra \mathcal{A}_S .

It can be easily to verify that the restriction $U|_{\mathcal{A}_S} : \mathcal{A}_S \rightarrow \mathbf{B}(Y)$ defined by $U|_{\mathcal{A}_S}(f) = U_f$, $f \in \mathcal{A}_S$, is an \mathcal{A}_S -spectral function for $T|Y \in \mathbf{B}(Y)$, therefore $T|Y$ is \mathcal{A}_S -scalar.

Remark 3.2. If $T \in \mathbf{B}(X)$ is an \mathcal{A} -scalar operator, $U : \mathcal{A} \rightarrow \mathbf{B}(X)$ is an \mathcal{A} -spectral function for T and Y is a closed subspace invariant to both T and U , then the restriction $T|Y$ and the quotient \dot{T} induced by T in the quotient space $\dot{X} = X / Y$ are \mathcal{A} -scalar operators.

If $S \subset \sigma(T)$ is totally disconnected (i.e. $\dim S = 0$), then the topology τ of \mathbb{C} induces a topology τ_0 of countable metric space on S . It is shown that τ_0 has a basis composed by spectral sets for T . According to the Lindelöf theorem, we obtain for τ_0 a countable basis $(\delta_n)_{n \in \mathbb{N}}$ of spectral sets for T (a set $\delta \subset \mathbb{C}$ is said to be a *spectral set* for T if $\delta \cap \sigma(T)$ is both open and closed in $\sigma(T)$) and we define the projector $E(\delta)$ by the relation

$$E(\delta) = \frac{1}{2\pi i} \int_C \Re(\lambda, T) d\lambda$$

for any δ in the field Σ of all spectral sets, where C is a Jordan curve (admissible contour) containing $\delta \cap \sigma(T)$ and does not contain “inside” another points of $\sigma(T)$.

Example 3.3. If an operator $T \in \mathbf{B}(X)$ has the spectrum $\sigma(T) = S \cup \delta$, with $\dim S \geq 1$ and $\delta = \sigma(T) \setminus S$, with $\dim \delta = 0$, S and δ being spectral sets for T , then, according to Example 1.20, Chapter 3, [4], the operator $T|E(\delta)X$ is \mathcal{A} -scalar, with $\sigma(T|E(\delta)X) = \delta$ and the operator $T|E(S)X$ has the spectrum equal to S . It is easy to verify that T is \mathcal{A}_S -scalar.

R E F E R E N C E S

- [1]. *I. Bacalu*, Some properties of decomposable operators, Rev. Roum. Math. Pures et Appl., **21**, 1976, pp. 177-194.
- [2]. *I. Bacalu*, Descompuneri spectrale reziduale (Residually spectral decompositions), St. Cerc. Mat. I (1980), II (1980), III (1981).
- [3]. *I. Bacalu*, S – Spectral Decompositions, Ed. Politehnica Press, Bucharest, 2008.
- [4]. *I. Colojoară and C. Foiaş*, Theory of generalized spectral operators, Gordon Breach, Science Publ., New York-London-Paris, 1968.
- [5]. *N. Dunford and J.T. Schwartz*, Linear Operators, Interscience Publishers, New-York, Part I (1958), Part II (1963), Part III (1971).
- [6]. *C. Foiaş*, Spectral maximal spaces and decomposable operators in Banach Spaces, Archiv der Math., **14**, 1963, pp. 341-349.
- [7]. *K.B. Laursen and M.M. Neumann*, An Introduction to Local Spectral Theory, London Math. Soc. Monographs New Series, Oxford Univ. Press., New-York, 2000.
- [8]. *B. Nagy*, Residually spectral operators, Acta Math. Acad. Sci. Hungar, **35**, 1980, pp. 37-48.
- [9]. *M. Nicolescu*, Funcții reale și elemente de analiză funcțională (Real functions and functional analysis theory), Ed. Did. și Ped., București, 1962.
- [10]. *F.H. Vasilescu*, Residually decomposable operators in Banach spaces, Tôhoku Mat. Jurn., **21**, 1969, pp. 509-522.
- [11]. *F.H. Vasilescu*, Analytic Functional Calculus and Spectral Decompositions, D. Reidel Publishing Company, Dordrecht; Editura Academiei, Bucharest, 1982.