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RANK-ONE PERTURBATIONS AND STABILITY OF SOME
EQUILIBRIUM POINTS IN A COMPLEX MODEL OF CELLS
EVOLUTION IN LEUKEMIA

Irina Badralexi', Ana-Maria Bordei?, Andrei Halanay?

The complex model of cells evolution in leukemia considers the
competition between the populations of healthy and leukemic cells, the asym-
metric division and the immune system’s action in response to the disease.
Delay differential equations are used to describe the dynamics of healthy
and leukemic cells in case of CML (Chronic Myeloid Leukemia). The sys-
tem consists of 9 delay differential equations, the first equations from 1 to
4 describe the hematopoietic healthy and leukemic cells evolution, equations
5 to 9 describe the evolution of the immune cell populations involved in the
immune response against CML. The system has four possible types of equi-
librium points, denoted E1, Fo, E3 and E4. The study of stability is focused
on E3, when leukemia cells have entirely replaced the healthy ones and Ey,
representing a chronic phase of the disease. A new technique is developed
to handle the intractable characteristic equations in these cases.
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2. Introduction

Mathematical modelling of phenomena that occur in areas such as biology
and medicine is more and more extended in recent years. One of the intense
subjects of study is chronic myeloid leukemia (CML), which is a type of cancer
of the blood characterized by an uncontrolled proliferation of white blood cells.

The role of the immune system during the evolution of leukemic cells has
only recently been considered in studies. This is mainly due to the fact that
the mechanism of the immune system is not entirely known and it’s impact
on the different types of leukemic cells (stem-like and mature cells) is still
debated, especially when treatment takes place.These can also be seen as the
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reasons why modelling the action of the immune system in leukemia is very
important.

In this paper we model the evolution of healthy and leukemic cells and
the action of the immune system in CML. For this purpose, we use a sys-
tem of delay differential equations. In what follows we briefly describe the
mathematical model and analyze the stability of some equilibrium points after
establishing a result on stability under a rank-one perturbation (see [9]).

3. The model

The model we study consists of 9 equations and was first introduced in
[4], [1] and [2]. The first four equations describe the hematopoietic healthy
and leukemic cells evolution, and the last five describe the evolution of the
immune cell populations involved in the immune response against CML. The
state variables represent the concentration of stem-like healthy and leukemic
cells (z1 and z3 ), the concentration of mature healthy and leukemic cells (x2
and x4), the concentration of naive antigen presenting cells - APCs (z5), the
concentration of mature APCs (xg), the concentration of naive T cells of CD4+
and CD8+ phenotypes (x7), the concentration of active CD44 T-helper cells
(xg) and the concentration of active CD8+ cytotoxic T-cells (z9).

We consider all three types of cell division: symmetric self-renewal, asym-
metric division and symmetric differentiation.

Two feedback loops regulate the self-renewal and the differentiation.
These are introduced through the rate of self-renewal (8) and the rate of
differentiation (k), where, considering competition,
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with h - healthy and [ - leukemic.

In order to model the immune system, we assume that the APCs are
the first to activate, upon encountering mature leukemic cells. They, in turn,
activate the T cells which differentiate into T-helper cells and CD8+ cytotoxic
T-cells. The activation of the CD8+ cytotoxic T-cells is also stimulated by the
T-helper cells. The cytotoxic T-cells are the cells that force the leukemic cells
into apoptosis.

The following feedback functions regulate the evolution of the immune
system and its interaction with leukemic cells:
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Taking into account all the above, we consider the system of DDEs below.
For a more detailed description of the model, see [4], [1] and [2].
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The system has several types of equilibrium points E = (z7, 3, 25, o3, 2%, ©f,
xk, x5, x5). The "death” equilibrium x; = 0,Vj # 5,7 and the "health” equi-
librium 2% = x; = 0 have been studied in [1] and [2]. Ej, where z] = x5 = 0,
the case when leukemia cells have entirely replaced the healthy ones and Fy,
where x7 # 0 Vj = 1,9, representing a chronic phase of the disease, have not
been investigated until now using the characteristic equation due to its com-
plexity. Sufficient conditions for delay-independent stability have been given,
using Lyapunov-Krasovskii functionals, in [3].

4. Stability study
The characteristic equation of the linearized system is:

det(AMy — A — Be™ ™ — Ce ™ — De™?7 — Fe= ™ —
—Fe ™ — Ge ™6 — He A — Ke™ s — Le™™) = ().

Here, A is the matrix of partial derivatives with respect to undelayed state
variables, while B,C, ..., L correspond to variables delayed by 7, 7s,...,79
respectively.
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The matrix for which we need to calculate the determinant has the form:

mip M1z Mz Mmua 0 0 0 0 0
mor Mo 0 moy 0 0 0 0 0
mg; Mgy M3z mag 0 0 0 0 mag
0 mMmus Mmaz ma 0O 0 0 0  mMmug
M=] 0 0 0 mg ms O O 0 O
0 0 0 mgs mgs Mmgg O 0 0
0 0 0 0 0 mg myp 0 0
0 0 0 mga 0 mgg mgr msg O
0 0 0 mgs 0  mgs mgr Mos Moy

The dificulties in studying the characteristic equation arise from the
presence of the elements mgg and mye, with msy = agg = bixili(2}) and
Myg = ag9 = boxjli(x}). In order to handle the stability study, we use the
approach from [9] .

Let Aqg be the 9 x 9 matrix with all entries zero except for asg on line 3,
column 9 and ay9 on line 4, column 9.

Define Ay = A — Ag, M7 = M — Aqy. Then

det My = dymssmesnizrmagigg (1)
with
mi; My MMiz Mia
mo1 Moo 0 Moy
d1 = det (2)
mg31 M3z 133 1M34
0 myy Mmaz My
and

Mss = X\ — A5, Meg = A — Agg, M7 = A — a7,

_ — AT
mgg = A — agg — fsge

Mgy = A — agg — gogge ™ — lgge ™. (4)
We use now the results from [11](see also [6]).
Consider the linear time-delay system

#(t) = Ag(t) ZAx (5)

where Ay, Ay, ..., Ay € M, (R), with Strlctly positive delays 71, ..., Tm.

Define 7 = max{7y,...,7,} and let K be a fundamental matrix of solu-
tions of the system (5), so K(t) =0, V¢t < 0. If the system (5) is exponentially
stable then M > 0, w > 0, so that

1K (#)]] < Me™7 Vit > 0.
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In this situation, for every constant matrix W, the matrix function, called the
Lyapunov matrix,

_ / KOTWE( -+ s)dt (6)

is well defined for all s € R (7" means transpose).

Remark that for (5) asymptotic stability is equivalent to exponential
stability (see [10]).

Let the matrices Ay, Ay, ..., A, be perturbed as A, + Ay, k=0,...,m
and consider the perturbed system

y(t) = (Ao + Ao)y —I-zm:A +A)y(t —75) (7)

Suppose that the perturbations are bounded matrices

1A < o VE=0,...m. (8)
For positive definite matrices Wy, W1, ..., W,,, Ry, ..., R,,, define
W=t S W, 4 7R)) )
j=1

and let U be the Lyapunov matrix defined by (6) with respect to this W.
Define

Amin = min{info(W;),j =0,...,m,info(R;),j=1,...,m}

and
v =maz{[|[U@)],t € [0, 7]},

p=(pg+ -+ )"
with o(M) the spectrum of the matrix M. The following theorem is proved in
[11] using Lyapunov-Krasovskii functionals
Theorem 1 ([11], Th. 3.12). Suppose (5) is exponentially stable. Let
the positive-definite matrices Wo, W1, ..., W, R1,..., R, be giwven and let U
be the Lyapunov matriz defined in (6) for W defined in (9). Then (7) is also
exponentially stable for all perturbations that verify

A
mzn 10
P S S il A (10)

This theorem is applied to the study of the asymptotic stability of equi-
librium FE5 and E, using the linearized system and the Theorem on stability
by the first approximation.

Consider Aq as defined above and A, =0, k=1,...,9. Then

[180]] < (mig +mig)"/?

SO
p= (m39 + 7”49)1/2 (11)
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The following result is obtained:

Theorem 2. Suppose that for di, mgs and mog defined in (2), (3) and
(4) the equations di = 0, mgg = 0 and mgg = 0 have all the roots \ with
Re X < 0. Then, if p defined in (11) verifies (10), the equilibrium points Es
and Ey are asymptotically stable.

Proof. The result follows from (1) and from the considerations above since
ass < 0, agg < 0 and a7y < 0. O

Remark. Since azg = —bgZ3l1(Z4) and ag9 = —byd4l1(Z4), one way to
have (10) satisfied is to have |bg| + |b4| small enough.

From Ch. III, §7, Th. IIin [8], if the zero solution of the linearised system
is unstable due to the presence of a root A of the characteristic equation with
Re A > 0, the zero solution of the nonlinear system is also unstable.

In what follows, we present the stability study for the equilibrium point
E; = (0,0, 2%, o}, x%, xf, x%, xf, xf). In this case, the equation d; = 0 decouples
into:
(A — @) (A — as5) (A — age) (X — arr) (A — ags — fase ™)
(A= a11 — bire ™) (X — agg — foge T — lgge ™)

[()\ — as3 — d33€_)‘T3)()\ — Q44 — 6446_)‘7—4) — €43€_>\T4 (CL34 + d346_)\73)] = 0

The first four equations have negative real roots. We will study the rest
of the equations following [5], [6] and [7].

L
A— ajl — 61167)\7—1 =0. (9)

Proposition 1. Assume that the following condition is satisfied:

ay; + b < 0.
Then equation (9) is stable for 7 = 0 and it remains stable for all T, > 0.

Proof. For 7y = 0 the equation becomes: A—a;; —b;; = 0 and we have negative
roots if ay; + by1 < 0.

If 7 > 0 we use the method presented in [6]. As b;; > 0, the following
conditions must hold for stability:

1
app < —,
71

ajp + b11 < 0.

The first condition holds as a;; < 0 and the second one holds if the equation
is stable for 7 = 0. ]
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IL.
A — asg — f88€_>\7—5 =0. (10)

Proposition 2. Assume that the following condition is satisfied:

asgg + fgg < 0.

Then equation (10) is stable for 5 = 0 and it remains stable for all 15 > 0.

Proof. For 175 = 0 the equation becomes: \—ags — fss = 0 and we have negative
roots if ags + fsg < 0.

If 75 > 0 we use the method presented in [6]. As fgss > 0, the following
conditions must hold for stability:

1
agg < —,
Ts5
agg + fag < 0.
The first condition holds as agg < 0 and the second one holds if the equation
is stable for 5 = 0. O
I11.
A— agg — fggei)\ﬂr6 - 19967)\7—9 =0. (11)

Proposition 3. Assume that the following condition is satisfied:

Qg9 + f99 + lgg < 0.
Then equation (11) is stable for 7 = 0 and 79 = 0.

Proof. For 74 = 0 and 79 = 0 the equation becomes: A\ — agg — fgg — lgg = 0
and we have negative roots if agg + fog + lgg < 0. O

Proposition 4. Assume that the following condition is satisfied:

1
agy + fog < —.
T9
Then, if the equation (11) is stable for 74 = 0 and 79 = 0, it will remain stable
fors =0 and 79 >0 .

Proof. For 74 = 0 and 79 > 0 the equation becomes: A\ —agg — fo9 —lgge ™™ = 0.
We will, as before, use the method presented in [6]. We notice that lgg < 0, so
the following conditions must hold for stability:

1
gy + fog < —,
T9

agg + foo + lgg < 0.

If the equation (11) is stable for 75 = 0 and 79 = 0, then the second condition
is satisfied. O
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Proposition 5. Consider the equation:
y* — 2gogy Sin Y7 + 2a99g99 COS YTy + gy + gag = 0. (12)

Assume that equation (12) has no positive real roots. Then, if the equation
(11) is stable for 76 = 7§ and 79 = 0, it will remain stable for ¢ = 15 and
79 > 0.

Proof. The proof comes from Theorem 1 from [7], with the correction given by
[5]. O
IV.
(A — ass — dsze ) (N — aug — enne™™) — egze ™ (agy + dgge ™) = 0. (13)
Proposition 6. Assume that the following conditions are satisfied:
as3 + dg3 + aqq + €44 <0, (14)
(ass + ds3)(as + €aa) — eaz(azs + dza) > 0.
Then equation (13) is stable for T3 = 14, = 0.
Proof. For 13 = 74 = 0 equation (13) becomes:
A? — Nags + dss + ags + €as) + (ass + dss) (aaa + eas) — eaz(aga + dsg) = 0. (15)

In order for both roots equation (15) to be in the left half-plane, the
following conditions must hold:

ass + ds3 + agq + €44 <0,
(ass + ds3)(asa + €aq) — €43(asy + dsq) > 0.

OJ
To simplify the calculations, we introduce the following notations:
1 = asz + d33 + aay
B1 = asa(ass + ds3)
Qg = —€44
Ba = eas(age + daz) — ea3(azs + dzq).
Proposition 7. If either the condition
(o] =261 — 3)* — 4(B; — a3) > 0 (16)
or condition
af — 28, — B3 <0 (17)

does not hold, then, if equation (13) is stable for 73 = 14 = 0, it will remain
stable for 73 =0 and 74 > 0.
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Proof. Consider 73 = 0 and 74 > 0. Equation (13) becomes:
N — A+ B+ e 2 (By + ax)) = 0. (17)

In order to study this equation we use Theorem 1 from [7]. We define

P(z) =22 — a1z + B,

Q(2) = apz + Po.
Note that conditions (i)- (v) from the Theorem are satisfied. The stability of
equation (17) depends on the roots of the equation:

|P(iy)|* = |Q(iy) . (18)
Let P(iy) = Pr(y) + iPr(y) and Q(iy) = Qr(y) + iQ(y), where Pg, Pr, Qr,
Q) are real valued. Equation (18) becomes:
Pi(y) + Pi(y) = Qx(y) + Q1 (y).

This leads to the following 4th degree equation:

Yy yar =280 = 57) + B — a3 = 0. (19)
For x = y? we get
2?4+ (ot — 28, — B2) + 7 — a2 = 0. (20)
In order for equation (19) to have at least one positive simple real root, the
following conditions must hold:
A = (af — 261 = B3)° — 4(f — 03) > 0,
a? — 26, — 2 < 0.

For the equation (13) to be stable, at least one of the above conditions must
not hold. B
We next consider 73 = 73 fixed and 74 > 0. Equation (13) becomes:

(N —as3 — dgge’”;)()\ — Qyy — egqe ™) — egze N (asy + dsue 7)) = 0. (21)

The above equation can be rewritten as:

P(A) +Q(N)e ™ =0,
where
P()\) =\ — (CL33 + &44))\ + az3aqq — (d33)\ + (l44d33)67/\7'§
Q()\) = —644)\ + Q33€44 — A34€43 + (d33€44 _ d34634)67)‘7§.

As P(z) and Q(z) are analytic functions, we can apply the results of
Theorem 1 from [7]. As before, for z = iy, we are interested in the roots of
the equation

F(y) = |P(iy)|* — |Q(iy)|* = 0.
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If the equation F(y) = 0 has no positive root then, if (13) is stable with 75 = 73

and 74 = 0, it will be stable for all 7, > 0 and 73 = 73.

5. Numerical simulations

Numerical simulations using the packeges Biftool and DDE in Matlab
show that there are two equilibrium points of the type Ejs.

While E3; = (0,0,0.0017,14.6724,0.8159, 0.5522,0.0018, 0.0538, 5.9097)
is unstable, F3 = (0,0, 1.2696,115.15,0.9718,0.0843, 0.0116, 0.0530, 4.6057) is
asymptotically stable. The solutions starting in the neighbourhood of Fj3;
display different behaviours depending on the initial conditions. In Figures 1
and 3 we clearly see that the pacient’s condition improves. Figures 2 and 4
show the case in which the patient has taken a turn for the worse. In the first
situation, F3; and Fj are attracted to a healthy state. In the latter case, the
patient’s blood cell populations stabilize around equilibrium point Fs,.

a o ki | L ! L I
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FIGURE 1. The evolution of healthy and leukemic stem cell popu-
lations starting near Fs3; (the patient recovers)

0 + L L L
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FIGURE 2. The evolution of healthy and leukemic stem cell popu-
lations starting near F3; (the patient’s condition worsened)
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FIGURE 3. The evolution of healthy and leukemic mature cell pop-
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FIGURE 4. The evolution of healthy and leukemic mature cell pop-
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6. Conclusions

Because of the complexity and the dimension of the DDEs system, a
stability study using directly the characteristic equation is intractable for some
of the equilibrium points.

Based on [11] we use a perturbed version of the matrix associated with
the characteristic equation of the system. This facilitates the study of the
characteristic equation and allows us to find sufficient conditions in parameter
space than ensure linear stability.

From a medical point of view, numerical simulations show that in the
case of a low population of healthy cells, the patient’s condition can worsen or
the patient can recover depending mainly on the population of leukemic cells.
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