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DC ARC FAULT LOCATION IN VSC-HVDC SYSTEMS 

BASED ON DEEP LEARNING USING PMU 
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Mahdieh ESLAMI1 

In the presented paper, a method for locating DC arc fault in VSC-HVDC 

transmission lines is proposed. Additionally, wavelet transform from advanced 

techniques of signal processing is employed  for the purpose of extracting 

important characteristics of fault signal from both sides of the line by PMU. To do 

so, Deep learning is used to identify the relation between the extracted features 

from wavelet analysis of the fault current and variations under fault conditions. In 

this method, there is no need to know about the line information. Using the 

intelligent method also reduces the calculation complexity. Studies and simulations 

are done by implementation on a 50 kV VSC-HVDC transmission line with 25 km 

length in Matlab. Obtained results demonstrate the high precision of the presented 

method with the maximum fault value of 3%. 
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1. Introduction 

Nowadays, considering the improvements achieved in power electronics 

equipment, using HDVC transmission lines in overhead lines and underground 

cables is increased significantly [1-2]. Fast and reliable control are features of 

these systems. Additionally, HDVC systems can be used to connect asynchronous 

networks [3-5]. Nevertheless, the main issue in using this form of lines, is their 

protection. Finding the fault location is of quick servicing and important 

diagnosing aspects. Precise fault location helps with determining the weaknesses 

of transmission line and forming a desirable adaption to decrease the fault 

occurrence probability in these locations.  

DC arc faults are one of common problems of HVDC transmission lines. 

Non-permanent DC arc faults on VSC-HVDC transmission lines should be 

located to avoid power outages immediately due to destructive effects of DC arcs. 

According to DC arc characteristics, high magnitude of current has destructive 

effect on both side converters and inverters and finding location of DC arc faults 

is difficult by previous methods [6]. 
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Generally, fault location in line methods divide into intelligent network 

methods [7-10] and classic analytic methods [11-13]. In recent years, the 

intelligent network-oriented methods have attracted a lot of attention due to more 

simple calculations and high flexibility capabilities in learning. Currently, 

protection techniques of HVDC systems fall into three categories of: travelling 

wave protection [14-16], signal procession, and machine learning [17-18]. For the 

purpose of internal and external fault recognition on HVDC line, travelling wave 

protection is used in [14]. For the same purpose, fault impedance and high 

frequency components are used in [16]. In [17], entropy and wavelet transform are 

used to protect HVDC systems. In [18], an algorithm is presented to locate the 

fault based on neural network. 

As mentioned before, currently, intelligent methods are dominant in non-

linear and complex problems. In this regard, studies based on intelligent methods 

have been investigated in the field of locating fault in transmission lines [19-21]. 

In [19], a method is proposed to find the fault location in 4-circuits transmission 

lines based on adaptive neural-fuzzy inference system (ANFIS). Finding the 

location of fault in transmission line is addressed in [20] by using support vector 

machine. It must be considered that one of the most used intelligent methods 

currently is Deep Learning [21] which is of high precision in determining the 

desired target. Due to novelty of improvements of this algorithm, limited works 

are done in protection of power systems by Deep Learning which are proved to be 

of high precision [22-23]. In [22], identifying the type of arc fault in transmission 

system which are hard to recognize by using other algorithms is addressed. It must 

be considered that in the methods based on learning, choosing the most desirable 

characteristics is of great essence for the methods. Hence, identifying the features 

related to location of fault can help significantly in improving the precision of the 

deployed algorithm [10] that Deep Learning do this task properly.  

In the presented method, characteristics extracted from fault current is of 

great importance. The extracted features behavior is directly related to the 

parameters of fault such as location, resistance and inception, in a way that the 

variations, affect the extracted features [24]. 

Here, a method based on wavelet analyzes by using Deep Learning to 

determine the location of DC arc fault in VSC-HVDC transmission lines is 

presented. Using phasor measurement units (PMU), the fault current signal of 

both sides of the line are obtained and their important features are extracted by the 

wavelet analyzes. The main reasons of using PMU is getting synchronized and 

precise data from both sides. The obtained features are as entry data of the Deep 

Learning algorithm. The reason of using the data of both sides of the line is the 

dependence of this algorithm on great information of fault current signal as entries 

and increasing the precision of the presented algorithm. 
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In this paper, simulations are implemented in Matlab with having 

considered a 50 kV VSC-HVDC transmission line with 25 km length. The DC arc 

fault is studied in terms of fault inception and fault location. In the presented 

method, PMU is used to obtain the information, which is capable of handling the 

synchronization problem, and the high precision sampling challenge. High speed 

in determining the DC arc fault location, reducing the calculation complexities, 

independency of knowing the line parameters, and high precision are some of the 

advantages of the presented method. The maximum error percentage of this 

method is below 3%. 

2. Wavelet Analysis 

Wavelet Analysis used the multi-resolution analysis (MRA) to decompose 

the signal into high and low frequency bands in order to evaluate the signal 

partially and approximately [25-26]. Many researches use the MRA to analyze the 

locating fault in transmission lines [27-28]. The presented method is focused on 

extracting features of 3-phase current signals of both ends during the fault 

occurrence in 1000-2000 frequency spectrum. These features include transient 

fault features to evaluate the signal details and determine the fault location. The 

process of MRA of an entry signal is depicted in Fig. (1). 

 

 
Fig. 1. Frequency division of MRA [19] 

 

A brief explanation of the wavelet transform is given below: 

The Continuous Wavelet Transform (CWT) is expressed as: 

𝐶𝑊𝑇(𝑥. 𝑎. 𝑏) =
1

√|𝑎|
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X (t) is input signal, φ (t) is the mother wavelet and 𝜑𝑎.𝑏(𝑡) =
1

√|𝑎|
𝜑 (

𝑡−𝑏

𝑎
) are 

transferred and detailed versions. Constants a and b are respectively contraction 

and transfer constants. CWT (x, a, b) is the wavelet transform of signal x with 
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contraction a and transfer (time shift) b. CWTs present the time-frequency various 

information. 

Discrete wavelet transform (DWT) is a digital counterpart known of CWT 

which is used in the proposed method. DWT of a signal is expressed as [28]: 

𝐷𝑊𝑇(𝑥, 𝑚, 𝑛) =
1

√𝑎𝑜
𝑚 ∑ 𝑥(𝑘)𝜑 (

𝑛−𝑙𝑎𝑜
𝑚

𝑎𝑜
𝑚 )𝑡                           (2) 

Parameters a and b are substituted with a0
m and la0

m. 

DWT decomposes a signal into different levels of approximate (a1, a2… 

an) and details (d1, d2... dn). A signal decomposes through high pass, and low pass 

filters in time domain. 

The information obtained from the wavelet Analysis give useful clues in 

order to find location of the fault. In this paper, the current signal in time domain 

is obtained for various fault situations from both sides of the VSC-HVDC lines, 

and are analyzed with wavelet Analysis. The Daubechies wavelet (DB4) is used 

as the mother wavelet due to its suitable operation in fault analysis in power 

systems [27-28]. 

In this paper, 1 KHz is as sampling rate. Among the presented coefficients 

of various decomposed levels, the set of coefficients of 1000-2000 HZ is the only 

one considered. The d2 (details coefficients) supports necessary transient features 

for the proposed method. 

3. Phasor measurement units (PMU) 

Phasor measurement units have become one of the important elements in 

wide area measuring systems for monitoring, protecting, and advanced practical 

controlling of power systems. PMUs address the synchronous measuring of 

current, and voltage phasors in real time. Synchronization is achievable by 

synchronous sampling of current, and voltage waveforms by using time signal of 

the GPS. Synchronizing the measured phasor is the reason for rising of a new 

level of monitoring, protection, and practical control [29]. 

The PMU technology gives in the phasor information (the magnitude and 

the angle) in real time. Citation to inclusive reference time to submit the transient 

features of the power system is one of the advantages of the phase angle. This 

technology positively affects the learning of the real time behavior of the power 

system. Considering the improvements in this technology, the microprocessor 

equipment such as protection relays and Disturbance Fault Recorders (DFRS) 

combined with sample PMUs, are also of the extended features. 

To achieve the synchronous measuring of phasors in a wide power system, 

synchronization is needed. Meaning that all phasor measuring for the same time 

are synchronous. High resolution of 60 sample per cycle, measuring the phase 



DC arc fault location in VSC-HVDC systems based on Deep Learning using PMU       225 

angle, and observability of dynamic states are some of the advantages of phasor 

measurement units. 

4. Deep learning 

Deep learning is the machine learning in a way [21] that its entries are the 

main data that extract the important features in a multi-layer structure and learn 

and achieve the specific goal in the end. 

A neural network has n layers. The forward network topology is shown in 

Fig. (2). The forward deep network is a form of deep learning in a way that f(x) 

match f*(x). For the learning data, each entry is tagged with y=f*(x) and products 

the f*(x) value. For the purpose of learning, a function described as below is used: 

𝑦̂ = 𝑓(𝑥; 𝜃)                                                  (3) 

The algorithm must learn how to generate the desirable output from the 

learning data. The neural network learning is based on the minimum of the waste 

function. Hence, the difference between the real output and the desirable one must 

be at the minimum. Deep Learning designs a plan to classify the tasks that leads to 

massive learning of the learning data of a network, and classification of the entry 

data. The network depth reveals that the hidden layers of a network are able to 

extract various features. Deeper networks have more complex data [22]. 

 

 
Fig 2. Feed forward network [21] 

5. DC arc fault model 

Van and Warrington presented a model based on different tests on HV ac 

systems for arcing current varies from 100 to 1000 A and several electrode 

distance [30]. 

The V –I characteristic of a stable arc was determined as 

𝑉𝑎𝑟𝑐 =
8750𝐿

𝐼𝑎𝑟𝑐
0.4

                                                         (6) 

Where, L is the arc length in feet.  



226                Roohollah Sadeghi Ghoughari, Mehdi Jafari Shahbazzadeh, Mahdieh Eslami 

 

6. The proposed method 

The algorithm of the proposed method has two levels which are procession 

of the entry data and precise recognition of the fault location respectively. Fig. (3) 

demonstrates the flowchart of the presented algorithm. 3-phase fault current of 

both sides of VSC-HVDC line is obtained and wavelet analysis is applied to it. 

Coefficients of the second level details, named as Sa , Sb, and Sc, of the 3-phase 

fault current signal a, b, and c of both sides of the line are used as the Deep 

Learning algorithm entries, to identify type of fault and locate the fault. 
 

 
Fig. 3. The flowchart of the presented algorithm 

 

The entry data are processed as below: 

First, fault current is obtained from phasor measurement units of both 

sides of the line. Second, to decompose current signal, wavelets are used. 

Eventually, the coefficients of the second level details, Sa , Sb, and Sc, are selected 

as entry data of Deep Learning. 

6.1. Locating fault in VSC-HVDC lines 

The features extracted are the entries of the Deep Learning network. The 

normalized value of the coefficients of the second level details, named: Sa, Sb, and 

Sc of 3-phase fault currents of a, b, and c are used as the entries of the Deep 

Learning algorithm. The entries of this network are Sa, Sb, and Sc, and its output 

(D) is fault location. 

To design the best Deep Learning network, it’s precisely and efficiently 

learning is necessary. The learning must be done in such way that various 

situations of the fault resistance, fault location, and fault inception be assumed. 

Functionality of the Deep Learning network is evaluated by the test data different 

from training data. 
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Fig. 4. The Simulink of study case 

7. Simulations 

Simulations are run in Matlab Simulink (Fig. 4). To implement the 

wavelet analysis and the Deep Learning network, Matlab is employed. The test 

and learning algorithms are generated from variations in fault such as location, 

resistance and inception. 

These situations are included in tables (1) and (2) for the learning and test 

of algorithm respectively. 

Table 1. 
Training data 

Fault Location 10% to 90% of the line length, with step 5% 

pole + pole, -pole 

Fault Inception(degree) 2.5, 12, 24, 36, 72, 108, 131, 153, 169, 175.5 

Fault Resistance (Ω) 1, 10, 20, 30 

Table 2. 
Test data 

Fault Location 10 Random places 

pole + pole, -pole 

Fault Inception(degree) 6, 48, 90, 120, 145.5, 173.25 

Fault Resistance (Ω) 2, 9, 18, 25 

 

According to Figs. (5) and (6), the second frequency level is considered to 

generate the input algorithms. With implement the wavelet transforms on the fault 

current signal from the two sides of VSC-HVDC line, each pattern includes 320 

features. The sampling rate is selected 1 kHz for simulations, and Db4 is used as 

the mother wavelet. The frequency band of the second level of details includes 

1000-2000 frequencies. It yields transient features such as fault in power systems. 
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As shown in the table (1), trained data are 1280 pattern, and according to the table 

(2), tested data are 480 pattern. 
 

 

 
Fig. 5. Three-phase current signals of both sides measured by PMU under the fault at 10 km. (a. 

current signal of sending end, b. current signal of receiving end) 

 
Fig. 6. Wavelet of fault current at a distance of 10 km from sending end having fault inception 

angle of 40 and fault resistance of 1 ohm 

8. Results and Discussion 

Fault is occurred with various situations of the fault resistance, fault 

location, and fault inception. Values of coefficients of the second level details Sa, 

Sb, and Sc are considered as the entries of the Deep Learning algorithm, and 

location of fault is considered as the output. The Deep Learning network has 

taught the functions to decrease error of the fault location. 

To evaluate the precision of the presented method in calculating location 

of fault, the proposed method has been tested under various fault situations. 

Considering the obtained results, it can be concluded that the algorithm is of 

acceptable precision in protection of VSC-HVDC lines. The functionality of 
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precise fault locating by using the Deep Learning network is tested and included 

in tables (3) to (5). The error percentage is defined as below: 

%𝐸𝑟𝑟𝑜𝑟 =
|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑎𝑢𝑙𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛|

𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑛𝑔𝑡ℎ
× 100                                  (4) 

To evaluate the sensitivity of the presented method, fault is occurred under 

various conditions such as location, inception, and resistance. In tables (3) to (5), 

the sensitivity of algorithm is investigated. 

The sensitivity of fault location is shown in table (3). Each fault point has 

48 pattern. With evaluating the obtained results in table (3), it can be deduced that 

the proposed method is of sufficient precision considering the fact that the test 

condition is different from the learning conditions. All entries of the test network 

has average error value equal 0.773%, and the maximum error is 2.336 %. 
 

Table 3. 
Results of fault locating for various Fault Distance 

Average error (%) Max error (%) Min error (%) Fault Location (Km) 

0.863 2.336 0.175 1.2 

0.786 1.325 0.106 3.3 

0.925 1.685 0.114 4.8 

0.482 0.582 0.085 7.1 

0.615 3.635 0.203 9.6 

0.789 1.352 0.235 10.8 

0.986 2.036 0.005 13.9 

0.833 1.445 0.015 16.7 

0.546 1.368 0.192 19.6 

0.911 2.065 0.116 21.7 

0.773 1.782 0.124 Mean of All 

 

It is assumed in the presented method that the fault impedance is purely 

resistance. For evaluating the sensitivity of the proposed method to fault 

resistance, fault for different fault resistances is given in Table (4).  
Table 4. 

The algorithm sensitivity under variations of Fault Resistance 

Average error (%) Max error (%) Min error (%) Fault Resistance (Ω) 

0.783 1.453 0.13 2 

0.632 1.362 0.22 9 

0.836 1.883 0.18 18 

1.036 2.163 0.63 25 
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The evaluated maximum fault is 2.163% and evaluated fault average is 

0.82% for all modes. Clearly, complex fault impedance affects the precision of the 

algorithm negatively. Nevertheless, the method obtained results of sufficient 

precision. It can be seen from table (4) that the maximum observed fault occurs 

for 25 Ω. For this resistance, the average observed fault is only 1.036%. 

To demonstrate the effect of fault inception, fault is applied for constant 

location with constant resistance value for different initial angles. Maximum and 

average evaluated fault for each fault for different fault inception is shown in table 

(5). As shown, the fault location precision is still acceptable despite variation in 

fault inception. 

Fault location method for fault inception close to point passing the current 

zero is studied. Some of test patterns are generated based on fault inception of 

2.25 and 177.75. Other situations are proposed to generate test data based on table 

(2). 

Average and maximum obtained fault for fault inception of 2.25 are 1.05 

% and 2.12 % respectively. Additionally, the mentioned values are 1.31 % and  

3.48 % for fault inception of 177.25. Therefore, proximity of the points to 

the current zero when fault is occurring, affects in reducing the precision of the 

presented method. If the distance of the fault inception form the zero point is less 

than 2.25, the proposed method does not function properly. In general, the method 

has desirable functionality only in 97.5% of the times. 
 

Table 5. 
The algorithm sensitivity under variations of Fault Inception Angles 

Average error 

(%) 

Max 

error (%) 

Min 

error (%) 

Fault Inception 

(degree) 

0.889 1.145 0.163 6 

0.736 1.065 0.059 48 

0.926 1.966 0.116 90 

0.916 1.348 0.358 120 

1.023 1.054 0.605 145.5 

1.315 2.366 0.993 173.25 

 

In accordance with the obtained results from the tables, it can be observed 

that the presented algorithm is of acceptable precision in determining the fault 

location in VSC-HVDC lines. The algorithm determines the precise location of 

fault in most cases and keeps the algorithm fault under 3%.  

9. Conclusion 

In this paper, a method to locate the DC arc and other type of fault in 

VSC-HVDC transmission lines is proposed. The proposed algorithm includes two 
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levels to extract the features and locate the fault. Wavelet MRA has been used 

along the Deep Learning network in order to achieve this goal. 

The proposed algorithm is different from the conventional ones that are 

proposed to protect the transmission lines based on heavy and complex 

calculations. To extract the important features and obtain the exact fault location, 

the wavelet transforms, and intelligent calculation techniques of the Deep 

Learning network are used. In presented method, for checking the sensitivity of 

the proposed method, fault is evaluating under various conditions. The simulation 

results show that the algorithm is a fast, precise, and reliable to finding the 

location of fault. This method is able to handle synchronization of the information 

obtained from the two sides of the line by using PMU. 
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