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THE SQUEEZE OF AN IMBIBED SOFT POROUS MEDIA IN 

CONTACT WITH A PLASTIC BODY AT IMPACT LOADING. A 

HEURISTIC MODEL 

Ioan–Cătălin MELCIU1, Mircea D. PASCOVICI2 

Many published studies on the behaviour of imbibed porous materials reveal a 
good potential in shock absorption. This phenomenom studied until now only in contact 

with rigid surfaces is based on a complex process that involves the squeeze of fluid from 

the porous layer at different levels of permeability. This innovative process which is 
strongly dependent on porosity variation, was studied under the name of ex-poro-

hydrodynamic lubrication, and it describes the lift effects produced when highly 

compressible porous layers imbibed with liquids are squeezed. 
The present work proposes a model for the squeeze process of a highly 

compressible porous layer imbibed with liquid interposed between a rigid sphere and a 
plastic body. 

Analytical solutions are analyzed for two loading conditions: constant velocity 

and impact loading. For the first time it was used the "equivalent radius" concept. These 
results can be useful for the shock absorption systems. 

 

Keywords: squeeze, porous structure, XPHD lubrication, spherical contact, 

"equivalent          radius", plastic body 
 

1. Introduction 
 

Hydrodynamic squeeze process (HD) for different configurations has been 

continuously studied since 1950's and now is the subject of the Tribology 

textbooks [1]. 

Also, the squeeze process under elasto–hydrodynamic (EHD) conditions, 

in the case of impact loading was analyzed since 1970's. The papers [2-4] contain 

theoretical and experimental aspects of the EHD impact process. 

During recent years a new lubrication mechanism has been developed. 

This new type of lubrication known as ex–poro–hydrodynamic (XPHD) 

lubrication [5] was studied theoretically and experimentally under impact squeeze 

conditions. The process takes place between a rigid impacting body (cylindrical or 

spherical) and a rigid surface covered with a highly compressible porous layer 

(HCPL) imbibed with liquid [6-11]. The XPHD lubrication process was especially 
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studied at University Politehnica of Bucharest (UPB), but also at M.I.T. [12] and 

City University of New York [13].  

The problem studied in this paper is when the rigid sphere impacting a 

plastic body (ballistic gelatin or plasticine) covered with a HCPL imbibed with 

liquid (Fig.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig.1 Definitions for the impacting ball problem (XPHD regime)  

 

Same configuration is used for live shooting in order to evaluate a ballistic 

protection system such as bullet-resistant vest that protects a human body. The 

protective effect of the HCPL presence has been experimentally investigated in 

several studies. Fig.2a and Fig.2b show the results of some impact tests made by 

Popescu [6] using a steel ball of radius 𝑅 = 20 𝑚𝑚 with a mass 𝑚 = 264 𝑔 by 

free fall from a height 𝐻 = 1 𝑚 (𝑤0 = 4.4 𝑚/𝑠) onto a plastic surface (modeling 

plasticine) covered with an unwoven textile material (Vileda) imbibed with water 

and protected by a thin layer of polyethylene. The presence of HCPL imbibed 

with water reduces the impact force, and thus the penetration depth.  
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Fig.2a The evaluation of damping capacity using footprint left by the sphere [6]  

 

 

 

Fig.2b The penetration depth in the plasticine for unimpregnated (a) and  

impregnated HCPL (b) [6]  
 

The same behaviour happens at ballistic velocities in a similar context. In 

paper [14] are presented the results of ballistic tests performed using a smooth 

bore helium gas gun (Taylor impact test rig), based on a projectile impact 

velocity of 𝑤0 = 244 𝑚/𝑠 and a projectile diameter of 5.6 mm. The test results 

for the ballistic performance of 4 layers of Kevlar and 4 layers of Kevlar 

impregnated with a colloidal shear thickening fluid (STF) are presented in Fig.3.  
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Fig.3 The profile of penetration depth in the ballistic clay witness for the samples with 4 layers of 

Kevlar impregnated with 8 ml of shear thickening fluid and separated by aluminum foils (50 𝜇𝑚 

thickness) – (I), respectively 4-layer dry Kevlar samples – (II) [14]  

 

The main conclusion that can be drawn from the experiments presented 

by Lee [14] is that the impregnated Kevlar fabric with shear thickening fluid 

(STF) decreases drastically the value of the maximum (peak) force.  

In technical literature the majority of theoretical studies consider that the 

porous material is compressed on a hard backing material. Very few studies can 

be found for deformable backing materials. This paper proposes a heuristic model 

to describe the behaviour of a damping structure based on an imbibed porous layer 

in contact with a support plastic body.  

According Kozeny–Carman law for porosity–permeability correlation [15-

16] and using "equivalent radius" concept, it is possible to find closed form 

solutions for squeeze at constant speed and squeeze with impacting load of a soft 

porous media imbibed with liquid in contact with a plastic body.  

 

2.  The heuristic model 
 

To present the heuristic model, Fig. 4 shows the comparative analysis of 

the impact process between a rigid ball of radius, 𝜌𝑖 and a porous material of 

thickness, ℎ0 and porosity, 𝜀0 imbibed with a Newtonian fluid of viscosity, 𝜂, 

placed either on a rigid body (Fig.4a) or on a plastic body (Fig.4b).  

The impact process in the case of placing HCPL on a rigid surface has 

been previously studied, modelled and validated by convincing experimental 

impact tests [6-7].  
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Fig.4 The sphere–on–rigid plane configuration (a) vs. the sphere–on–deformable plane 

configuration (b) simulated by the equivalent sphere method (c)  

 

In the second case when the porous material is placed in contact with a 

plastic body (Fig.4b), the impact process is more complex due to the simultaneous 

deformation of both the porous layer and the plastic body. In this case, the new 

geometric parameters of the footprint in the plastic body are contact radius, 𝑅, and 

penetration depth, 𝑝. From the experimental tests performed in the Department of 

Machine Elements and Tribology in University POLITEHNICA of Bucharest and 

other places [14] can be found that final HCPL thickness, ℎ𝑚𝑓 is higher than in the 

rigid case (ℎ𝑚𝑓 2
> ℎ𝑚𝑓 1

).  

The modelling of the simultaneous deformation process of the porous 

material and the plastic body was not performed. In the proposed heuristic model 
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the plastic body is replaced by a rigid one, and the real impacting ball of mass, 𝑀 

with constant radius, 𝜌𝑖 is equivalent to an imaginary sphere (also rigid) of mass, 𝑀 

and with variable radius, 𝜌 which is increasing during impact (Fig.4c). This 

substitution leads to the same effects of reducing the impact force and increasing 

the final HCPL thickness, ℎ𝑚𝑓 .  

For the quantitative analysis using this heuristic model, a relationship 

between the equivalent radius, 𝜌, and the minimum thickness of HCPL, ℎ𝑚 was 

proposed as:  

                                          𝜌 = 𝜌𝑖 + 𝛼
ℎ0 − ℎ𝑚

ℎ𝑚
                                                       (1) 

where 𝜌𝑖 – the impacting sphere radius, 𝛼 – the complex parameter of the 

equivalent radius and ℎ0 – the initial thickness of the porous layer.   

In dimensionless form, the virtual variable radius, 𝜌̅ can be written under 

this form:   

                                          𝜌̅ = 1 + 𝛼̅
1 − 𝐻𝑚

𝐻𝑚
                                                         (2) 

where 𝜌̅ – the dimensionless equivalent radius (𝜌̅ = 𝜌/𝜌𝑖), 𝛼̅ – the dimensionless 

complex parameter (𝛼̅ = 𝛼/𝜌𝑖) and 𝐻𝑚 – the dimensionless minimum thickness 

of the porous layer,              𝐻𝑚  = ℎ𝑚 /ℎ0.   

This equation along with those related to XPHD modelling will lead to the 

analytical heuristic model proposed in this article. 

The value of the dimensionless complex parameter, 𝛼̅ depends both on the 

structure of HCPL and the fluid involved, as well as the plastic body 

characteristics. The minimum value of the complex parameter (𝛼̅ = 0) 

corresponds to the rigid surface case.   

Fig. 5 presents the variation of the dimensionless equivalent radius in 

function of the dimensionless minimum HCPL thickness, 𝐻𝑚 for different values 

of complex parameter, 𝛼̅. As shown in the graph, equivalent radius increases with 

increasing complex parameter, 𝛼̅ for a given 𝐻𝑚.  
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Fig.5 Variation of the dimensionless equivalent radius, 𝜌̅ function of the dimensionless HCPL 

thickness, 𝐻𝑚   

 

3.  XPHD hypotheses  

 

Ex–poro–hydrodynamic (XPHD) lubrication describes the lifting effect 

produced by the flow of fluid through an extremely compressible porous material 

subjected to compression.  

The flow in the porous layer follows the law of Darcy [17]. Accordingly, 

the pressure gradient in radial direction is proportional to the mean velocity of the 

Newtonian fluid in porous media, 𝑢𝑚:  
 

                                                 
d𝑝

d𝑟
=  −

𝜂

𝜙
𝑢𝑚                                                            (3) 

 

For the sake of simplicity, we define the porous media using compactness 

which is the complement of porosity:  
 

                                                     𝜎 = 1 − 𝜀                                                                (4) 

Assuming that the solid fraction of the porous layer is preserved during 

compaction due to the HCPL thinness, the solid matrix conservation yields to the 

following equation:  
 

                                                   𝜎ℎ = 𝜎0ℎ0                                                                (5) 
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The variation of permeability with deformation/porosity is the most 

important characteristic of porous materials in XPHD lubrication. In this paper as 

well in the previously published studies ([5]-[11], [18]), the local permeability is 

expressed with Kozeny–Carman law [15]: 
 

                                              𝜙 =
𝐷(𝐻 − 𝜎0)3

𝐻𝜎0
2                                                          (6) 

where 𝐷 = 𝑑𝑓
2/16𝑘 is a complex parameter, 𝑘 = 5 ÷ 10 (correction factor 

determined experimentally), 𝑑𝑓 is fibbers diameter and 𝜎0 is the initial 

compactness.  

uring impact process, the thickness of the porous material under 

compression can be expressed with classical parabolic approximation:  
 

                                                       ℎ = ℎ𝑚 +
𝑟2

2𝜌
                                                             (7) 

Changing to dimensionless form, equation (7) take the form:  
 

                                                    𝐻 = 𝐻𝑚 +
𝑥2

𝜌̅
                                                            (8) 

where 𝑥 = 𝑟/√2𝜌𝑖ℎ0 is dimensionless radial coordinate. 

The particular form of equation (8) on the contact surface limit (𝑟 = 𝑅∗ 

and 𝑥 = 𝑋) is:  
 

                                              𝑋2 = (1 − 𝐻𝑚)𝜌̅                                                          (9) 
 

where 𝑋 is the dimensionless contact radius. 

All these hypotheses defining XPHD lubrication were accepted and 

validated experimentally in the previous studies performed in the Department of 

Machine Elements and Tribology in University Politehnica of Bucharest ([5]-

[11]).  

 

4. Analytical solutions 

 

The squeeze process of a soft porous media imbibed with liquid in contact 

with a plastic surface is studied under two loading condition: constant velocity and 

impact loading. Each of them will be presented separately in the following 

sections of the paper. During compression, the axis of the sphere remains parallel 

with the reference plane considered. In the theoretical analysis, dimensionless 

forms have been also used, which makes it easier. 
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4.1 Constant velocity squeeze  
 

The flow conservation equation for a given normal velocity, 𝑤, can be 

expressed function of HCPL properties as:  
 

                                          𝜋𝑟2𝑤 = −2𝜋𝑟
𝜙ℎ

𝜂

d𝑝

d𝑟
                                                    (10) 

Re-arranging the terms, combining equations (5), (6) and (8), and using 

dimensionless pressure, 𝑝̅ = 𝑝𝐷/𝜂𝜌𝑖𝑤, we obtain the following pressure gradient, 

which, in dimensionless form, can be expressed as:   
 

                                       
d𝑝̅

d𝑥
= −

𝜎0
2𝜌̅3𝑥

[𝜌̅(𝐻𝑚 − 𝜎0) + 𝑥2]3
                                          (11) 

 

Assuming zero pressure on the outer edge of the porous layer (𝑝 = 0 for 

𝑥 = 𝑋), after integration and some algebra, the dimensionless pressure distribution 

yields:  

 

                           𝑝̅ =
𝜎0

2𝜌̅

4
{

𝜌̅2

[𝜌̅(𝐻𝑚 − 𝜎0) + 𝑥2]2
−

1

(1 − 𝜎0)2
}                           (12) 

 

Figure 6 presents the pressure distributions during compression for 

different values of complex parameter, 𝛼̅. Increasing the complex parameter, 𝛼̅, 

the maximum pressure decreases strongly and the footprint area extends.  
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Integrating the pressure distribution on the surface of contact, we can 

obtain the dimension lift force for constant velocity at a given deformation:  
 

             𝐹 =
4𝜋𝜂𝜌𝑖

2ℎ0𝑤

𝐷
∫ 𝑝̅𝑥d𝑥

𝑋

0

=
𝜋𝜂𝜌𝑖

2ℎ0𝑤𝜎0
2𝜌̅2

2𝐷(1 − 𝜎0)2

(1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)
                    (13) 

 

Using the "equivalent radius" concept and dimensionless form of the lift 

force, 𝐹̅ = 𝐹𝐷/𝜂𝜌𝑖
2ℎ0𝑤, we get: 

 

                         𝐹̅ =
𝜋𝜎0

2

2(1 − 𝜎0)2
(1 + 𝛼̅

1 − 𝐻𝑚

𝐻𝑚
)

2 (1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)
                             (14) 

 

From equation (14) one can observe that the lift force generated during 

squeezing at any moment defined by compressed layer thickness, 𝐻𝑚, depends on 

the two parameters: the initial compactness, 𝜎0 and the complex parameter, 𝛼̅.  
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Fig.6 Pressure distributions at the contact center for initial compactness, 𝜎0 = 0.05 (𝑎), 

respectively 𝜎0 = 0.1 (𝑏) 
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Fig.7 Variation of the dimensionless lift force, 𝐹̅ for different complex parameters, 𝛼̅  

 

As seen from Fig. 7, the lift force increases with the compression of the 

material, due to the flow resistance that increases and generates high pressures. 

The variation of the lift force is plotted in comparison with the rigid model case 

(𝛼̅ = 0). It is visible on figure that force generated increases with increasing 

complex parameter.  

At the beginning of the compression, the lift force is low, and sharply 

increases after more than half of the compression.  

 

4.2 Squeeze under impact loading 
 

In the case of impact loading, assume that the ball with mass 𝑀 is dropped 
from an initial height onto a porous layer imbibed with liquid. At the initial 
moment of impact the sphere has reached the porous material and begins to 
squeeze the liquid away.  

To obtain the force under impact, one must suppose an infinitesimal time 

step 𝑑𝑡, when the velocity can be supposed as constant. For the analysis of the 

squeeze process under shock conditions the method proposed by Bowden and 

Tabor [19] will be used. It consists of the impulse conservation application:   
 

                                                      𝑀d𝑤 = −𝐹d𝑡                                                           (15) 
 

Using the lift force that was calculated previously − Eq.(13) and re-

arranging the terms, equation (15) can be expressed as: 
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                               d𝑤 = −
𝜋𝜂𝜌𝑖

2ℎ0𝑤𝜎0
2𝜌̅2

2𝑀𝐷(1 − 𝜎0)2

(1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)
d𝑡                                   (16) 

 

 

Noting that 𝑤/ℎ0 = −d𝐻𝑚/d𝑡 and 𝑤 = 𝑤0 for 𝐻𝑚 = 1, the normal 

velocity variation, 𝑤 of the rigid ball with the dropping mass 𝑀, is obtained by 

integration:  
 

                     𝑤 = 𝑤0 +
𝜋𝜂𝜌𝑖

2ℎ0
2𝜎0

2

2𝑀𝐷(1 − 𝜎0)2
𝑓(𝛼)                                           (17) 

 

where 𝑤0 is the speed of the impacting body at contact, and the parametric 

function, 𝑓(𝛼) can be calculated using the expression: 
 

𝑓(𝛼) = {(1 − 𝜎0)2 [1 +
𝛼(1 − 𝜎0)

𝜌𝑖𝜎0
]

2

ln
𝐻𝑚 − 𝜎0

1 − 𝜎0
−

𝛼

𝜌𝑖𝜎0
2 [2𝜎0 +

𝛼

𝜌𝑖
(1 − 4𝜎0)] ln 𝐻𝑚 + 

+(1 − 𝐻𝑚) [2 (1 −
𝛼

𝜌𝑖
) (1 −

2𝛼

𝜌𝑖
) − 𝜎0 (1 −

𝛼

𝜌𝑖
)

2

−
1

2
(1 + 𝐻𝑚) (1 −

𝛼

𝜌𝑖
)

2

+
𝛼2

 𝜌𝑖
2𝐻𝑚𝜎0

]}                                                                               (17𝑎) 

 

Introducing equation (17) into equation (13) and changing to 

dimensionless form, results the variation of the dimensionless impact force, 𝐹̅𝑆, 

function of the thickness of deformed porous layer, 𝐻𝑚 for a given dimensionless 

mass, 𝑀̅ = 𝑀𝐷𝑤0/𝜂𝜌𝑖
2ℎ0

2
:  

  𝐹̅𝑆 =
𝜋𝜎0

2

2(1 − 𝜎0)2
(1 + 𝛼̅

1 − 𝐻𝑚

𝐻𝑚
)

2 (1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)
[1

+
𝜋𝜎0

2

2𝑀̅(1 − 𝜎0)2
𝑓(𝛼̅)]                                                      (18) 

where 𝐹̅𝑆 = 𝐹𝑆𝐷/𝜂𝜌𝑖
2ℎ0𝑤0 is the dimensionless impact load, and the parametric 

function in dimensionless form is expressed as follows:  

𝑓(𝛼̅) = {(1 − 𝜎0)2 [1 +
𝛼̅(1 − 𝜎0)

𝜎0
]

2

ln
𝐻𝑚 − 𝜎0

1 − 𝜎0

−
𝛼̅

𝜎0
2

[2𝜎0 + 𝛼̅(1 − 4𝜎0)] ln 𝐻𝑚 +    
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 +(1 − 𝐻𝑚) [2(1 − 𝛼̅)(1 − 2𝛼̅) −  𝜎0(1 − 𝛼̅)2 −
1

2
(1 + 𝐻𝑚)(1 − 𝛼̅)2

+
𝛼̅2

𝐻𝑚𝜎0
]}                                                                                      (18a) 

By making 𝛼̅ → 0 and 𝛼̅ → 1 in equation (18), the particular forms of the 

impact load equation for considered model yield: 

    𝐹̅𝑆
𝑋𝑃𝐻𝐷

𝛼̅=0
=

𝜋𝜎0
2

2(1 − 𝜎0)2

(1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)
[1 +

𝜋𝜎0
2

2𝑀̅(1 − 𝜎0)2
𝑓0(𝜎0, 𝐻𝑚)]          (19a) 

 

   𝐹̅𝑆
𝑋𝑃𝐻𝐷

𝛼̅=1
=

𝜋𝜎0
2

2(1 − 𝜎0)2

(1 − 𝐻𝑚)2

(𝐻𝑚 − 𝜎0)𝐻𝑚
2 [1 +

𝜋𝜎0
2

2𝑀̅(1 − 𝜎0)2
𝑓1(𝜎0, 𝐻𝑚)]     (19b) 

where:  

    𝑓0(𝜎0, 𝐻𝑚) = (1 − 𝜎0)2 ln
𝐻𝑚 − 𝜎0

1 − 𝜎0
+ (1 − 𝐻𝑚) [2 − 𝜎0 −

1

2
(1 + 𝐻𝑚)] 

 

    𝑓1(𝜎0, 𝐻𝑚) =
1

𝜎0
2

[(1 − 𝜎0)2 ln
𝐻𝑚 − 𝜎0

1 − 𝜎0
− (1 − 2𝜎0) ln 𝐻𝑚 +

(1 − 𝐻𝑚)𝜎0

𝐻𝑚
] 

 

(19c) 

 From equation (18) one can remark that the dimensionless impact force 

at each moment depends on three parameters: initial compactness, 𝜎0, 

dimensionless impulse, 𝑀̅ and dimensionless complex parameter of the equivalent 

radius, 𝛼̅. 

The variation of the dimensionless impact load, 𝐹̅𝑆, function of 

dimensionless thickness, 𝐻𝑚 is represented in Fig. 8 for different values of 

impacting mass, 𝑀̅.  
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Fig.8 Variation of the dimensionless impact force, 𝐹̅𝑆, versus dimensionless layer thickness, 𝐻𝑚 for 

imposed impulse, 𝑀̅ = 0.001 (𝑎) and 𝑀̅ = 0.1 (𝑏)   

 

The variation of impact load, 𝐹̅𝑆, is plotted for different values of initial 

compactness, 𝜎0. A series of two values for dimensionless dropping mass, 𝑀̅ =
0.001, respectively 𝑀̅ = 0.1 covers some probable practical cases for the 

numerical applications.   

A comparative study for different surfaces (rigid vs. plastic–deformable) 

was done in order to establish the best that has the lowest peak force. It can be 

seen that maximum force decreases with increasing of the complex parameter.  

In other words, the more deformable is the contact surface ((𝛼̅ increases), 

the lower is the shock force. At the same time, one can observed that the peak 

force increases with increasing impact mass, 𝑀̅. 

Using this dimensionless analysis, interesting results such as limit–

thickness, 𝐻𝑚𝑓 can be obtained within this investigation. The location of the limit 

thickness for each 𝛼̅ value can be found from the void shock force (𝐹̅𝑆 = 0). This 

equation does not have an analytical solution because of the logarithmic term in 

the force variation. An overview of the numerical solution can be seen in Fig. 9 

and the plot presents clearly that the higher is the complex parameter, the higher is 

the final HCPL thickness, and thus the attenuation effect increases. Thus, one can 

remark that for the dimensionless complex parameter, 𝛼̅ = 1 will rise the final 

minimum thickness, 𝐻𝑚𝑓 with a factor of 3 according to those found 

experimentally by [20]. 
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Fig.9 Variation of the final HCPL thickness function of the initial compactness 

 

5. Conclusions 

 

The squeeze process of a soft porous media imbibed with Newtonian 

liquid in contact with a plastic body was studied analytically under two loading 

conditions: constant velocity and impact loading. 

In the proposed heuristic model the plastic body is replaced by a rigid one, 

and the real impacting ball of mass, 𝑀 with constant radius, 𝜌𝑖 is equivalent to an 

imaginary sphere (also rigid) of mass, 𝑀 and with variable radius, 𝜌 which is 

increasing during impact. This substitution allows an analytical approach in 

XPHD conditions and leads to the notable effects of minimizing the impact force 

and increasing the final HCPL thickness, according to the experimental results.  

For the quantitative determination of the complex parameter, 𝛼̅ used to 

describe the equivalent radius variation for the various HCPL imbibed with 

liquids, as well for the possible plastic bodies, is required a thorough experimental 

research.  

In the absence of the rigorous theoretical solutions, analytical or 

numerical, this approximate modelling can lead to a qualitative understanding 

of the complex processes investigated experimentally in the firing range.  
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Nomenclature 

 
Latin letters 
𝑑𝑓                           – fibber diameter of the HCPL [m] 

𝐷                                     – complex permeability parameter [m2] 

𝐹                                     – lift 

force [N] 

𝐹̅        – dimensionless lift  force, 𝐹̅ = 𝐹𝐷/𝜂𝜌𝑖
2ℎ0𝑤 [–] 

ℎ𝑚                     – minimum thickness of the porous material [m] 

ℎ𝑚𝑓                     – final minimum thickness of the HCPL when 𝑤 = 0 [m] 

𝐻𝑚                     – dimensionless minimum HCPL thickness, 𝐻𝑚 = ℎ𝑚/ℎ0 [–] 

 

𝑘                                   – dimensionless constant in Kozeny–Carman equation [–] 

𝑀                                – mass of impact [kg] 

𝑀̅                      – dimesionless impact load, 𝑀̅ =  𝑀𝐷𝑤0/𝜂 𝜌𝑖
2ℎ0

2
 [–]  

𝑝                             – pressure [Pa], penetration depth [m] 

𝑟                              – radial coordinate [m] 

𝑅                             – contact (footprint) radius [m] 

𝑅∗                               – outer contact radius [m] 

𝑡                            – time [s] 

𝑢𝑚                         – mean fluid velocity [m/s] 

𝑤                           – compression velocity [m/s]  

𝑥                            – dimesionless radial coordinate, 𝑥 = 𝑟/√2𝜌𝑖ℎ0 [–] 

𝑋                                – dimensionless contact radius, 𝑋 = √𝜌̅(1 − 𝐻𝑚) [–] 

 

Greek letters 
𝛼                           – complex parameter of the equivalent radius [m] 

𝛼̅                           – dimensionless complex parameter, 𝛼̅ = 𝛼/𝜌𝑖 [–]  

𝜀                             – porosity [–] 

𝜂                            – viscosity of the fluid [Pa∙s] 

𝜌𝑖                           – sphere radius [m] 

𝜌                                – "equivalent radius" [m] 

𝜌̅                                – dimensionless equivalent radius, 𝜌̅ = 𝜌/𝜌𝑖 [–] 

𝜎                              – compactness [–]  

𝜙                                           
– permeability of the porous layer [m2]  

 

Subscripts 
0                            – initial, value corresponding to undeformed layer 

𝑓                            – final value 

𝑚                                          – value corresponding to mid-plane  

𝑆                              – shock/impact 
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Acronyms 
𝐸𝐻𝐷                            – Elasto–Hydrodynamic 

𝐻𝐶𝑃𝐿                     – Highly Compressible Porous Layer 

𝐻𝐷                                                                                – Hydrodynamic 

𝑆𝑇𝐹                                                                – Shear Thickening Fluid 

𝑋𝑃𝐻𝐷                           – Ex–Poro–Hydrodynamic 
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