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BISTABLE-TYPE INTERACTIONS OF COMPLEX SYSTEMS
IN A FRACTAL PARADIGM OF MOTION

Tulian-Alin ROSU!, Maria-Alexandra PAUN??, Mihaecla BARHALESCU?*,
Alexandra Tuliana SAVIUC!, Mihaela JARCAU?, Catalin DUMITRAS®,
Constantin PLACINTA’, Vladimir-Alexandru PAUNS, Maricel AGOP 7,
Viorel-Puiu PAUN?- 1

In the present paper the “interface” dynamics in the case of two complex
systems interaction, assimilated to fractal-type mathematical objects, are analyzed.
In such context, fractal bistable-type behaviors as transitions in the scale space are
obtained. Our findings can be applied to natural bistable behaviors, such as
temperature inversion in the planetary boundary layer.
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1. Introduction
In complex systems dynamics, non-linearity and chaoticity represent both

the structural and functional nature of turbulence and instabilities. Interactions
between the constitutive entities of any complex systems give rise to mutual
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constraints and coupling local-global behavior types. In such a conjecture, the
universality of dynamics laws for turbulence becomes natural and is reflected in its
associated mathematical procedures, in the form of theoretical models that could
describe their dynamics [1-3]. Regarding these models, they are usually founded on
the supposition that variables describing the dynamics are differentiable. Thus, the
success of the above-mentioned models should be understood as gradual, or on
domains in which differentiability and integrability are still valid. However, the
differentiable and integrable mathematical procedures prove themselves to be
inadequate when these dynamics must be solved, because they imply both non-
linearity and chaoticity. To describe such dynamics, while employing differential
mathematical procedures, it is necessary to explicitly introduce the notion of scale
resolution into the expression of variables associated with complex systems
dynamics, and implicitly into the expression of fundamental equations that govern
these dynamics.

The result is that, in the framework of non-integrability and non-
differentiability, any variable classically dependent on space-time coordinates will
also depend on scale resolution. Therefore, instead of operating with variables
described through non-differentiable functions, approximations of these
mathematical functions will be utilized, which are obtained by their averaging at
various scale resolutions. Thus, any physical variable used in the description of
complex system dynamics will instead be a limit of a family of mathematical
functions, which are non-differentiable for null scale resolutions and differentiable
for non-zero scale resolutions [1-3]. The main fundamental assumption of this
theoretical model is that the dynamics of any and all entities of a complex system
will be described by continuous but non-differentiable motion curves, which
represent multifractal curves [1-3]. These multifractal motion curves will then
exhibit self-similarity at every point, which is a property of holography —i.e., every
part reflects the whole and vice versa. Thus, we are discussing “holographic
implementations” of complex systems dynamics either through Schrédinger-type
multifractal “regimes”, (using Schrodinger-type equations at various scale
resolutions), or through Madelung-type multifractal regimes (using the
hydrodynamic equation system at various scale resolutions) [3].

In the present paper fractal bistable-type behaviors as transitions in the scale
space are obtained. Our theoretical model is validated in the case of temperature
inversion in the planetary boundary layer.
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2. Mathematical model

Let us admit the functionality of the differential equation Eq. (1) “interface”
dynamics in the case of two complex systems interaction (these systems will be
assimilated to fractal-type mathematical objects).

dQ: _
E—Qi—Qt[H ] (M)

1+ Q¢
Such a result can be obtained through the general differential equation in the space
of scale resolutions [2, 3]:
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by operating with the identities:
A1=_11A2= QifA3=_(1+A)1A4-= QilA_lzllA_2=0'A_3=1 (3)

where Q; is the incident fractal field variable, T is the temporal resolution scale with
the role of affine parameter of the movement curves of complex system entities in
the space of scale resolutions, and A is a parameter independent of the fractality
degree in the space of the resolution scales through which it is possible to vary the
different self-structuring modes of complex systems entities.

Let us also note that Q;, Q¢, T and A are dimensionless variables. Eq. (1)

specifies that, at any scale resolution, the temporal variation of the transmitted
) dQ; . .. .

fractal field variable, %, is conditioned both by the difference between the

transmitted and incident variables, (Q; — Q.), and by a saturation component,

QA

14+Q%

In such a context, fractal dynamics systems are described in the space of
scale resolutions through the fractal differential equation:

dQ,  dV(Qy)
dt ~ dQ, @)
where:
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is the fractal potential function, which describes an important class of fractal
dynamics systems which will be named “gradient fractal systems” [4-6].
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Eq. (5) isrepresented in Fig. 1 for 4 values of the parameter A and it specifies
the fact that V(Q,) presents a variation with two potential wells. This means that,
from the perspective of an evolution towards equilibrium and towards the stability
of equilibrium states, the fractal system given by Eq. (5) behaves regarding V(Q,)
in an analogue manner to the behavior of the fractal oscillator regarding V(Q,), thus
the quantities of V(Q.) will be equilibrium states while the maxima will be unstable
equilibrium states.

T
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Fig. 1. Fractal potential V(Q,) for specified values of A.

Now, at all scale resolutions, the stationary behavior of the fractal system
described by Eq. (1) is analyzed, which implies the functionality of:

Qi = Q¢ [1 + l (6)

1+Q°

This equation may yield 3 real roots, which is to say that for a value of the
incident field variable Q; there can be 3 different values of the transmitted field
variable Q.
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Qt

Fig. 2. Dependency of the transmitted fractal field variable to the incident fractal field variable in
fractal bistability.

The curves Q; = F(Q;) in Fig. 2 could show a maximum and a minimum
when A attains certain values. These can be found by cancelling the derivative of

Eq. (6).
The restriction:

dQ;
—=0 7
aQ, (7)
implies:
A(1-2Q°)
+—>r==0
(1+Q%)

This is a biquadratic equation which admits the solutions:

0’ =2 [a-2 + JAG D) ©

Eq. (9) should have only real (positive) solutions for A > 8. What is indeed
found is that no inversion takes place for all cases in which A > 8.

For such values of A, 2 extremes are shown, so the system presents fractal
bistability at all scale resolutions. The situation can be more easily perceived
graphically, for example in the case of the A = 20 curve in Fig. 2.

(8)
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Where Q; increases slowly from Q; = 0, Q; increases until B. A continual
increase of Q; will have as a result a sudden increase of Q; to C point, since the BD
area of the curve represents unstable fractal states. When Q; decreases from values
superior to those found in C, Q; decreases along the curve until the D point. Through
continual decrease, Q; will perform a sudden increase to the A point following the
curve towards the origin.

Thus, for values of the incident fractal field variable in the AB interval, the
transmitted fractal field variable can have two different stable values. This behavior
points to fractal bistability [5, 6].

In the three-dimensional space (Q;, Q., A) the surface Q; = Q.(Q;, A) is a
fold catastrophe-type fractal surface (Fig. 3). For more details on the standard case,
see [5, 7].

Let us note that the inversion curves presented in Figs. 1 and 2 can be mimed
as transitions in the scale space.

Qi

0 30
Fig. 3. Three-dimensional surface.
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3. Application of the model

In the following, let us discuss a possible application of our model. Bistable
behavior has been found throughout atmospheric profiles, and this has been shown
through theory and through real radiometer data [8]. In the cited study, radiometer
data has been obtained through a RPG-HATPRO radiometer platform positioned in
Galati, Romania, at the UGAL — REXDAN facility found at coordinates
45.435125N, 28.036792E, 65 m ASL, which is a part of the “Dunarea de Jos”
University of Galati [8]. This instrument has been chosen and set up so as to
conform to the standards imposed by the ACTRIS community [9-12].

From this study, an instance is chosen: a data timeseries on the 14th of
January 2022 (Fig. 4). A static profile is also shown as an example, extracted from
the beginning of the timeseries (Fig. 5).
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Fig. 4. Timeseries of atmospheric temperature profiles; Galati, Romania, 16/01/2022.

A small discussion regarding the nature of temperature profile is in order; it
is known that for diurnal profiles there exists a slightly greater decrease in
temperature in the SL, and for nocturnal profiles there is an inversion at the SL [9-
12].
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Fig. 5. Example of atmospheric temperature profile; Galati, Romania, 14/01/2022.

Otherwise, inversions also mark the occurrence of the PBLH [9-12]. Fig. 5
presents an inverse evolution characteristic of nocturnal conditions with a large SL
and a higher inversion. Let us note that, in these atmospheric temperature profiles,
the altitude corresponds to Q. and the absolute temperature corresponds to Q;.

4. Conclusions

By assimilating complex systems to fractal-type mathematical objects, the
“interface” dynamics as a result of these systems interaction are analyzed. Let us
note that a wide range of nonlinear behaviors [13-19] can be sequentially
assimilated to bistable-type behaviors. One particular case is highlighted in the form
of fractal bistable-type behaviors.

These fractal bistable-type behaviors are discussed in the case of planetary
boundary layer bistability. The physical context for this behavior is the presence of
water vapors and aerosols which provide a nonlinear propagation environment
between the planetary boundary layer and ground level. Given inherent bistability,
and given the connection between multifractal parameters and temperature, it is
then suggested that such bistable behavior can explain the well-known boundary
layer temperature inversion, and inversions of other parameters as well. Finally,
radiometer data offers various examples of atmospheric temperature inversions,
wherein theoretical data agrees with experimental data.
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