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EXISTENCE OF FRACTALS BY OPTIMAL POINTS FOR A CLASS OF
DISCONTINUOUS MAPPINGS

Shagun Sharma' and Sumit Chandok?

In this paper, we focus on the existence of the best proximity points in binormed
linear spaces. We also provide some illustrations to support our claims. As con-
sequences, we derive various fixed point r esults. We present an approach to the existence
of fractals through best proximity points as applications.
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1. Introduction and Preliminaries

The idea of a fixed point is not appropriate when the intersection of nonempty subsets

& and &, of a metric space (),d) is empty, because in this case FP equations I'u = u may
not have a solution. If intersection of & and &> is nonempty and FP equation T'u = u
has solution, then I" has a FP. Banach contraction theorem (BCT) plays an important role
in nonlinear analysis. Due to its simplicity and applicability, it helps solve many kinds
of nonlinear problems such as the existence of solutions of integral equation, differential
equation and matrix equation so on.
Mandelbrot [15] gave a notion of fractals which describe a large family of irregular patterns
in nature. Self similar sets are regarded as a valuable category of fractals due to their
utility in mathematically modeling various physical phenomena. In 1981, Hutchinson [12]
conducted an analysis of objects exhibiting self similarity, resulting in the establishment of
an iterated function system which is one of the most common ways of building fractals.
Barnsley [3] worked on this system to produce fractal sets within any given metric space by
employing a finite collection of BCT. Garg and Chandok [11] also worked on this system
and obtained some new results using contraction conditions.

In 1968, Maia established a very interesting and beautiful generalization of BCT

using assumptions on two comparable metrics defined on the set . The beautiful idea of
Maia’s FP-theorem still attracts the interest of researchers working in FP-theory (see [, 6]
and references cited therein).
Consider the case when the FP equation I'u = u has no solution. In this case d(&7,83) > 0.
In this affairs it is interesting to find an approximate solution u such that the error d(u,T'u)
is minimum in some sense. For a nonself mapping I' : &1 — &> a point u, known as a best
proximity point (BPP) if satisfies the following condition

du,Tu) =d(&,6,) =inf{d(u,v) :u € &,v € &}.
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In 1969, Fan [10] gave the classical best approximation theorem in the context of a Haus-
dorff locally convex topological vector space ). After that, many authors studied the best
approximation problems in metric spaces and normed spaces (see [5, 18] and references
cited therein). In 2006, Eldred and Veeramani [9] proved the existence of a best proximity
point for cyclic contraction mappings. Thereafter, various authors obtained many best prox-
imity point results using different types of contractions (see [8, 13, 17, 19] and references
cited therein).

In this paper, we investigate the existence of best proximity points in the context of bi-
normed linear spaces and derive various fixed point results as a result of our observations.
Also, as an application, we give a method for the existence of fractals using the BPP. We
provide some numerical examples to back up our findings.

Throughout this paper, we denote the set of natural numbers and real numbers by N, R re-
spectively, and the set of all nonempty compact subsets of x by C(x).

Now, we recall some definitions to be used in the sequel.

Definition 1.1. [3] Let (x,d) be a metric space. A mapping h: C(x) x C(x) — R, defined
as
h(&1,6,) = max{D(&1,&),D(&,61)}; where D(81,6,) = sup inf d(x,y),
XEE] yeds
is a metric on C()), called the Hausdorff metric h induced by metric d.
Here, it is interesting to note that if (),d) is complete and compact, then (C(x),h) is
also complete and compact.

Definition 1.2. [3] Let I'; :  — x be self maps on a complete metric space (,d) such that
d(Tix,Tiy) < Ld(x,y);l; € [0,1) for all x,y € x. Then the system {) :T;,i=1,2,--- k} is
called iterated function system (IFS).

Definition 1.3. [3] Let (x,d) be a complete metric space and {) : U;,i = 1,2,--- ,k} be IFS.
Then Hutchinson mapping F on C(y) is defined as F (&) = US_ T (&), where T} (&) =
{Ti(c) :c € &1} IFF(A) = A, then A € C()) is called an attractor or a fractal of IFS.

Definition 1.4. [7] A normed vector space ¥ is said to be a uniformly convex Banach space
(UCBS) if for every 0 < € < 2 there is some 0 > 0 such that for any two vectors with ||d|| = 1
and ||e|| = 1, the condition

ld —el| > &,

implies

<1-34.

'd+e

To prove the main result of the paper, we need the following interesting results of [3]
and [9].

Lemma 1.1. [3]If{A;: 1 <i<k}and {B;: 1 <i<k} are two finite collections of subsets
of C(x) for some k € N then

h(Uf?:lAivullc:iBi) < max {h(Ai’Bi)} . (1)
1<i<k
Lemma 1.2. [9] Let &1,&5 be nonempty closed subsets of an UCBS x with & convex. Let

{d,} and { f,} be sequences in & and {e,} be a sequence in & satisfying:
@) /o —enll = d(&1,62),
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(i1) for every € > 0 there exists Ny such that for all m > n > Ny,
Then, for every € > O there exists N| such that for all m > n > Ny,

dn—enH Sd(£1,§2)+8.
dn— full <&

Lemma 1.3. [9] Let &1,&5 be nonempty closed subsets of an UCBS y with & convex. Let
{d,} and {f,} be sequences in & and {e,} be a sequence in & satisfying:
@) [|fu—enl| = d(&1,82),
(i) ||d, —en|| — d(&1,82).
Then ||d, — f,|| converges to zero.

2. Main result
First, we prove an approximation result.

Theorem 2.1. Let & and & be nonempty closed subsets of a metric space () ,d). Suppose
thatT': 5 U &, — & U is an operator fulfilling the following hypotheses:
(%) T(61) C & and T(&) C &,

(%) 0<a<d(u,v) <b<ooimplies d(Tu,I'v) < {,p(d(u,v))+(1—Cup) d(&1,62),
forallue &, ve &, Lyp: [0, — [0,00] is a non-decreasing mapping such that lgn C;’h(s) =
0, 0 < &up(s) <sforeachs >0, and {7, (s) is the nth iterate of Gy .

Ifup € & U& and uyy = Tu, where n € NU{0}, then d(u,,Tu,) — d(81,6).

Proof. Since ug € 61 U&, ug € & or uy € &.
Case (i): Take up € &1. By (1), we have u; =Tug € &. Suppose that d(&1,8,) > 0, then
there exist ug ## 1y and a large integer ng, we get % < d(ug,u1) < ng. Also d(&1,6,) =
inf{d(u,v) :u € &,v € &}, we obtain d(&1,8&) < d(up,u;). Using (%), we have
d(Tuo,Tur) <& jngno (d(uo, 1)) 4 (1= & g ny) d(61,62)
SCl/ng,no (d(uo,ul)) + (1 - Cl/no,n()) d(u07u1)
=d(ug,uy).

Since u; € & by (7)), u =T'u; € &. Again suppose that there exist u; # uy and a large
integer ny, we have % <d(uj,uz) <ny,soby (%),

d(rl’“ 7Fu2) < Cl/no,no (d(ul 7”2)) + (1 - Cl/nmno)d(”l ’ ”2) < d(uhuQ)‘
Continuing this process, we construct the sequences {u,} for a large integer n; such that
d(FMS7F”s—1) < Cl/ns,ns(d(umus—l)) + (1 - Cl/nx,ns)d(uhus—l) < d(”s’us—l)-

Therefore, {d(u,,u,+1)} is a bounded below and non-increasing sequence, so there exists
r > 0 such that

r= r}glgod(un,unﬂ).

Now, we shall prove that r = d (&}, &2). Thus, by contradiction, suppose that r > d (&1, ) >
0. Then, for large N, we obtain

r<d(uyis—1,unts) <r+1, foralls=1,2,---,
which imply by (%) that

d(FuN+571,FMN+S) < Cr,rJrl(d(quLsflauNJrs)) + (1 - Cr,r+l)d(éala£2)7 forall s = 1727 e
2
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Againby (7), we have d(un s 1,un+s) =d(Tun 152, Tuy 1) < Errp1(d(uns—2,uns-1)) +
(1—=Cr1)d(&1,6). Since {41, is non-decreasing mapping, we obtain

Cr,r+l (d(uNJrsfl , MN+S)) < Cr,rJrl (d(MN+572, uNJrsfl) + (1 - Cr,r+l)d(éal>(’?2))' 3)
Put (3) in (2), we have

d(Cuy st Ditns) < Gyt (@lttnss st 1))+ (1= Ey (&1, 52).

Thus, by induction, we get
d(unts,un+si1) < Gppy (d(uy,uni1)) + (1= 81 y)d(61,62), forall s =1,2,- -

Since &, (r+1) — 0ass — oo, d(unts, Un+s+1) — d(E1,62) as s — oo, which implies a
contradiction. This shows that d(u,,u,+1) — d(&1,63).
Case (ii) If ug € &. In Similar way, we obtain

d(un,un+1) — d(gl,(oﬁz).

Next, we prove an existence result for a BPP.

Theorem 2.2. Suppose that all the assumptions of Theorem 2.1 hold. Additionally if uy €
&1, X is complete and {u,} has a convergent subsequence in & then I has a BPP.

Proof. Let {uz,,(s)} be a subsequence of {uy, } which converges to a point u € &). Now

d(ua uZn(s)—l) < d(”? MZH(S)) + d(”Zn(s) s Uon(s)—1 ) “)
Taking n — o in (4), we get

d(”)”Zn(s)fl) - d(éal»@@Z)-
Since d(&1,62) < d(up(s),Tut) < d(upy(s)—1,u). Then I has a BPP. O

Next, we are ready to prove the main result, which gives existence, uniqueness and
convergence for best proximity points in binormed linear space.

Theorem 2.3. Let &,& be nonempty closed subsets of a uniformly convex binormed linear
space (X, ||-|11,]|-|]2) with & convex and ||.||2 < ||.|[1. Suppose that x is complete with
respect to ||.||2 and T : & U & — & U & is an operator fulfilling the following hypotheses:
(%) T(61) C & and T(&) C &,
(%) 0<a<|lu—v||i <b<eoimplies ||Tu—Tv|[; < Cp([lu—v|[1)+(1=Cup) ||E1 — &)1,
forallue &, ve &, Ly 0,00 = [0,00] is a non-decreasing mapping such that r}grolc Copls)=
0,0 < Cup(s) <sforeachs >0, and (", (s) is the nth iterate of {, p.
Ifuy € & and u, | = Tu, where n € N, then T has a unique BPP in & where ||& —

5’2”1 = inf{Hu—le UEB,VE 52}.

Proof. By Theorem 2.1, we have
[u2n — uons1llt = ||61 — &1 and [uzps2 — uani1]1 — [|E1 — &1 5)
Since ¥ is a uniformly convex binormed linear space by Lemma 1.3, we get

|[u2n — upniryllt = 0. (6)
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We now show that for every € > 0 there exists Ny such that for all M > N > Ny, ||uxy —
Tupn||1 < ||61 — &2||1 + € = r1. Suppose not, then, for sufficiently large N and M, we have

ry S Huz(M+S)_Fu2(N+S)H1 S r1+1, forall s = 1,2,“'.

This M can be chosen such that it is the least integer greater than N to satisfy the above
inequality. Now

161 — &1 + € < uapis) — Ttavgs) 1

< ||”2(M+s) —U2(M—1+s) 1+ HMZ(M—H—S) - FMZ(N—H') 1
< Nuo(p4s) — o145 |1 +1161 — &1 + €.

Using (6) and taking s — oo in above inequality we have,
&||1 + €. Consider,

wym+s) — Dlavgg) |11 = 1|61 —

uaar4s) = Tt vrsy L1 <o) — osi 4911+ [2ras1405) = Ttavsi46) 11
+||F”2(N+1+s) - FMZ(N+s)||1
<|uaar+s) — o145 |+ T 145) — Ty L
+8 rilluaprss =Ty i+ (1= 82 )l = &L (D
Taking s — oo in (7) and using (6) we get,

& —&lh+e< &, G —&lh+e)+ (1=, )Ié — &l
= |6 = &I+ & s

which is a contradiction because r21,r1+1(8) =Crr+1(Gr 1 +1(€)) <&y ri11(€) < €. There-
fore, {uz,} is a Cauchy sequence in &} with respect ||.||;. Since ||.||2 < ||.|[1, {u2.} is @
Cauchy sequence in &7 with respect ||.||2. As &) is a closed subset of y, it is a complete
subspace. By the completeness of &1, {u,} converges to a point u in &}, then by Theorem
2.2, we getI"has a BPP, |[u —Tul|, = ||&1 — &|2 in &7.

Next, we have to prove that I" has a unique BPP. Suppose that u,v € & and u # v
such that ||u —Tul|> = ||& — &]||» and ||[v —Tv||> = ||&1 — & ||» where necessarily, [?u = u
and T?v = v. Also, ||u—Tv|[a < |lu—v||+ |6 — &]||2. This shows 0 < [|& — & <
|| —Tv||2 < ||u—v||+ |61 — &||2. Therefore,

T —v|[2 = [[Tu—T2| < |[u—Tv]],.

Similarly, ||Tv — u||2 < ||v — Tu||2, which implies ||T'v — u||2 = ||v — T'u||2. Since ||v —
Tu||2 > ||&1 — &3]|2, this shows ||I'v—u||, < ||v—Tul|2, which is a contradiction. Therefore,
I" has a unique BPP. O

If & = &, = x in Theorem 2.3, we get following FP result:

Corollary 2.1. [6] Assume that T is fulfilling the following assumption:
e 0<a<|lu—v|l; <b<ooimplies ||[Tu—Tv||; < Cup(|lu—v|1),
forallu,v € x, Lyp 1 [0,00] — [0, 0] is non-decreasing a mapping such that lim ", (s) =0,
n—soo ~%
0 < Cup(s) < sforeachs>0, and (", (s) is the nth iterate of (, p.
Ifuy € x and u,\ =Tu, where n € N, then I has a FP.

If & =& =y and {,5(s) =rs;r € (0,1),5 € [0,00) in Theorem 2.3, we get following
FP result:
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Corollary 2.2. [14] Assume that U is fulfilling the following condition:
o [[Tu—TDv||; <rllu—v||1,
forallu,v € x, re (0,1) and uy1 =Tu, where n € N. Then T has a FP.

3. Numerical Illustrations
We give several illustrations that support our findings in this section.

Example 3.1. Consider x =R, define ||.||1,||-||2: x — Ry by

u
lully = lu] and |Jul> = ¥4

2

forallu € x. It is easy to see that ||u||2 < ||ul|1, for all u € x. Suppose & = [—3,—1] and
& = [1,3] are two subsets of X, then ||&1 — &||1 =2 and || &1 — &2||2 = 1. Define a mapping

I':51Ué6 — §U& by
—u+3
—-3,—1
F(u):{ 4 7”6[ ) }

=, ue(1,3]

forallu e & U&. Since |lu—vl||1 € [2,6] that is 2 = a < ||u—v||1 <b = 6. Next, we prove
that I satisfies the following inequality,

[[Tu—Tv|[1 < Cap(|lu—v|[1) + (1= Cap) |61 — &1
forallu e & andv € &. Let {qp(s) = 52535 > 0.

—u+3 —-v-3
Tu—Tvl||; = _
T ] ' 3 '
vV—u 3
<= —|—§:Ca,b(||u—v||1)—|—(1_§u7b)Hgl_éaHl.
It implies
=Tl < Can(le—vl10) + (1= ) 1161 = E2l 1, ®)

forallue &, ve &, and'(&) C &, T(&) C & see Figure 1. Since ||u||x < ||u
u € ), we have

1, for all

|[TCu—Tv||2 < Cap(|lu—v[2) + (1= Cup) |61 — &2

Starting with point uy = 0 € &, we construct a sequence as
Unp1 | U | Uy | Uy | U3 | ug |us | ug | ug
T, |—1|1|—-1]1|—-1]1]-1]1

We found that {us,} has a subsequence (—1,—1,—1,—1,...), which converges to —1. All
the conditions of Theorem 2.3 satisfied, I" has a BPP —1.

Example 3.2. Suppose a two-dimensional real sequence space )y = {» induced with norms

1
21|l = \/ui +vi and |zi]]2 = 7(|M1|+!V1|)

forall z; = (uy,v) € x and

1
é"lz{(o,ul):—Zgulg—z} andéazz (0’1/‘1):
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Right hand side of inequality 6

- Left hand side of inequality 6

FIGURE 1. This graph shows the left and right side of inequality 8

are two subsets of x. Here, ||&1 — &3||1 = 1. Define a mapping T : 6 U& — & U &, by
—utl 2 1
=1 5 tehA
3 > uc [7,2]
If 21,20 € &, 1 =a <||lz1 —z22|| < b =4. Next, we show that I satisfies the following
inequality,
[Tz1 = Tzaf |1 < Capllzr — 22l[1) + (1 = Cap) |11 — &2 1

forallzy € & and 2o € &. Let §yp(s) = ;s > 0. Consider

(b a)’
T2z =Tzl =[[(0,v1) — (0,v2)],
v2—V1+2‘
V2 — V1 2
S| =513 = Sanlllzn—22lln) + (1= Cap) (161 = &1
It shows that T satisfies the following inequality,
ITz1 = Tz2f[1 < Gap(llz1 = 22[[1) + (1= Cap) (|61 — &2 1 ©)

forallzi € 8, 22 € & and T'(&61) C &, I'(&) C &
all u € x, we have

[T —Tvl[2 < Lap([lu—vl[2) + (1= Cap) [|61 = &2

Starting with point ugp = (0, 1) € &1, we construct a sequence as
Up 1 Uo uj uy us uy us Ug

Luy, (07_%) (07%) (07_%) (Ové) (07 1) (Oaé) (07_%)

2
We found that {u2,} has a subsequence ((0,—1),(0,—1),(0,—1),(0,—3),...), which con-
verges to (0,—1). All the conditions of Theorem 2.3 satisfied, I has a (BPP) (0,—1).

1,f0r
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Left hand side of inequality 7

. Right hand side of inequality 7

FIGURE 2. This graph shows the left and right side of inequality 9

4. Application to Fractals

In this section, we present a approach to fractals through (BPP) using contraction
condition. Now, we establish a lemma which is useful to prove our application part.

Lemma 4.1. [2] Let (x,d) be a metric space and &,6, C x with &, # 0. Then, we have
H(C(gl),C(é"z)) = d(fl,éaz), where

&1, = {x € & : there exists some y € & such that d(x,y) = d(&1,63)} and
H(C(&1),C(&)) =inf{h(U",V');U" € C(&) and V' € C(&)} .

Lemma 4.2. Let &,6, € C()) be two subsets of a metric space () ,d). Then

sup inf 3(d(x,y)) < 3(h(41,6)),

XEE
where 3 : [0,00) — [0,0) is a non-decreasing mapping.
Proof. Since &) and &, are compact, there exists y; € &> such that
inf d(x,y) =d(x,y1).

VIE€ES
Then
3(d(x,y1)) =3 (inf d(x,y))
YES
<S(sup inf d(x,y))
XEE YES

=3(D(&1,¢2))
<3 (h(&1,62))-
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Theorem 4.1. Let &), & be subsets of metric space (),d) with &, #0,I': £1U&E — &1UE
be a map such that I'&) C &, I'&, C & and satisfying

0 <a<d(u,v) <b<eoimplies d(Tu,Tv) < & p(d(u,v))+ (1= Cup) d(&1,62), (10)
with respect to & and &, § : [0,00] — [0,0| is a mapping such that lgn {"s)=0,0<
§(s) < s foreach s >0 and {"(s) is the nth iterate of C.

ThenT™ :C(8)UC(&) — C(&1)UC(&) is amap such that T*(C(&1)) CC(&),I*(C(&)) C
C(&)) and satisfying

0<a<h(U,V)<b<ooimpliesdT*U,T"V) < L, (R(U,V))+ (1 —Cup) H(C(61),C(62)),
an
between C(&1) and C(&2) with respect to the Hausdorff metric h.

Proof. Suppose that & and & are closed, so infimum and supremum exist in &1 U&>. There-

fore, inf d(u,v)<d(u,v)< sup d(u,v). Therefore,d(u,v) is bounded, thatis, there
ueé"l,veéaz ueghvegz

exist two real numbers a,b such that 0 < a < d(u,v) < b < oo. We know that a finite union
of compact sets is a compact set. Therefore, C(&7) UC(&) = C(&1U &) is compact. It is a
trivial observation that for all U € C(&7) and V € C(&), then I'*(U) C (V), I'*(V) C (U).
Next we prove that I'* satisfying (11) between C(&7) and C(&2) with respect to the Haus-
dorff metric h. Since C(&1) and C(&;) are compact then max {D(U,V),D(V,U)} exist in
C(&1)UC(&). Therefore, h(U,V) is bounded that is there exist two real numbers a,b such
that 0 < a < h(U,V) < b < oo. Consider

DIT*U,I"V)=D({{Tu:ucU} {IviveV})
=sup inf d(T'u,I'v)

uelU V€V
Silelgvigf(ca,b(d(ua")) + (1= Cap) d(&1,2))
:iggggg(Ca,b(d(”av))) +(1—=Cup) H(C(61),C(&£2)), by Lemma 4.1

<Cap(h(U,V))+ (1= Cap) H(C(1),C(£2)), by Lemma 4.2.
Similarly,
DIV, I'U) < L (h(V,U)) + (1 = Cap) H(C(61),C(&2)).
This shows that
h(T*U,T*V) =max {D(T"*U,T*V),D(I*V,I*U)}
<Cap(h(U,V))+ (1= Cap) H(C(£1),C(62))-
Hence I'™* satisfying (11) between C(&}) and C(&) with respect to the Hausdorff metric

h. d
Theorem 4.2. Let '\, I, - -, Iy be a finite family of mappings such that U;(81) C &,Ti(&3) C
&1 <i<k:keN, satisfying (10), for some {; @ ,Ck(a‘b) respectively with respect to

&1 and & with &, # 0, where G, : [0,00] — [0, 0] is a non-decreasing mapping such that
lim Ci’(’a ) (s)=0,0<G,, (s) <sforeachs>0and C{(‘U ) (s) is the nth iterate of G, .

n—soo

Then F = U*_ T} is a mapping such that F(C(&1)) C (C(&)), F(C(&)) C (C(&)), sat-
isfying (11) between C(&1) and C(&) with respect to the Hausdorff metric h induced by
d.
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Proof. From the construction of F it is immediate that for all U € C(&]) and V € C(&3),
F(U)CV,F(V)CU. Consider

h(FU,FV) =h(U_ iU, U TTV)
< max (U, T*V)

1<i<k
< 1nglzagxk Ci(a,b) (h(U7V)) + (1 - Ctl,b) H(C(£1>7C(£2))
<&up(h(U,V))+ (1= Cap) H(C(&1),C(£2)),
where §; , (s) = maxi<i<k G, ) (5)- u

Now, we are ready to present our result for the existence of best proximity point.

Theorem 4.3. Let &, & be two closed subsets of complete metric space (x,d) with &1, # 0
and T'1,Ty,--- T’y be a finite family of mappings such that T';(&1) C &,I(&) C 61,1 <
i <k:keN, satisfying (10), for some §; @ 7Ck(a‘b) respectively with respect to & and
& where G+ [0,00] — [0,00] is a non-decreasing mapping such that r}grolo Gitury (8) =0,

0 <G, (s) <s for each s > 0 and i) (t) is the nth iterate of Gy, . Then F = Uk s

defined in Theorem 4.2, has a (BPP).

Proof. By Theorem 4.2, F is a mapping such that F(U) C V,F (V) C U and satisfying (11),
forall U € C(&) and V € C(&). Again, since ()x,d) is complete metric space (C(x),h) is
also complete metric space. On the other hand, &7, &5 are closed subsets of y, they are also
complete. Also C(&1)UC(&2) = C(&1U &) is compact subset of C()) thus closed, then it
is complete subspace. By Theorem 2.2, F has a (BPP). g

If we take &1 = &, in Theorem 4.3 then we get following (FP) result:

Corollary 4.1. Let (x,d) be a complete metric space and I'1,I',--- Iy be a finite fam-
ily of mappings satisfying (10), for some @ ka(a.m respectively with respect to ¥,
where G, 1 [0,00] — [0,0] is a non-decreasing mapping such that lim C[Z ” (s) =0 and
" n—oo a,

0 < &i,,(s) <s for each s > 0 and Ci}za,b) (s) is the nth iterate of G, . Then F = Uk Iy
defined in Theorem 4.2, has a attractor.

If we take Ci(aﬁ) (s) = ris where 1 < i <k, for some r; € (0,1),s € [0,c0), then we get
following result:
Corollary 4.2. Let (x,d) be a complete metric space and T'1,I5,--- Ty be a finite family
of mappings satisfying

d(Tu,Iv) <Fd(u,v)+(1—7) d(&,6). (12)
Then F = UX_ T’} defined in Theorem 4.2, has an attractor where r'(s) = max <<k 7i(s).
Example 4.1. Let ¥ =R, be endowed with the metric d : ¥ X X — R defined by
d(u,v) = |u—v|.

Consider

£ =[-05,13] and & — [0, %],
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Graphs of I‘1 u and I‘2 v
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FIGURE 3.

the two compact subsets of . Also d(&1,&) = 0. Take ri(s) = 2 and r(s) = % for all

2
s> 0. DefinelI'|,I5: &5U& — &1 US by
Ty (u) = % and Ta(u) = 1 — %,
forallue & U&E withT'(81) C &,T1(&) C & and Tr(&1) C &,12(82) C &1. Next we
prove that I'1, I, satisfies the (12). If u € & and v € &, then
u v
d(F]M,F1V) :d(z,z)
ju—v|

=—F < < 2d(u v) =ri(d(u,v).

This shows that 'y satisfies the (12). Similarly Iy satisfies the (12). By Corollary 4.2
mapping F = U2_ T} has a unique fractal. If Ay = [0,1], then :

1 3
Ay =1[0,-]U[>,1
2 [074]U[47 ]7
1 313
A3_[07%]U[Zaﬁ]a
1 51 13
A3_[ ,a]U[a7E]7

The first few iterations are shown in Figure 3.

5. Conclusion

We find some novel best proximity point results in binormed linear spaces. Many
known results in the literature are also generalized by our findings. We also discuss an ap-
proach to the existence of fractals through best proximity points as applications.
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