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APPLICATION OF CANONICAL REPRESENTATION
METHOD TO LINEAR RANDOM VIBRATIONS

Felicia Eugenia NICORESTIANU', Tudor SIRETEANU?

In this paper is presented the canonical representations method for analyzing
the random vibrations of a linear system in the cases of two covariance functions
commonly used in the study of the random vibrations of mechanical systems.

The results obtained with the canonical method representations are
compared with the exact ones obtained by the method of transfer functions.

Keywords: canonical representation, random process, random vibrations of linear
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1. Introduction

The application of the canonical representations method in the study of
dynamical systems with random excitations is analogous with the function series
expansion method used for deterministic dynamical systems [1].

Using canonical representations, the advantage is that the time dependence
is transferred to some deterministic functions, the randomness being preserved by
the random variables. In this way, the operations of derivation and integration of
random processes are reduced to the usual operations of deterministic functions,
which can lead to significant simplifications. On the other hand, from the practical
point of view, random processes can be represented only approximately through
canonical representations, which converge in mean-square sense in an array of
values of the argument or on an argument range of variation; but the rapidity of
convergence should be investigated in each case.

Starting from a canonical representation of a random process one can
deduce a certain expansion in series (also called canonical) of its covariance
function and vice versa. This is of great practical importance because in most
practical problems the excitation covariance function is known. An important
feature of these representations is the ability to build the canonical representation
of a random process and of its covariance function in infinite ways, allowing a
convenient choice of the coefficients and of the coordinate functions of the
expansion in terms of the rapidity of convergence and volume of calculation
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involved. A big disadvantage of this method is that it generally cannot provide
sufficient information on the distribution of the investigated random processes,
except for Gaussian random processes. This disadvantage becomes stronger in
case of nonlinear dynamical systems for which the output is generally not
Gaussian, even when the input is Gaussian.

Also for nonlinear systems the canonical representations method becomes
practically available if associated with certain linearization methods, which
generally result in loss of information on the type of nonlinearity of the system
characteristics.

Canonical representations method is especially useful for evaluating the
mean and the covariance function (and hence the spectral density) of the randomly
excited dynamical systems response.

2. Canonical representation of random processes

A scalar random process {x,,t €[t,,T]} defined by the relation,

x, = Xolt), (2.1)
where X is a random variable with E{X}=0, and ¢(¢) is a determinist function
defined on [t,,T], is an elementary random process. Obviously,

m, (t)=E{Xo(1)} =E{X}o(r)=0 (2.2)
The covariance function (equal to the correlation function) of the elementary
random process x{t}is given by

ey (1) =k (1) = E{XT o (1) (¢) 23)
We consider the scalar random process {xf,t elt,,T ]}
X =2 % (2.4)
where {x,,.t €[t,,T ]} are uncorrelatednelementary random processes:
x, = X,0,(0),

E{Xn/\_’m}=0,m¢n @3)

The random process {x,o} has zero average (m, (t)=0) and its correlation

E{x,}=0; E{X;F}:l)-

no

function is given by
kx”x” (t,t"= kanx” (f,l ') = ZDn(pn (l)@n (t ') (2.6)
Consider now the random process

% =o(t)+ > X,9,(t) .7)
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where ¢(t) is a given determinist function.We can write
E{x, }=0(0). co (t.0) =k, (6.6) =D k. (t.)=D.D,0,(1)8, () (2.8)

A random process representation of the form (2.7), where (p(t) =m_(t), is

called the canonical representation of the random process. The covariance
function reprezentation c_ (l,t') through the relation (2.8) is called canonical

representation of the covariance function. The random variables X are called
coeficients and the functions ¢, (f) are called coordinate functions of the

canonical representation.

In many cases canonical representations facilitate the application of certain
(especially linear) operators to random processes, as their time dependence is
expressed by means of deterministic functions (coordinate functions). Therefore
using canonical expansions, operations (such as integration, derivation, solving
differential equations, etc.) in which random processes are involved, can be
reduced to regular operations with deterministic functions. The fact that the
coefficients of the canonical representations are uncorrelated random variables
simplifies significantly the description of the correlation functions of random
processes.

It can be shown that if the covariance function c_ (l,t') is continuous and
T <o, the canonical representation of the random process {x, }, converges in the
mean square for all ¢ € [tO,T ]

Consider now a random stationary process {x,,¢ € (~ 7, T)}. Its covariance
function ¢ _ (1:),1: € (—2T ,2T ) can be represented on the interval (-27,27)
through a Fourier series of period 47:

~ ; nm
c,.(v)=) D, o =—, 2.9
«(=2D, T (2.9)
where
1 2T )
D =—c, (r)e_"”“ra’r, n=0,t1,12,... (2.10)
aT =,
Relation (2.9) can be written as
Co(t—=1)= Y D" e (2.11)

Relation (2.11) gives the canonical expansion for the covariance function of the
random process {x,}. Therefore, the canonical representation of the random

process {x, }is
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X=m+ Y, X", (2.12)
where X, are uncorrelated random variables, with zero mean and the dispersions
D,, so that all the coefficients D, are positive.

We have shown that a possible canonical representation for a stationary
random process on the finite interval (-7, T) is its trigonometric series expansion
after the 47 periodic harmonics (in the sense of mean square convergence). From
(2.9) we have

}

3. Application of canonical representation to random vibration of
linear systems

E{|xt -m

=c,(0)=>.D,. (2.13)

X

In this paper is exemplified the application of the canonical representations
method in order to determine the r.m.s. response of a linear oscillating system
with one freedom degree to a random excitation represented by a stationary
random process in the broad sense. The equation of motion of this system is

X+20,CX+ 0 x ==X = o x, (3.1)
Considering the canonical representations of the random input process x,(¢)and
output process x(t) of the oscillating system described by the equation (3.1)we

can write
X, (z) = Z X,,e, x(t) = Z X e (3.2)

where the dispersions E{X on 2}= D,, are known. The random variables X, will

be determined introducing relations (3.2) in (3.1) and identifying the coefficients
of the same spectral components. It is considered that the random process x, (t) is

a stationary random process in the broad sense with zero mean and with the
covariance function ¢, (t). The dispersion o, of the exact solution is compared

with the dispersion o of the approximate solution, obtained by the canonical

representations method, for different expressions of the covariance function used
in practice [2].

3.1. Exponential covariance function

In this case the covariance function, ¢, , (1), and the one sided spectral

density, obtained by applying the Fourier transform of ¢, (1) are
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2
20,0

(’C) = Gin e_a‘f" GXU (0)) = m,

cxoxo = O (3 3)

Fig. 1 illustrates typical plots of exponential covariance function and its one sided
spectral density:

c (= G (o
1.04 Xoxo( ) 020‘ XO( )
0.84 0.151
0.64
0.104
0.44
0.054
0.24
| 0.004
oo T T T T ‘0)
0.0 0.5 1.0 1.5 2.0 0 5 10 15 20

Fig. 1. The exponential covariance function and its one sided spectral density
Considering a unit value for o,, with the physical dimension of the

random process x, (), it can be written

Co, (D= D, D€, ®, = % n=0,+1,42,... (3.4)

n=—oo

The coefficients D,, are given by

1 2T ) 1 2T ) 1 2T
D,, =— J. ¢, (1)e™dr=— J. e O = — J. e " cos(o,T)dt =
aT o """ aT o, 2T + (3.5)
_il"‘(_l)n” e—ZT(x :
2T o'+,
Introducing the expansion (3.2) in equation (3.1) it follows
> (—mi +2i0,0,0+ o ) X, = D X, (3.6)

Considering X,, X, real random variables and identifying the absolute values of

the same spectral components in the above relation, yields
o’ Xy,

X, =
J(@ —a) + 4l

Therefore X, are uncorrelated random variables with zero mean and with the

(3.7)

dispersions
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D, = %D, (3.8)
" (o, - ) + 4,00 .

From (2.9), (3.2), (3.5) and (3 8) results
o =c. Z D = my lHED)Te ™ (3.9)

&= I T el - o + 40

It is known that the mean square of the stationary random process x(t), which

satisfies the stochastic differential equation (3.1) can be obtained from the relation

(31.[4D

:TGX(m)dwzﬂHXXU (0))|2 G, (0)do (3.10)

where H, (o)is the frequency response function corresponding to the input

x,(7) and output x(7) of the oscillatory system described by the equation (3.1 ),
given by

O)2

H_(o)= I 3.11
= (@) o) — o’ +2ilo, o 3-11)

Using (3.3) and (3.11) in (3.10), yields

o2, = ZaméT do 312
* 3 (0 +0’)[(0’ —0,) +40 00’ ] (3-12)
Introducing the notations
o ® ® nm
=, &:_9 ‘:n:_": s n:()alaza-' (313)
» o, o, 20T
(3.9) and (3.12) become
2 .
o, = “hmnx(c W), 62 = lim A (Gu,N,T) (3.14)
T N-> ('OPT N—wo
where
N
Am NG N w= 1
‘!(Mz+§ )(1—5,. ) H4EC]
(3.15)
_ T 1 1+p”> —4¢
Al+2p°(1=26") +u'I 1 20
and
N 1+ _1 n+le—2Tu
rGRN.D)=Y - (3.16)

=W HEDIE, -1 +48C7]
From (3.14); and (3.15) it follows
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ol = 3.17
I+ 2 (-20)+ 0 | 2 317

The number of terms, N, considered in the canonical expansion of the
processx(t) can be determined imposing the condition that the relative error, e,

2 B {1+1+u2—4c2}

between the exact value o, given by (3.17) and the approximate one &, obtained
from (3.14),

n
o (N, T)= [—A\ (C,u,N,T .
(N.T) \/%T (G1,N.T) (3.18)
to be less than a given valuee :
Gxe—GX(N,T)|
e =——<exl (3.19)
c

Xe

In order to satisfy this approximation condition the value of 7 can be taken of the
form T=N / ®, . In this case, o, (N T ) can be calculated from the relation

o (M) =[5 G (320)

where

v 1+(_1)n+1e—2uN
A (Cu,N)= 2, g2y(g2 2 e
(G, N) ;(“ +ED(E2 —1)? +482¢7] (3.21)
gn = D :ﬂ, n 213233"’N
) 2N

p

In order to calculate ]lvim %XK (€,u, N) , it can be written

.1
}/liroloﬁkx (Ca W, N) =

] & 1
= lim | —
Nﬂ{zv 2 TrEE S +4&ic2]}+

+ lim|:e_2MN i 2 2 (_21)”+l 2 2.2 :|
N—eo N n=0 (“ + E_’n )[(E.m - 1) + 4&_”1C_, ]

The second limit being null and sinceg  —¢&, =%, the first limit can be

considered as the Riemann series of the integral:
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1 27 de
lim —A GuN) == [ ———> 3.21)
ImyhGrM =2 e g G2

The equations (3.20)and(3.21)’ yield

) 2u 1 s
o, = 3 3 | —rarctg——
ml+2p°(1-20)+p [ 1 2p

(3.22)
3-42+ ). W —4n1-CP +4 1+ -4 L ng
- In + tan >

8J1-C>  m+am1-C’ +4 4G 1-n"/4
where

( 2
arctanl_c(:z, 0<¢g <1

tan_li(:z=<£, £ =1

1-¢ 2
2

Tc+arctanlczz,§>1

Taking for example the values o =nfs™'], o, = 2ns~'], N =100, for the
excitation parameters, figure 2 shows the plot of the relative error e,

betweenc ,and o, for various situations p and(.
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Fig. 2. Relative error between G, and G,
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3.2. Exponential cosine covariance function

Consider now the input covariance function and its one sided spectral
density of the form
1

€y, (D =€ e0s(B), G, ((D)__Lx +(@+B) o +(0—P)

Their typical plots are given in figure 3.

}mzo (3.23)

C (= -
06l xDxO( ) 0.12 Gxg(‘”)
0.104
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Fig. 3. The exponential cosine covariance function and its one sided spectral density

In this case we obtain for the expansion in (3.4) the coefficients:
2T

1 —alT| —io,T
D,=— ¢ Hcos([Sr)e "dt =

ar 5,
=41T[0L+( 1)"e"[ occos(2[3T)+([3 o, )sm(2BT) (3.24)
@’ +(B-o,)’
+oc+( )'e"[ acos(2[3T)+([3+(nn)sin(2BT)]]
a’+B+o,)
Using (3.8) we have:
2 e
Oy = Cx (0)_ =2_an 2_; —® ) +4(D Cz]’
R = a+(=1)" e[ acos(2[3T)+(B co)sm(2BT) (3.25)
" a’+B-o,)
+oc+( 1)"e”"[~ocos(2BT) + (B+ w, ) sin(2BT)]
a’+B+o,)

Using (3.11) and (3.23)in (3.10) yields
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a

s _°° 20,00 (0 +a’+p")do
e O N sy Tt B

Introducing the notations

p=tg=2 =P P (3.27)
o, ™ o pHO,
it follows
2 =2_uj' [€* +u’(\V° +1)]d¢ (3.28)
o {IE - D +4pE Y [(1-87) +4C°E7) '
On the other hand
G = lim 3 { !
Now 2N 2| (€2 1) +4§C
| pt= 1)"e?™[(B/w, —&,)sin(2BT) - pcos(2BT )
W +B/o,-¢,)’
N ) (3.29)
+M+(—1)"e "[(B/w, +&,)sin(2BT) —pcos(2BT)] || _
W+Plo, +&,) -
o N{ 1 { 1 1 }
= lim — 2 2 22| 2 >t 2
N 2N (€, =D +45,07 | +(Ap=¢§,)" p +(Ap+g,)
Taking the Values
a=mfs"], , =B=2nrad/s],N =100, p=0.5, £=0.25 (3.30)

and using Orlgln software, one obtains from (3.29) and (3.30)c. =1.575

respectively 6, =1.595 so that the relative error is e, <0.01.

4. Spectral analysis

In what follows, the discret spectral densities components, estimated for
canonical representations of system input and output (3.2), are given by [2]

D
Gxo” =2&, GX _2 , Ao = @, —(Dnzl’ n=12,...N (41)

Aw " Ao’ 2T
In Figs. 4 and 5 are shown comparatively the values (4.1) obtained by
canonical representations and the plots of spectral densities G, (®)and

G, (o) calculated for o =n[s ]co =2nrad/s,N=100,u=0.5 and £=0.3

(exponential correlation function) and for values (3.30) (exponential cosine
correlation function).

* *
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Fig. 4. One sided spectral densities for the exponential covariance function
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Fig. 5. One sided spectral densities for the exponential cosine covariance function
5. Conclusions

The results obtained in this paper demonstrate the applicability of
canonical representations method to analysis of linear random vibrations. The
relative errors between the exact r.m.s. output and its approximation obtained by
the canonical representation method were less than 1% for both types of the
considered input correlation functions. Moreover, the discrete spectral frequency
components of the canonical representation of the input and output random
processes are practically equal with the exact values obtained by Fourier
transform of input correlation function and by transfer function method for output
spectral density, respectively.
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