
U.P.B. Sci. Bull., Series A, Vol. 76, Iss. 3, 2014 ISSN 1223-7027

n-ARY Hv-MODULES WITH EXTERNAL n-ARY

P -HYPEROPERATION

B. Davvaz1, T. Vougiouklis2

The class of (m,n)-ary Hv-modules is larger than the well known class

Hv-modules. A wide subclass of (m,n)-ary Hv-modules is n-ary P -Hv-modules.

In this paper, we consider and study a module over a ring and we define three kinds

of external n-ary P -hyperoperations. By using external n-ary P -hyperoperations

and certain conditions, we construct several (m,n)-ary Hv-modules.
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1. Introduction and basic definitions

Hyperstructure theory was born in 1934 when Marty [19] defined hypergroups

as a generalization of groups. Let H be a non-empty set and let ℘∗(H) be the set of

all non-empty subsets of H. A hyperoperation on H is a map ◦ : H ×H −→ ℘∗(H)

and the couple (H, ◦) is called a hypergroupoid. If A and B are non-empty subsets of

H, then we denote A◦B =
∪

a∈A, b∈B a◦b, x◦A = {x}◦A and A◦x = A◦{x}. Under

certain conditions, we obtain the so-called semihypergroups and hypergroups . Basic

definitions and results about the hyperstructures are found in [2, 3]. Hyperrings are

essentially rings with approximately modified axioms. There are several kinds of

hyperrings that can be defined on a non-empty set . In 2007, Davvaz and Leoreanu-

Fotea [9] published a book titled Hyperring Theory and Applications. Sometimes,

external hyperoperation is considered. An example of a hyperstructure, endowed

both with an internal hyperoperation and an external hyperoperation is the so-called

hypermodule.

The theory of Hv-structures has been introduced by Vougiouklis [25]. The

concept of Hv-structures constitutes a generalization of the well-known algebraic

hyperstructures (hypergroups, hyperrings, hypermodules). Actually, some axioms

concerning the above hyperstructures are replaced by their corresponding weak ax-

ioms. Basic definitions and results about the Hv-structures are found in [6, 24].

A hypergroupoid (H, ◦) is called an Hv-semigroup if for all x, y, z of H we have

x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅, which means that
∪

u∈x◦y u ◦ z ∩
∪

v∈y◦z x ◦ v ̸= ∅.
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We say that an Hv-semigroup (H, ◦) is an Hv-group [25] if for all x ∈ H, we have

x ◦H = H ◦ x = H.

A multivalued system (R,+, ·) is an Hv-ring [24] if

(1) (R,+) is an Hv-group,

(2) (R, ·) is an Hv-semigroup,

(3) (·) is weak distributive with respect to (+), i.e., for all x, y, z in R we have

x · (y + z) ∩ x · y + x · z ̸= ∅ and (x+ y) · z ∩ x · z + y · z ̸= ∅.

An Hv-ring may be commutative with respect either to (+) or (·). If H is commu-

tative with respect to both (+) and (·), then we call it a commutative Hv-ring. If

there exists u ∈ R such that x · u = u · x = {x} for all x ∈ R, then u is called the

scalar unit of R, which obviously is unique, and is denoted by 1.

A non-empty set M is an Hv-module over an Hv-ring R, if (M,+) is a (com-

mutative) Hv-group and there exists a map · : R×M −→ ℘∗(M), (r, x) 7→ rx, such

that

(1) r(x+ y) ∩ (rx+ ry) ̸= ∅,
(2) (r + s)x ∩ (rx+ sx) ̸= ∅,
(3) (rs)x ∩ r(sx) ̸= ∅,

for all r, s ∈ R and x, y ∈ M .

The notion of P -hyperoperations introduced for hypergroups in [26] and gen-

eralized in [23], also see [27]. A wide class of Hv-rings is the class of Hv-rings with

P -hyperoperations [22]. A nice application of P -hyperstructures appeared in [10].

Let (M,+) be a module over the ring R. According to [28], three kinds of external

P -hyperoperations, for all (λ, v) ∈ R×M , can be defined as follows:

(1) If P is a non-empty subset of R, then λP ∗v = (λP )v.

(2) If P is a non-empty subset of M , then λP∗v = λ(P + v).

(3) If P1 is a non-empty subset of R and P2 is a non-empty subset of M , then

λP ∗
1,2v = (λP1)(P2 + v).

Note that P ∗ is a special case of P ∗
1,2 because it is obtained by setting P2 = {0} and

P1 = P .

Our aim in this paper is to give generalizations of following theorems:

Theorem 1.1. [28] Let M be a module over the ring R. Let P be a non-empty

subset of R and a ∈ P ∩Z(R) such that a2 ∈ P . Then, (M,+, P ∗) is an Hv-module

over R.

Theorem 1.2. [28] Let M be a module over the ring R. Let P be a non-empty

subset of M such that 0 ∈ P . Then, (M,+, P∗) is an Hv-module over R.

Theorem 1.3. [28] Let M be a module over the ring R, P1 be a non-empty subset

of R and P2 be a non-empty subset of M . If there exists a ∈ P1 ∩ Z(R) such that

a2 = a and there exists b ∈ P2 such that a · b = 0, then (M,+, P ∗
1,2) is an Hv-module

over R.
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2. n-ary Hv-modules

The notion of an n-ary group was introduced by Dörnte [12], which is a natural

generalization of group. One can find the basic results on n-ary groups in Post [21].

The notion of n-ary hypergroup was first introduced by Davvaz and Vougiouklis as

a generalization of n-ary group [7], and studied mainly in [8, 13, 14, 16, 17, 18].

In general, a mapping f : Hn −→ ℘∗(H) is called an n-ary hyperopera-

tion [7]. Let f be an n-ary hyperoperation on H and A1, · · · , An be non-empty

subsets of H. We define f(A1, · · · , An) =
∪

xi∈Ai
f(x1, · · · , xn). The sequence

xi, xi+1, · · · , xj is denoted by xji . For j < i, xji is the empty set. In this con-

vention f(x1, · · · , xi, yi+1, · · · , yj , zj+1, · · · , zn) is written as f(xi1, y
j
i+1, z

n
j+1). Also,

for y ∈ H and 1 ≤ i ≤ n we denote the f(xi1, y, · · · , y︸ ︷︷ ︸
n−i

) by f(xi1, y.). A non-empty set

H with an n-ary hyperoperation f : Hn −→ ℘∗(H) is called an n-ary Hv-semigroup

[13] if the weak associativity is valid, i.e., for every x1, · · · , x2n−1 ∈ H,∩
1≤i≤n

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) ̸= ϕ.

If for every x1, · · · , x2n−1 ∈ H and i, j ∈ {1, · · · , n}

f(xi−1
1 , f(xn+i−1

i ), x2n+i−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j ),

then (H, f) is called an n-ary semihypergroup [7]. An n-ary Hv-semigroup (H, f) in

which, for every a1, · · · , ai−1, ai+1, · · · , an, b ∈ H and 1 ≤ i ≤ n, there exists xi ∈ H

such that b ∈ f(ai−1
1 , xi, a

n
i+1) is called an n-ary Hv-group. This condition can be

formulated by f(ai−1
1 ,H, ani+1) = H. Moreover, if for all (x1, · · · , xn) ∈ Hn, the set

f(xn1 ) is singleton, then f is an n-ary operation and (H, f) is an n-ary semigroup or

n-ary group.

The notion of (m,n)-rings introduced by Crombez [4], Crombez and Timm [5],

and Dudeck [11]. Recently, the notation of (m,n)-hyperrings studied by Mirvakili

and Davvaz [20] and obtained (m,n)-rings from (m,n)-hyperrings by fundamental

relations. The following definition is a general form of the concept that investigated

in [15].

Definition 2.1. An (m,n)-ary Hv-ring is an algebraic structure (R, f, g) which

satisfies the following axioms:

(1) (R, f) is an m-ary Hv-group,

(2) (R, g) is an n-ary Hv-semigroup,

(3) the n-ary hyperoperation g is weak distributive with respect to the hyperopera-

tion f , i.e.,

g(ai−1
1 , f(xm1 ), a n

i+1) ∩ f(g(ai−1
1 , x1, a

n
i+1), · · · , g(ai−1

1 , xm, ani+1)) ̸= ϕ,

for every sequence ai−1
1 , a n

i+1, xm1 in R and 1 ≤ i ≤ n.

When (R, f) is an m-ary hypergroup, (R, g) is an n-ary semihypergroup and

g is distributive with respect to f , then (R, f, g) is called an (m,n)-ary hyperring.
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Also, if f and g are m-ary and n-ary operations, respectively, then (R, f) is an n-

ary group, (R, g) is an n-ary semigroup, the n-ary operation g is distributive with

respect to the m-ary operation f and in this case (R, f, g) is an (m,n)-ary ring.

In [1], Anvariyeh et al. studied the class of (m,n)-ary hypermodules and they

gave several properties and examples of them. Now, we introduce the concept of

(m,n)-ary Hv-module over an (m,n)-ary Hv-ring R as follows:

Definition 2.2. Let M be a non-empty set. Then, M = (M,h, k) is an (m,n)-

ary Hv-module over an (m,n)-ary Hv-ring R, if (M,h) is a (commutative) m-ary

Hv-group and the map

k : R× . . .×R︸ ︷︷ ︸
n−1

×M −→ ℘∗(M)

satisfies in the following conditions:

(1) k(rn−1
1 , h(xm1 )) ∩ h(k(rn−1

1 , x1), . . . , k(r
n−1
1 , xm)) ̸= ∅,

(2) k(ri−1
1 , f(sm1 ), rn−1

i+1 , x) ∩ h(k(ri−1
1 , s1, r

n−1
i+1 , x), . . . , k(r

i−1
1 , sm, rn−1

i+1 , x)) ̸= ∅,
(3) k(ri−1

1 , g(ri+n−1
i ), r2n−2

i+n , x) ∩ k(rn−1
1 , k(r2n−2

n , x)) ̸= ∅.

If k is a scalar n-ary hyperoperation, S1, . . . , Sn−1 are non-empty subsets of R

and M1 ⊆ M, we set

k(S1, . . . , Sn−1,M1) = ∪{k(r1, . . . , rn−1, x)| ri ∈ Si, i = 1, . . . , n− 1, x ∈ M1}.

An (m,n)-ary Hv-module M is an Hv-module, if n = 2.

3. n-ary P -hyperoperations

Definition 3.1. Let (M,+) be a module over the ring R. Then, three kinds of

external n-ary P -hyperoperations can be defined as follows:

(1) If P is a non-empty subset of R, then

PR : R× . . .×R︸ ︷︷ ︸
n−1

×M −→ ℘∗(M)

(rn−1
1 , x) 7→ (r1 . . . rn−1P )x.

(2) If P is a non-empty subset of M , then

PM : R× . . .×R︸ ︷︷ ︸
n−1

×M −→ ℘∗(M)

(rn−1
1 , x) 7→ r1 . . . rn−1(P + x).

(3) If P1 is a non-empty subset of R and P2 is a non-empty subset of M , then

PRM : R× . . .×R︸ ︷︷ ︸
n−1

×M −→ ℘∗(M)

(rn−1
1 , x) 7→ (r1 . . . rn−1P1)(P2 + x).
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Remark 3.1. Let M be a module over the ring R. We define

f : R× . . .×R −→ R, f(rm1 ) = r1 + . . .+ rm,

g : R× . . .×R −→ R, g(rn1 ) = r1 . . . rn,

h : M × . . .×M −→ M, h(xm1 ) = x1 + . . .+ xm,

k : R× . . .×R×M −→ M, k(rn−1
1 , x) = (r1 . . . rn−1)x.

Then, (M,h, k) is an (m,n)-ary module over the (m,n)-ary ring (R, f, g).

Note that every (m,n)-ary module can consider as an (m,n)-ary Hv-module.

By consideration the above remark, we have the following results:

Theorem 3.1. Let M be a module over the ring R. Let P be a non-empty subset of

R and a ∈ P ∩Z(R) such that a2 ∈ P . Then, (M,h, PR) is an (m,n)-ary Hv-module

over (R, f, g).

Proof. Indeed, we have

PR

(
rn−1
1 , h(xm1 )

)
= (r1 . . . rn−1P )(x1 + . . .+ xm)

= {(r1 . . . rn−1p)(x1 + . . .+ xm) | p ∈ P}
= {(r1 . . . rn−1p)x1 + . . .+ (r1 . . . rn−1p)xm | p ∈ P}
⊆ {(r1 . . . rn−1p1)x1 + . . .+ (r1 . . . rn−1pm)xm | p1, . . . , pm ∈ P}
= (r1 . . . rn−1P )x1 + . . .+ (r1 . . . rn−1P )xm
= h ((r1 . . . rn−1P )x1, . . . , (r1 . . . rn−1P )xm)

= h
(
PR(r

n−1
1 , x1), . . . , PR(r

n−1
1 , xm)

)
;

PR

(
ri−1
1 , f(sm1 ), rn−1

i+1 , x
)
= (r1 . . . ri−1f(s

m
1 )ri+1 . . . rn−1P )x

= (r1 . . . ri−1(s1 + . . .+ sm)ri+1 . . . rn−1P )x

= (r1 . . . ri−1s1ri+1 . . . rn−1P )x+ . . .+ (r1 . . . ri−1smri+1 . . . rn−1P )x

= h (r1 . . . ri−1s1ri+1 . . . rn−1P )x, . . . , r1 . . . ri−1smri+1 . . . rn−1P )x)

= h
(
PR(r

i−1
1 , s1, r

n−1
i+1 , x), . . . , PR(r

i−1
1 , sm, rn−1

i+1 , x)
)
;

also, we have

(r1 . . . r2n−2a
2)x ∈ (r1 . . . r2n−2P )x = PR(r

i−1
1 , (ri . . . ri+n−1), r

2n−2
i+n , x)

= PR(r
i−1
1 , g(ri+n−1

i ), r2n−2
i+n , x)

(r1 . . . r2n−2a
2)x ∈ (r1 . . . r2n−2PP )x = (r1 . . . rn−1rn . . . r2n−2PP )x

= (r1 . . . rn−1Prn . . . r2n−2P )x

= PR(r
n−1
1 , PR(r

2n−2
n , x)).

Therefore,

PR(r
i−1
1 , g(ri+n−1

i ), r2n−2
i+n , x) ∩ PR(r

n−1
1 , PR(r

2n−2
n , x)) ̸= ∅.

�

Theorem 3.2. Let M be a module over the ring R. Let P be a non-empty subset

of M such that 0 ∈ P . Then, (M,h, PR) is an (m,n)-ary Hv-module over (R, f, g).
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Proof. Indeed, we have

PM

(
rn−1
1 , h(xm1 )

)
= (r1 . . . rn−1)(P + x1 + . . .+ xm)

= {(r1 . . . rn−1)(p+ x1 + . . .+ xm) | p ∈ P}
= {(r1 . . . rn−1)(p+ x1) + (r1 . . . rn−1)(0 + x2) + . . .

+(r1 . . . rn−1)(0 + xm) | p ∈ P}
⊆ {(r1 . . . rn−1)(p1 + x1) + . . .+ (r1 . . . rn−1)(pm + xm) | p1, . . . , pm ∈ P}
= (r1 . . . rn−1)(P + x1) + . . .+ (r1 . . . rn−1)(P + xm)

= h ((r1 . . . rn−1)(P + x1), . . . , (r1 . . . rn−1)(P + xm))

= h
(
PM (rn−1

1 , x1), . . . , PM (rn−1
1 , xm)

)
;

PM

(
ri−1
1 , f(sm1 ), rn−1

i+1 , x
)
= (r1 . . . ri−1f(s

m
1 )ri+1 . . . rn−1)(P + x)

= (r1 . . . ri−1(s1 + . . .+ sm)ri+1 . . . rn−1)(P + x)

= (r1 . . . ri−1s1ri+1 . . . rn−1)(P + x) + . . .+ (r1 . . . ri−1smri+1 . . . rn−1)(P + x)

= h ((r1 . . . ri−1s1ri+1 . . . rn−1)(P + x), . . . , (r1 . . . ri−1smri+1 . . . rn−1)(P + x))

= h
(
PM (ri−1

1 , s1, r
n−1
i+1 , x), . . . , PM (ri−1

1 , sm, rn−1
i+1 , x)

)
;

and finally

PM (ri−1
1 , g(ri+n−1

i ), r2n−2
i+n , x) = PM (ri−1

1 , (ri . . . ri+n−1), r
2n−2
i+n , x)

= (r1 . . . r2n−2)(P + x) = (r1 . . . rn−1)(rn . . . r2n−2)(P + x)

= (r1 . . . rn−1)(0 + rn . . . r2n−2(P + x))

⊆ (r1 . . . rn−1)(P + rn . . . r2n−2(P + x))

= PM

(
rn−1
1 , rn . . . r2n−2(P + x)

)
= PM

(
rn−1
1 , PM (r2n−2

n , x)
)
.

�

Theorem 3.3. Let M be a module over the commutative Boolean ring R, P1 be

a non-empty subset of R and P2 be a non-empty subset of M such that there exist

a ∈ R and b ∈ M such that ab = 0. Then, (M,h, PRM ) is an (m,n)-ary Hv-module

over (R, f, g).

Proof. Indeed, we have

(r1 . . . rn−1a)x1 + . . .+ (r1 . . . rn−1a)xm
= (r1 . . . rn−1a)b+ (r1 . . . rn−1a)x1 + . . .+ (r1 . . . rn−1a)xm
∈ {(r1 . . . rn−1s)u+ (r1 . . . rn−1s)x1 + . . .+ (r1 . . . rn−1s)xm | s ∈ P1, u ∈ P2}
= {(r1 . . . rn−1s)(u+ x1 + . . .+ xm) | s ∈ P1, u ∈ P2}
= (r1 . . . rn−1P1)(P2 + x1 + . . .+ xm)

= PRM (rn−1
1 , h(xm1 )),

(r1 . . . rn−1a)x1 + . . .+ (r1 . . . rn−1a)xm
(r1 . . . rn−1a)(b+ x1) + . . .+ (r1 . . . rn−1a)(b+ xm)

∈ {(r1 . . . rn−1s1)(u1 + x1) + . . .+ (r1 . . . rn−1sm)(um + xm) | si ∈ P1, ui ∈ P2}
= (r1 . . . rn−1P1)(P2 + x1) + . . .+ (r1 . . . rn−1P1)(P2 + xm)

= h ((r1 . . . rn−1P1)(P2 + x1), . . . , (r1 . . . rn−1P1)(P2 + xm))

= h(PRM (rn−1
1 , x1), . . . , PRM (rn−1

1 , xm)).
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Therefore,

PRM (rn−1
1 , h(xm1 )) ∩ h(PRM (rn−1

1 , x1), . . . , PRM (rn−1
1 , xm)) ̸= ∅.

PRM

(
ri−1
1 , f(sm1 ), rn−1

i+1 , x
)
= (r1 . . . ri−1f(s

m
1 )ri+1 . . . rn−1P1)(P2 + x)

= (r1 . . . ri−1(s1 + . . .+ sm)ri+1 . . . rn−1P1)(P2 + x)

= (r1 . . . ri−1s1ri+1 . . . rn−1P1)(P2 + x) + . . .

+(r1 . . . ri−1smri+1 . . . rn−1P1)(P2 + x)

= h(r1 . . . ri−1s1ri+1 . . . rn−1P1)(P2 + x), . . . ,

r1 . . . ri−1smri+1 . . . rn−1P1)(P2 + x))

= h
(
PRM (ri−1

1 , s1, r
n−1
i+1 , x), . . . , PRM (ri−1

1 , sm, rn−1
i+1 , x)

)
;

(r1 . . . r2n−2a)(b+ x)

∈ (r1 . . . r2n−2P1)(P2 + x)

= PRM (ri−1
1 , (ri . . . ri+n−1), r

2n−2
i+n , x)

= PRM (ri−1
1 , g(ri+n−1

i ), r2n−2
i+n , x),

(r1 . . . r2n−2a)(b+ x) = (r1 . . . rn−1a)b+ (r1 . . . r2n−2a
2)(b+ x)

∈ (r1 . . . rn−1P1)P2 + (r1 . . . r2n−2P1P1)(P2 + x)

= (r1 . . . rn−1P1)(P2 + (rn . . . r2n−2P1)(P2 + x))

= PRM

(
rn−1
1 , (rn . . . r2n−2P1)(P2 + x)

)
= PRM

(
rn−1
1 , PRM (r2n−2

n , x)
)
.

Therefore,

PRM (ri−1
1 , g(ri+n−1

i ), r2n−2
i+n , x) ∩ PRM (rn−1

1 , PRM (r2n−2
n , x)) ̸= ∅.

�

Corollary 3.1. Let N be an Hv-submodule of the (m,n)-ary PR-Hv-module (M,h, PR).

We define
h∗ : M/N × . . .×M/N︸ ︷︷ ︸

m

−→ M/N

(x1 +N, . . . , xm +N) 7→ x1 + . . .+ xm +N,

P ∗
R : R× . . .×R︸ ︷︷ ︸

n−1

×M/N −→ ℘∗(M/N)

(rn−1
1 , x+N) 7→ {y +N | y ∈ (r1 . . . rn−1P )x}.

Then, (M/N, h∗, P ∗
R) is an (m,n)-ary Hv-module over (R, f, g).

Corollary 3.2. Let N be an Hv-submodule of the (m,n)-ary PM -Hv-module (M,h, PM ).

We define
h∗ : M/N × . . .×M/N︸ ︷︷ ︸

m

−→ M/N

(x1 +N, . . . , xm +N) 7→ x1 + . . .+ xm +N,

P ∗
M : R× . . .×R︸ ︷︷ ︸

n−1

×M/N −→ ℘∗(M/N)

(rn−1
1 , x+N) 7→ {y +N | y ∈ r1 . . . rn−1(P + x)}.

Then, (M/N, h∗, P ∗
M ) is an (m,n)-ary Hv-module over (R, f, g).
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Corollary 3.3. Let N be an Hv-submodule of the (m,n)-ary PRM -Hv-module (M,h, PRM ).

We define

h∗ : M/N × . . .×M/N︸ ︷︷ ︸
m

−→ M/N

(x1 +N, . . . , xm +N) 7→ x1 + . . .+ xm +N,

P ∗
RM : R× . . .×R︸ ︷︷ ︸

n−1

×M/N −→ ℘∗(M/N)

(rn−1
1 , x+N) 7→ {y +N | y ∈ (r1 . . . rn−1P1)(P2 + x)}.

Then, (M/N, h∗, P ∗
RM ) is an (m,n)-ary Hv-module over (R, f, g).

Remark 3.2. Let (M1, h1, k) and (M2, h2, k) be two (m,n)-ary Hv-modules over

an (m,n)-ary Hv-ring R. A strong homomorphism from M1 to M2 is a mapping

φ : M1 −→ M2 such that

(1) φ(h1(a1, . . . , am)) = h2(φ(a1), . . . , φ(am)),

(2) φ(k(r1, . . . , rn−1, a)) = k(r1, . . . , rn−1, φ(a)),

for all a1, . . . , am, a ∈ M and r1, . . . , rn−1 ∈ R.

φ is called a weak homomorphism if in (1) and (2) we have empty intersection

instead of equality.

Theorem 3.4. Let (M,h, PM ) and (M ′, h′, P ′
M ′) be two (m,n)-ary Hv-modules over

(R, f, g) and 1 ∈ R. Let φ : M −→ M ′ be an ordinary homomorphism of modules.

Then, φ : (M,h, PM ) −→ (M ′, h′, P ′
M ′) is a weak homomorphism if and only if

φ(P ) ∩ P ′ ̸= ∅, and it is strong homomorphism if and only if φ(P ) = P ′.

Proof. Assume that φ is a weak homomorphism. Then, φ(PM (rn−1
1 , x))∩P ′

M ′(r
n−1
1 , φ(x)) ̸=

∅, for all r1, . . . rn−1 ∈ R and x ∈ M . So, φ(PM (1, . . . , 1, 0))∩P ′
M ′(1, . . . 1, φ(0)) ̸= ∅

which implies that φ((1 . . . 1)(P + 0)) ∩ (1 . . . 1)(P ′ + 0) ̸= ∅. Thus, φ(P ) ∩ P ′ ̸= ∅.
Conversely, suppose that y ∈ φ(P ) ∩ P ′. Then,

(r1 . . . rn−1)(φ(x) + y) ∈ (r1 . . . rn−1)(φ(x) + φ(P )) ∩ (r1 . . . rn−1)(φ(x) + P ′),

for all r1, . . . , rn−1 ∈ R and x ∈ M . Hence,

φ((r1 . . . rn−1)(x+ P )) ∩ (r1 . . . rn−1)(φ(x) + P ′) ̸= ∅.

Therefore,

φ(PM (rn−1
1 , x)) ∩ P ′

M ′(rn−1
1 , φ(x)) ̸= ∅.

Now, suppose that φ is a strong homomorphism. Then, φ(PM (rn−1
1 , x)) =

P ′
M ′(r

n−1
1 , φ(x)), for all r1, . . . , rn−1 ∈ R and x ∈ M . So, φ(PM (1, . . . , 1, 0)) =

P ′
M ′(1, . . . , 1, φ(0)) which implies that φ((1 . . . 1)(P + 0)) = (1 . . . 1)(P ′ + 0). Thus,

φ(P ) = P ′.

Conversely, suppose that φ(P ) = P ′. Then,

(r1 . . . rn−1)(φ(x) + φ(P )) = (r1 . . . rn−1)(φ(x) + P ′),

for all r1, . . . , rn−1 ∈ R and x ∈ M . Hence,

φ((r1 . . . rn−1)(x+ P )) = (r1 . . . rn−1)(φ(x) + P ′).
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Therefore, φ(PM (rn−1
1 , x)) = P ′

M ′(r
n−1
1 , φ(x)). �
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