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RANK-ONE PERTURBATIONS AND STABILITY OF SOME
EQUILIBRIUM POINTS IN A COMPLEX MODEL OF CELLS

EVOLUTION IN LEUKEMIA

Irina Badralexi1, Ana-Maria Bordei2, Andrei Halanay3

The complex model of cells evolution in leukemia considers the
competition between the populations of healthy and leukemic cells, the asym-
metric division and the immune system’s action in response to the disease.
Delay differential equations are used to describe the dynamics of healthy
and leukemic cells in case of CML (Chronic Myeloid Leukemia). The sys-
tem consists of 9 delay differential equations, the first equations from 1 to
4 describe the hematopoietic healthy and leukemic cells evolution, equations
5 to 9 describe the evolution of the immune cell populations involved in the
immune response against CML. The system has four possible types of equi-
librium points, denoted E1, E2, E3 and E4. The study of stability is focused
on E3, when leukemia cells have entirely replaced the healthy ones and E4,
representing a chronic phase of the disease. A new technique is developed
to handle the intractable characteristic equations in these cases.
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2. Introduction

Mathematical modelling of phenomena that occur in areas such as biology
and medicine is more and more extended in recent years. One of the intense
subjects of study is chronic myeloid leukemia (CML), which is a type of cancer
of the blood characterized by an uncontrolled proliferation of white blood cells.

The role of the immune system during the evolution of leukemic cells has
only recently been considered in studies. This is mainly due to the fact that
the mechanism of the immune system is not entirely known and it’s impact
on the different types of leukemic cells (stem-like and mature cells) is still
debated, especially when treatment takes place.These can also be seen as the
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reasons why modelling the action of the immune system in leukemia is very
important.

In this paper we model the evolution of healthy and leukemic cells and
the action of the immune system in CML. For this purpose, we use a sys-
tem of delay differential equations. In what follows we briefly describe the
mathematical model and analyze the stability of some equilibrium points after
establishing a result on stability under a rank-one perturbation (see [9]).

3. The model

The model we study consists of 9 equations and was first introduced in
[4], [1] and [2]. The first four equations describe the hematopoietic healthy
and leukemic cells evolution, and the last five describe the evolution of the
immune cell populations involved in the immune response against CML. The
state variables represent the concentration of stem-like healthy and leukemic
cells (x1 and x3 ), the concentration of mature healthy and leukemic cells (x2
and x4), the concentration of naive antigen presenting cells - APCs (x5), the
concentration of mature APCs (x6), the concentration of naive T cells of CD4+
and CD8+ phenotypes (x7), the concentration of active CD4+ T-helper cells
(x8) and the concentration of active CD8+ cytotoxic T-cells (x9).

We consider all three types of cell division: symmetric self-renewal, asym-
metric division and symmetric differentiation.

Two feedback loops regulate the self-renewal and the differentiation.
These are introduced through the rate of self-renewal (β) and the rate of
differentiation (k), where, considering competition,

βα(x1 + x3) = β0α
θmα1α

θmα1α + (x1 + x3)mα
, α = h, l ,

kα(x2 + x4) = k0α
θnα2α

θnα2α + (x2 + x4)nα
, α = h, l ,

with h - healthy and l - leukemic.
In order to model the immune system, we assume that the APCs are

the first to activate, upon encountering mature leukemic cells. They, in turn,
activate the T cells which differentiate into T-helper cells and CD8+ cytotoxic
T-cells. The activation of the CD8+ cytotoxic T-cells is also stimulated by the
T-helper cells. The cytotoxic T-cells are the cells that force the leukemic cells
into apoptosis.

The following feedback functions regulate the evolution of the immune
system and its interaction with leukemic cells:

ζ1(x) =
1

1 + xp
, ζ2(x) =

x2 + e5
x2 + e6

,

l1(x) =
1

b1 + x2
, l2(x) =

x

b2 + x2
, l3(x) =

x

b3 + x2
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Taking into account all the above, we consider the system of DDEs below.
For a more detailed description of the model, see [4], [1] and [2].

ẋ1 = −γ1hx1 − (η1h + η2h)kh(x2 + x4)x1 − (1− η1h − η2h)βh(x1 + x3)x1+

+2e−γ1hτ1(1− η1h − η2h)βh(x1τ1 + x3τ1)x1τ1+

+η1he
−γ1hτ1kh(x2τ1 + x4τ1)x1τ1

ẋ2 = −γ2hx2 + Ah(2η2h + η1h)kh(x2τ2 + x4τ2)x1τ2
ẋ3 = −γ1lx3 − (η1l + η2l)kl(x2 + x4)x3 − (1− η1l − η2l)βl(x1 + x3)x3+

+2e−γ1lτ3(1− η1l − η2l)βl(x1τ3 + x3τ3)x3τ3+

+η1le
−γ1lτ3kl(x2τ3 + x4τ3)x3τ3 − b1x3x9l1(x3 + x4)

ẋ4 = −γ2lx4 + Al(2η2l + η1l)kl(x2τ4 + x4τ4)x3τ4 − b2x4x9l1(x3 + x4)
ẋ5 = −c2x5 + c1 − c3x5l2(x4)
ẋ6 = −d1x6 + c3x5l2(x4)

ẋ7 = −d2x7 + d3 − d4x6x7
ẋ8 = −e1x8 − e2ζ1(x8)x8 + 2e−e1τ5e2ζ1(x8τ5)x8τ5 − e3ζ2(x8)x8+

+2m1d41x6τ7x7τ7

ẋ9 = −e4x9 − e7ζ1(x8)x8x9 + 2e−e4τ6e7ζ1(x8τ6)x8τ6x9τ6 − e3ζ2(x8)x9−
−b5x9l3(x4) + 2n1e8x9τ9l3(x4τ9) + 2m2d42x6τ8x7τ8

The system has several types of equilibrium points E = (x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5, x

∗
6,

x∗7, x
∗
8, x

∗
9). The ”death” equilibrium x∗j = 0,∀j 6= 5, 7 and the ”health” equi-

librium x∗3 = x∗4 = 0 have been studied in [1] and [2]. E3, where x∗1 = x∗2 = 0,
the case when leukemia cells have entirely replaced the healthy ones and E4,
where x∗j 6= 0 ∀j = 1, 9, representing a chronic phase of the disease, have not
been investigated until now using the characteristic equation due to its com-
plexity. Sufficient conditions for delay-independent stability have been given,
using Lyapunov-Krasovskii functionals, in [3].

4. Stability study

The characteristic equation of the linearized system is:

det(λI9 − A−Be−λτ1 − Ce−λτ2 −De−λτ3 − Ee−λτ4−
−Fe−λτ5 −Ge−λτ6 −He−λτ7 −Ke−λτ8 − Le−λτ9) = 0.

Here, A is the matrix of partial derivatives with respect to undelayed state
variables, while B,C, . . . , L correspond to variables delayed by τ1, τ2, . . . , τ9
respectively.
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The matrix for which we need to calculate the determinant has the form:

M =



m11 m12 m13 m14 0 0 0 0 0

m21 m22 0 m24 0 0 0 0 0

m31 m32 m33 m34 0 0 0 0 m39

0 m42 m43 m44 0 0 0 0 m49

0 0 0 m54 m55 0 0 0 0

0 0 0 m64 m65 m66 0 0 0

0 0 0 0 0 m76 m77 0 0

0 0 0 m84 0 m86 m87 m88 0

0 0 0 m94 0 m96 m97 m98 m99



.

The dificulties in studying the characteristic equation arise from the
presence of the elements m39 and m49, with m39 = a39 = b1x

∗
3l1(x

∗
4) and

m49 = a49 = b2x
∗
4l1(x

∗
4). In order to handle the stability study, we use the

approach from [9] .
Let ∆0 be the 9× 9 matrix with all entries zero except for a39 on line 3,

column 9 and a49 on line 4, column 9.
Define A1 = A−∆0, M1 = M −∆0. Then

detM1 = d1m55m66m77m88m99 (1)

with

d1 = det


m11 m12 m13 m14

m21 m22 0 m24

m31 m32 m33 m34

0 m42 m43 m44

 (2)

and
m55 = λ− a55, m66 = λ− a66, m77 = λ− a77,
m88 = λ− a88 − f88e−λτ5

(3)

m99 = λ− a99 − g99e−λτ6 − l99e−λτ9 . (4)

We use now the results from [11](see also [6]).
Consider the linear time-delay system

ẋ(t) = A0x(t) +
m∑
j=1

Ajx(t− τj), (5)

where A0, A1, . . . , Am ∈Mn(R), with strictly positive delays τ1, . . . , τm.
Define τ = max{τ1, . . . , τm} and let K be a fundamental matrix of solu-

tions of the system (5), so K(t) = 0, ∀t < 0. If the system (5) is exponentially
stable then ∃M > 0, ω > 0, so that

||K(t)|| ≤Me−ωτ ∀t ≥ 0.
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In this situation, for every constant matrix W , the matrix function, called the
Lyapunov matrix,

U(t) =

∫ t

0

K(t)TWK(t+ s)dt (6)

is well defined for all s ∈ R (T means transpose).
Remark that for (5) asymptotic stability is equivalent to exponential

stability (see [10]).
Let the matrices A0, A1, . . . , Am be perturbed as Ak + ∆k, k = 0, . . . ,m

and consider the perturbed system

ẏ(t) = (A0 + ∆0)y(t) +
m∑
j=1

(Aj + ∆j)y(t− τj) (7)

Suppose that the perturbations are bounded matrices

||∆k|| ≤ ρk ∀k = 0, . . . ,m. (8)

For positive definite matrices W0,W1, . . . ,Wm, R1, . . . , Rm, define

W = W0 +
m∑
j=1

(Wj + τjRj) (9)

and let U be the Lyapunov matrix defined by (6) with respect to this W .
Define

λmin = min{infσ(Wj), j = 0, . . . ,m, infσ(Rj), j = 1, . . . ,m}
and

v = max{||U(t)||, t ∈ [0, τ ]},
ρ = (ρ20 + · · ·+ ρ2m)1/2

with σ(M) the spectrum of the matrix M . The following theorem is proved in
[11] using Lyapunov-Krasovskii functionals

Theorem 1 ([11], Th. 3.12). Suppose (5) is exponentially stable. Let
the positive-definite matrices W0,W1, . . . ,Wm, R1, . . . , Rm be given and let U
be the Lyapunov matrix defined in (6) for W defined in (9). Then (7) is also
exponentially stable for all perturbations that verify

ρ ≤ λmin
2v(1 +

∑m
k=1 τk||Ak||)1/2

(10)

This theorem is applied to the study of the asymptotic stability of equi-
librium E3 and E4 using the linearized system and the Theorem on stability
by the first approximation.

Consider ∆0 as defined above and ∆k = 0, k = 1, . . . , 9. Then

||∆0|| ≤ (m2
39 +m2

49)
1/2

so
ρ = (m2

39 +m2
49)

1/2. (11)
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The following result is obtained:

Theorem 2. Suppose that for d1, m88 and m99 defined in (2), (3) and
(4) the equations d1 = 0, m88 = 0 and m99 = 0 have all the roots λ with
Re λ < 0. Then, if ρ defined in (11) verifies (10), the equilibrium points E3

and E4 are asymptotically stable.

Proof. The result follows from (1) and from the considerations above since
a55 < 0, a66 < 0 and a77 < 0. �

Remark. Since a39 = −b6x̂3l1(x̂4) and a49 = −b4x̂4l1(x̂4), one way to
have (10) satisfied is to have |b6|+ |b4| small enough.

From Ch. III, §7, Th. II in [8], if the zero solution of the linearised system
is unstable due to the presence of a root λ of the characteristic equation with
Re λ > 0, the zero solution of the nonlinear system is also unstable.

In what follows, we present the stability study for the equilibrium point
E3 = (0, 0, x∗3, x

∗
4, x

∗
5, x

∗
6, x

∗
7, x

∗
8, x

∗
9). In this case, the equation d1 = 0 decouples

into:

(λ− a22)(λ− a55)(λ− a66)(λ− a77)(λ− a88 − f88e−λτ5)·
·(λ− a11 − b11e−λτ1)(λ− a99 − f99e−λτ6 − l99e−λτ9)·

·[(λ− a33 − d33e−λτ3)(λ− a44 − e44e−λτ4)− e43e−λτ4(a34 + d34e
−λτ3)] = 0

The first four equations have negative real roots. We will study the rest
of the equations following [5], [6] and [7].

I.

λ− a11 − b11e−λτ1 = 0. (9)

Proposition 1. Assume that the following condition is satisfied:

a11 + b11 < 0.

Then equation (9) is stable for τ1 = 0 and it remains stable for all τ1 > 0.

Proof. For τ1 = 0 the equation becomes: λ−a11−b11 = 0 and we have negative
roots if a11 + b11 < 0.
If τ1 > 0 we use the method presented in [6]. As b11 > 0, the following
conditions must hold for stability:

a11 <
1

τ1
,

a11 + b11 < 0.

The first condition holds as a11 < 0 and the second one holds if the equation
is stable for τ1 = 0. �
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II.

λ− a88 − f88e−λτ5 = 0. (10)

Proposition 2. Assume that the following condition is satisfied:

a88 + f88 < 0.

Then equation (10) is stable for τ5 = 0 and it remains stable for all τ5 > 0.

Proof. For τ5 = 0 the equation becomes: λ−a88−f88 = 0 and we have negative
roots if a88 + f88 < 0.
If τ5 > 0 we use the method presented in [6]. As f88 > 0, the following
conditions must hold for stability:

a88 <
1

τ5
,

a88 + f88 < 0.

The first condition holds as a88 < 0 and the second one holds if the equation
is stable for τ5 = 0. �

III.

λ− a99 − f99e−λτ6 − l99e−λτ9 = 0. (11)

Proposition 3. Assume that the following condition is satisfied:

a99 + f99 + l99 < 0.

Then equation (11) is stable for τ6 = 0 and τ9 = 0.

Proof. For τ6 = 0 and τ9 = 0 the equation becomes: λ − a99 − f99 − l99 = 0
and we have negative roots if a99 + f99 + l99 < 0. �

Proposition 4. Assume that the following condition is satisfied:

a99 + f99 <
1

τ9
.

Then, if the equation (11) is stable for τ6 = 0 and τ9 = 0, it will remain stable
for τ6 = 0 and τ9 > 0 .

Proof. For τ6 = 0 and τ9 > 0 the equation becomes: λ−a99−f99−l99e−λτ9 = 0.
We will, as before, use the method presented in [6]. We notice that l99 < 0, so
the following conditions must hold for stability:

a99 + f99 <
1

τ9
,

a99 + f99 + l99 < 0.

If the equation (11) is stable for τ6 = 0 and τ9 = 0, then the second condition
is satisfied. �
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Proposition 5. Consider the equation:

y2 − 2g99y sin yτ ∗6 + 2a99g99 cos yτ ∗6 + a299 + g299 = 0. (12)

Assume that equation (12) has no positive real roots. Then, if the equation
(11) is stable for τ6 = τ ∗6 and τ9 = 0, it will remain stable for τ6 = τ ∗6 and
τ9 > 0.

Proof. The proof comes from Theorem 1 from [7], with the correction given by
[5]. �

IV.

(λ− a33 − d33e−λτ3)(λ− a44 − e44e−λτ4)− e43e−λτ4(a34 + d34e
−λτ3) = 0. (13)

Proposition 6. Assume that the following conditions are satisfied:

a33 + d33 + a44 + e44 < 0,

(a33 + d33)(a44 + e44)− e43(a34 + d34) > 0.
(14)

Then equation (13) is stable for τ3 = τ4 = 0.

Proof. For τ3 = τ4 = 0 equation (13) becomes:

λ2− λ(a33 + d33 + a44 + e44) + (a33 + d33)(a44 + e44)− e43(a34 + d34) = 0. (15)

In order for both roots equation (15) to be in the left half-plane, the
following conditions must hold:

a33 + d33 + a44 + e44 < 0,

(a33 + d33)(a44 + e44)− e43(a34 + d34) > 0.

�

To simplify the calculations, we introduce the following notations:

α1 = a33 + d33 + a44

β1 = a44(a33 + d33)

α2 = −e44
β2 = e44(a22 + d22)− e43(a34 + d34).

Proposition 7. If either the condition

(α2
1 − 2β1 − β2

2)2 − 4(β2
1 − α2

2) > 0 (16)

or condition

α2
1 − 2β1 − β2

2 < 0 (17)

does not hold, then, if equation (13) is stable for τ3 = τ4 = 0, it will remain
stable for τ3 = 0 and τ4 > 0.
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Proof. Consider τ3 = 0 and τ4 > 0. Equation (13) becomes:

λ2 − α1λ+ β1 + e−λτ2(β2 + α2λ) = 0. (17)

In order to study this equation we use Theorem 1 from [7]. We define

P (z) = z2 − α1z + β1,

Q(z) = α2z + β2.

Note that conditions (i)- (v) from the Theorem are satisfied. The stability of

equation (17) depends on the roots of the equation:

|P (iy)|2 = |Q(iy)|2. (18)

Let P (iy) = PR(y) + iPI(y) and Q(iy) = QR(y) + iQI(y), where PR, PI , QR,

QI are real valued. Equation (18) becomes:

P 2
R(y) + P 2

I (y) = Q2
R(y) +Q2

I(y).

This leads to the following 4th degree equation:

y4 + y2(α2
1 − 2β1 − β2

2) + β2
1 − α2

2 = 0. (19)

For x = y2 we get

x2 + x(α2
1 − 2β1 − β2

2) + β2
1 − α2

2 = 0. (20)

In order for equation (19) to have at least one positive simple real root, the

following conditions must hold:

∆ = (α2
1 − 2β1 − β2

2)2 − 4(β2
1 − α2

2) > 0,

α2
1 − 2β1 − β2

2 < 0.

For the equation (13) to be stable, at least one of the above conditions must

not hold. �

We next consider τ3 = τ ∗3 fixed and τ4 > 0. Equation (13) becomes:

(λ− a33 − d33e−λτ
∗
3 )(λ− a44 − e44e−λτ4)− e43e−λτ4(a34 + d34e

−λτ∗3 ) = 0. (21)

The above equation can be rewritten as:

P (λ) +Q(λ)e−λτ4 = 0,

where

P (λ) = λ2 − (a33 + a44)λ+ a33a44 − (d33λ+ a44d33)e
−λτ∗3

Q(λ) = −e44λ+ a33e44 − a34e43 + (d33e44 − d34e34)e−λτ
∗
3 .

As P (z) and Q(z) are analytic functions, we can apply the results of
Theorem 1 from [7]. As before, for z = iy, we are interested in the roots of
the equation

F (y) = |P (iy)|2 − |Q(iy)|2 = 0.
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If the equation F (y) = 0 has no positive root then, if (13) is stable with τ3 = τ ∗3

and τ4 = 0, it will be stable for all τ4 > 0 and τ3 = τ ∗3 .

5. Numerical simulations

Numerical simulations using the packeges Biftool and DDE in Matlab
show that there are two equilibrium points of the type E3.

While E31 = (0, 0, 0.0017, 14.6724, 0.8159, 0.5522, 0.0018, 0.0538, 5.9097)
is unstable, E32 = (0, 0, 1.2696, 115.15, 0.9718, 0.0843, 0.0116, 0.0530, 4.6057) is
asymptotically stable. The solutions starting in the neighbourhood of E31

display different behaviours depending on the initial conditions. In Figures 1
and 3 we clearly see that the pacient’s condition improves. Figures 2 and 4
show the case in which the patient has taken a turn for the worse. In the first
situation, E31 and E4 are attracted to a healthy state. In the latter case, the
patient’s blood cell populations stabilize around equilibrium point E32.

Figure 1. The evolution of healthy and leukemic stem cell popu-
lations starting near E31 (the patient recovers)

Figure 2. The evolution of healthy and leukemic stem cell popu-
lations starting near E31 (the patient’s condition worsened)
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Figure 3. The evolution of healthy and leukemic mature cell pop-
ulations starting near E31 (the patient recovers)

Figure 4. The evolution of healthy and leukemic mature cell pop-
ulations starting near E31 (the patient’s condition worsened)

6. Conclusions

Because of the complexity and the dimension of the DDEs system, a
stability study using directly the characteristic equation is intractable for some
of the equilibrium points.

Based on [11] we use a perturbed version of the matrix associated with
the characteristic equation of the system. This facilitates the study of the
characteristic equation and allows us to find sufficient conditions in parameter
space than ensure linear stability.

From a medical point of view, numerical simulations show that in the
case of a low population of healthy cells, the patient’s condition can worsen or
the patient can recover depending mainly on the population of leukemic cells.
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