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ITERATIVE ALGORITHMS WITH SELF-ADAPTIVE RULE AND
KM METHOD FOR SOLVING SPLIT FIXED POINT PROBLEMS

Lu Zheng', Alexandru Gogoasa?

In this paper, we investigate the split fired point problem regarding pseudo-
contractive operators and demicontractive operators in Hilbert spaces. We propose
an iterative algorithm with self-adaptive rule and the Krasnoselskii-Mann method
for finding a solution of this split problem. The self-adaptive rule does not require
the a priori knowledge of the Lipschitz constant of pseudocontractive operators.
Under several additional conditions, we prove that the presented algorithm con-
verges strongly to a solution of the considered split problem.
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1. Introduction

Let Hy and Hj be two real Hilbert spaces. Let (Hy D)C # () and (Hy D)Q # 0
be two closed convex sets. Let A: Hy — Hs be a linear bounded operator.

(i) SFP: Recall that the split feasibility problem (SFP) is to search an element
ul € Hy such that

ul € C and Au' € Q, (1)

which is a model for the intensity modulated radiation therapy ([4]).
(ii) SFFP: Also, the split fixed point problem (SFFP) is to pursuit an element
ul € Hy such that

u € Fix(¢) and Au € Fix(1)),

where Fix(¢) := {v € C : ¢(v) = v} and Fix(¢)) := {0 € Q : ¥(0) = v} in which
¢: C — Hj and ¢: Q — Hy are two nonlinear operators.

A wide variety of problems can be solved by finding a fixed point of a particular
operator, and algorithms for reckoning such points play a prominent role in a number
of applications [3, 9-11, 15-22, 25, 26, 33]. The SFPP is an extension of the SFP and
of the well-known convex feasibility problem, see Youla [30]. The SFPP investigated
by Censor and Segal [5] involves a class of directed operators which is an important
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class since it includes the orthogonal projections and the subgradient projectors (
see Yu and Yin [31], or Zhan et al. [32]). Moudafi [14] further studied the SFPP
involved in a class of demicontractive operators which properly includes the class of
quasi-nonexpansive mappings and thus that of directed operators. This context is
more desirable for example in fixed point methods related to image recovery where,
in many cases, it is possible to map the set of images possessing a certain property to
the fixed-point set of a nonlinear quasi-nonexpansive operator. The split problems
have been studied extensively in the literature, see ([2, 7, 8, 24, 27-29, 35-37)).

The main purpose of this paper is to study the following SFPP of finding an
element u' € Hy such that

ul € Fix(¢) NFix(¢) and Au' € Fix(z)), (2)

where ¢: Hy — H; and ¢: Hy — Hs are two demicontractive operators and ¢ :
Hy — H; is a Lipschitz pseudocontractive operator. The solution set of (2) is
denoted by €2, namely,

Q= {u' € Hy : u' € Fix(p) NFix(¢) and Au' € Fix(¢)}.
Censor and Segal [5] proposed the following algorithm to solve (2):
uy € Hi, upt1 = ¢(up — nA*(I — ) Auy,),

where ¢ and v are two directed operators and n € (0,2/||A]|?). Moudafi further
proposed in [14], the following algorithm to solve (2):

uo € Hi, vy = up — nA*(I — ) Auy,
Up4+1 = (1 - )\n)vn + )\n(b(vn)y

where ¢ and v are fi-demicontractiveand fo-demicontractive, respectively, n €
(0, %) and A\, € (9,1 — B, — o) for a small enough ¢ > 0. It should be pointed
out that in Algorithm (3), the Krasnoselskii-Mann method ([12, 13]) was applied.

Motivated by the works in this direction, in this paper we investigate the
SFPP (2) involved in a pseudocontractive operator and two demicontractive oper-
ators in Hilbert spaces. We propose an iterative algorithm with self-adaptive rule
and the Krasnoselskii-Mann method for finding a solution of the SFPP (2). The
self-adaptive rule has no need to know a priori the Lipschitz constant of pseudocon-
tractive operators. Under several additional conditions, we prove that the presented
algorithm converges strongly to an element in  provided 2 # ().

3)

2. Preliminaries

Let H be a real Hilbert space. The following equality is well-known in this
setting.
11 = 0)a + 0yl* = (1 = O)l|z[|* + Ollyl* — 61 — O) ||z — yl|*, Yo,y € H,VI €R. (4)

Let I' C H be a nonempty, closed, and convex set. For every point x € H,
there exists a unique nearest point in I', denoted by Pr(z). This point satisfies the
inequality

[Pr(z) =zl < |ly — =f|, vy € T
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The mapping Pr is called the metric projection of H onto I'. The metric
projection Pr is characterized by the fact that Pr(z) € I' and for all z € H,
(x — Pr(z),y — Pr(z)) <0, Vy € I.

In the sequel, we use the following marks:

e “—~ " and “— 7 denote weak convergence and strong convergence, respec-
tively.

o wy(pn) :=={p€ H:Hpn, }72, C{prn}tie, C H with p,, — p(k — 00)}.

Let f: H — H be a nonlinear operator. f is said to be

(i) L-Lipschitz if

1f(z) = f)ll < Lllz —yll, Va,y € H,
where L > 0.

f is said to be L-contractive provided 0 < L < 1, and is called nonexpansive
provided L = 1. It is well-known that the metric projection is nonexpansive.

(ii) o-demicontractive if

(@ = f(a),x —y) 2 58| f(2) — z|?, Yo € H,y € Fix(f),
which is the same as
1f(@) =ylI> < lz—yll® + ol f(z) —z|? v e H,y e Fix(f),

where ¢ € [0,1).

(iii) pseudocontractive if

<l'_f($)_(y_f(y)),l'_y> > 07 \V/ZL',yEH,

which is equivalent to

1f (@) = fWI* < o=yl +lle -y = (f(2) = FW)I?, Yo,y € H.
(iv) demiclosed at the origin if for any sequence {p,} C H and p € H, the
following relation holds:

pn — pand p, — f(pn) = 0 = p € Fix(f).

The following issues have to be emphasized.

e Obviously, between the previous concepts there is the next connextion:
(iv) = (iii) = (ii).

e The class of demicontractive operators is fundamental because many com-
mon types of operators arising is optimization belong to this class, see, for example
Bauschke and Combettes [1].

e We are interested in the class of pseudocontractive operators because of their
relationship with the class of monotone operators ([1, 6]).

Recall that a linear operator g: H — H is said to be 7-strongly positive if

<x,g(:r)> > Tquzv Vo € H,
where 7 > 0. It is known that

1
IT—gll <17, when € (o, ) |

The next property characterizes continuous pseudocontractive operators.
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Lemma 2.1 ([34]). Let h: H — H be a continuous pseudocontractive operator.
Then, I — h is demiclosed at the origin (thus, a nonexpansive operator is also demi-
closed).

The following lemma on the convergence of sequence holds true.

Lemma 2.2 ([23]). Suppose the sequences {r,}, {vn} and {w,} satisfy the following
conditions:

(i) Vn >0, 7, € [0,00), 7 € [0, 1], wy, € R;

(i) D02 g n = 00 and limsup,,_, ., wy, < 0;

(iii) Vn > 0,741 < (1 — vp) 70 + YnWn.

Then lim,,_soo 7 = 0.

3. Main results

In this section, to solve (2), we first state some necessary assumptions and
propose an iterative algorithm. Finally, we demonstrate the strong convergence
of the proposed algorithm. Throughout, suppose that the following conditions are
satisfied:

(C1): Hy and Hy are two real Hilbert spaces;

(C2): A: Hy — Hj is a nonzero bounded linear operator and B: H; — Hj is a
T-strongly positive bounded linear operator;

(C3): ¢: Hi — H; is a f1-demicontractive operator and ¢ : Hy — Hs is a
Bo-demicontractive operator;

(C4): I — ¢ and I — 1) are demiclosed at the origin.

(C5): p: Hy — H; is a w-contractive operator and ¢: H; — H; be an L-Lipschitz
pseudocontractive operator;

(C6): The solution set £ of (2) is nonempty.

(CT): 7 € (0,00), B1 € [0,1), B2 € [0,1), @ € (0,1), L € [1,00), X € (0,1],
0 e (O, 1;/\’31), n € (0, %), we(0,1),0€(0,1), ee (O,%) and v € (0,7/w);

(C8): vn € (0,1)(Vn > 0), limy 00 ¥ = 0 and Y 07 ) vy = 00.

Now, we propose the following algorithm for solving (2).

Algorithm 3.1. Let ug € Hy be an initial point.
Step 1. Assume the current iterate u, is given. Compute

Ty = (1 = Oy, + 0[(1 — Nuy + Ap(uy) — nA*(I — ) Auy)]. (5)
Step 2. Compute
Yn = (1 - %) Tp + %So(zn)a (6)
where
Zpn = (1 - an)xn + an@(xn)a (7)

in which oy, = ep® and k = min{0,1,2,---} such that

anlle(zn) — e(@n)ll < dllzn — 0. (8)
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Step 3. Compute
Un+1 = an/P(Un) + (I - 'YnB)yna (9)
and set n:=n+ 1 and return to Step 1.

Remark 3.1. By condition (C7), we have the inequality 6> < 1—2¢. It implies that
1 —2a, — 62 >0, for all n.

With respect to the well-posedness of this algorithm, the next property holds.

Lemma 3.1. There exists k such that inequality (8) holds, and
)
min{e,l}/} <a, <en>0.

Proof. In fact, if z, = x,,, we can choose k = 0.
Next, we consider the case of z, # x,. In this case, suppose that (8) does not
hold for any k € min{0,1,2,---}, namely,

¥l o(zn) — @(@n)|| > 8|20 — 2p|), for all k> 0. (10)
By (7), we have
2 — @all = anllo(zn) — 2all = ENkH‘P(wn) — zn| (11)
which together with z, # x,, implies that
||‘70(l'n) - xn” > 0. (12)
Combining (10) and (11), we obtain
i l(zn) = @(@n)| > 6llzn — xall = Seu®||p(wn) = wnl|, for all k>0,
which yields that
le(zn) — ()l > dllp(zn) — zn- (13)
Noting that p € (0,1) and ¢ is L-Lipschitz, we have
Jm flo(zn) =@zl = lim [lo(zn) = (zn + en"((an) — 2n))| =0,
—00 k—o00

which together with (13) implies that ||@(z,) — 2| < 0. This is a contradiction
with (12). Hence, there is k such that inequality (8) holds.
Since ¢ is L-Lipschitz, we have

anlle(zn) = @(xn)|| < anLllzn — znl|. (14)
At the same time, from the definition of &, it follows that
“lleen) = @)l > Bllzn =l (15)
From (14) and (15), we have
pbllzn — zall < anLllzn — o0
If z, = zy, then k£ =0 and oy, = €. If 2z, # x, then oy, > %5. O

Next, we prove the following main theorem.
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Theorem 3.1. The sequence {uy,} generated by Algorithm 3.1 converges strongly to
z* = Po(l — B+ vp)x*

Proof. Select ¢* € Q. Then, ¢* = ¢(¢*) = ¢(¢*) and Aq* = ¥ (Aq*). From (9), we
have

[tnt1 = ¢l = llmv(p(un) = p(¢")) + (I = %B)(yn — ¢°) + 1(ve(q") — B(g))]|

< Yv@|un = ¢l + (1= 79)lyn — ¢"[| + ymllve(a™) — B(a™)|-
Applying equality (4), we obtain
* (70 * 2
lyn = a1 = | (1 = S @n = @) + () — 0|
(1 - *) o = "2+ Sl (za) = 0" (17)

(1= = el

20 = @[ = (1 = ) (@0 — ¢°) + an(o(xn) — ¢°)|7
= (1= ap)llzn = ¢*[* + anlle(@n) — ¢*1? (18)
— (1 —an)an|zn — 90(3371)H27

and
120 = o (z) I = [1(1 = an) (@0 — @(20)) + anlp(a) = p(20))]I?
= (1 —an)llzn — o(20)[I” + anlle(zn) — @(z0)| (19)
—an(l —ay)|lzn — ‘P(xn)HQ'
Since ¢ is pseudocontractive,

lp(@n) = a* 11> < llen — ¢ 1 + llzn — ()%, (20)

and
lo(zn) = a* 117 < l2n = @[ + llz0 — (20)II. (21)

Combining (18) and (20), we deduce
2o = ¢*[1* < (1 = an)[len — ¢ [1? = (1 = an)anlzn — ()|
+an(llzn —a*1° + lzn — o(@a)|P) (22)
= llzn = ¢*|I* + agllen — o(an)l.
We can rewrite (7) as
Zn — Tp = ap(@(xn) — xy),

which together with (8) implies that

amlle(an) — @(zn) 1 <
It follows from (19) that
l2n = @(za)l? < (1 = an)llzn — @(2a)l” = an(l = an = 6%) |zn — p(za)[*.  (23)

52||5Un Zn”

o aano(mn) - xn”
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From (21)-(23), we have

I? I

lo(zn) = @1 < llzn — ¢*I° + apllzn — @(za)l* + |20 — ¢(2n)
< llzn = @1 + (1 = an) lzn — o(z0)lI? (24)
— an(1 = 20 — 0%)[|z — () |
On account of (24) and Remark 3.1, it follows that
lo(zn) = ¢*I” < llzn — "I + (1 = an)lzn — @(zn) | (25)
For all n, set
v = (1 = Nup + Ap(uy) — nA* (I — ) Auy,
Take into account (5), we obtain
lzn = q*|1* = llun — ¢ — O(un — )| (26)
= llun = ¢* |1 = 20(un — ", un — va) + 62|t — vy >
Owing to the equality
Un = Vn = Mun = @(un)) + 1A (I — ) Aun,
we receive
(tn = ¢" un = vn) = Mun = ¢*, un = ¢(un)) + n{Aun — Aq", (I = ¥)Aun),  (27)
and
lun = vonl® < (Mlun = ¢(un) |l + 0l AJIIT = ©) Aun]))?

(28)
< 202 Jug — $(un)|I” + 20| AP [[(1 — ) Aun|.
Since ¢ is [f1-demicontractive and ¢* € Fix(¢),
* 1-— 61
(tn = "t = Bun)) >~ |un — $un)|*. (29)
Similarly,
* 1-— 62 2
(Aun — Ag”, (I = ) Aup) 2 —5— (I = ) Aunll%, (30)
because 1 is fo-demicontractive and Ag* € Fix(v)).
Substituting inequality (29) and relation (30) into equality (27), we get
(it — g — ) > AP g T g 61

From (26), (28) and (31), we attain
lzn = ¢*11* < Jun — " [1* = OAL = B1)lun — d(un)||* = On(1 = B2) (I — ©) Auy||?
+ 2022 up — d(un)l|* + 20°0° | AIIP||(1 — ) Auy|®
= [lun — [ = OA(L — B1 — 207) [[un — p(uy)||?
= 0n(1 — B2 — 200 AP — ¥) Aun*.

(32)
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Combining with (17), (25) and (32), we get

[0
lyn = @*I1” < llan = ¢*I° = —*llwn — ¢(zn)
4

< un = g1 = OAL = B1 — 20X)[|up, — (un)|?
2

= On(1 — B2 — 200 AI*)[[(1 — ) Aun||* %len — oz

(33)

In view of (C7), 1 — 31 — 260\ > 0 and 1 — 2 — 20n||A||?> > 0. Tt follows from
(33) that

lyn — ¢ || < lzn — ¢ < [|un — ¢7-

By (16), we have

<[ = (7 —v@)mlllun = ¢l + valvpld”) — Bg")||

=By,

|tnt1 — q" ||
< max{|Ju, — ¢*|, 12242

Using the same inequality repeatedly, we obtain, for any n, that

I llvp(g*)—=B(g™)|l 1.

T—VW

[uns1 =g < max{]uo — g7

Then, the sequence {u,} is bounded.
In light of (9), we have

unt1 = ¢*1I> = (v (p(un) — p(q*) + (I = B)(Yn — ¢, uns1 — ¢%)
+m(vp(q”*) — B(q"), unt1 — ¢7)
< (vmllp(un) = p(@)| + 11 = wBllllyn — ¢ IDllunt1 — ¢
+ M vp(q*) — B(q"), un+1 — q*)
< (vm@|un — ¢ | + (1 = 7)1y — " Dlltn+1 — ||
+ M vp(q*) — B(q"), un+1 — %)

| Zovia® 1 -7 1
lun = @ IF + = llyn = @717 + S llunga = ¢

+ v (vp(q*) — B(q%), unt1 — q7),

<

which yields

[tnt1 — ¢*11> < veoyallun — ¢* 1> + (1= 790) |y — |7 (34)
+ 27 (vp(q”) — B(q"), unt1 — q°)-
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On account of (33) and (34), we obtain

luns1 = ¢*[I* < [ = (7 = v@)ylllun — ¢*|° + (7 = vew)m

— dlu)2
X (= (1 =79m)0A1 - B1 — QQA)W

(2 — ) Aun||?

~ (=T 2l A

2

T — VW

—(1=7v)

(35)

(vp(q*) — B(q"), un+1 — ¢")

).

g e — (2|

4 (T —vw)y,
Put 7, = |luy, — ¢*||* and

[un — p(un)|®
(T - Vw)/yn
(1 — ) Aun|?
(T —vw)y, (36)

wp, =— (1 = 79,)0A(1 — B1 — 20))

— (1= 7)0n(1 — B2 — 20n|| A|]?)
2

T — VW

(vp(q®) — B(q"), unt1 — q°)
(1 = oy @ 0 = ()P
(1 ) 4 (t—vw)y,

We can rewrite (35), for all n > 0, as
T+l < [1 — (T — vw) Y] + (T — voo) ypwn,.

Next, we prove limsup,,_,., w, > —1. If limsup,, ,., w, < —1, then there is a
positive integer m satisfying w, < —1 when n > m. Then, r,1 < r, — (7 — V@),
n > m, which results in

n

Tl < Tm — Z(T — vw)y;.

i=m

Hence, limsup,, .o, "n+1 < —oo which is impossible. Thus, lim sup,,_,., wn >
—1. At the same time, due to (36), we conclude that

2

< * _ B(g* %
wn < ———Ilp(a’) = B lwnss —

which yields that limsup,,_,,, w, < oo.

Next, we prove wy(un) C Q. Pick up @ € wy(uy), which means that there
is {un, } C {u,} satistying u,, — u(k — oo0) and limsup,,_, ., w, = limy_,c Wy, .
Without loss of generality, assume limg_,oo (vp(¢*) — B(q"), tun,+1 —¢") exists. Hence,
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the following limit exists

|unk — d)(unk)H2
(T — vw)yn,

(I — ) Aun, |2

(T = @)y,

lim ( (1= )N = By — 200

k—00

— (1 = 7, )0n(1 — B2 — 260n|| A|]?)

_ (1 — 77, )04772% ||xnk — ‘P(an)”2>
Ny

4 (T —vw)ym,

which yields that

kli)n;o ||unk - (b(unk)” = klgl;o H(I - w)AunkH = kh—>rf>lo H'C[:nk - ‘P(an)H =0.

From (5), we have
which together with (37) implies that

klggo ||xnk - unkH = 0.

By (6),
Qo
||ynk o x”k” < 7k||90(znk) - xnk”

It follows from (37) that

khm [9n, — @n, I = 0.

—00
Taking into account (7) and (8), we have

[2ne = T || < oy () = @(zn) | + anll(2n, ) = @l

< Oflwny = zng [l + any [l o(2ny) = @l
It follows that ||z, — zp, || < %Hgo(znk) — Zp, || and hence
1520 ”an - x”k” = 0.
Combining (37) and (40), we deduce
Jim 20, — pzn,) | = 0.
As v, — 0, from relations (9), (38) and (39), the next relations
[unt1 = un|l = [mvp(un) + (I = 10 B)yn — un|
S Wllp(un) | + 1B yn)ll) + l[yn — unl|

< /Yn(VHp(un)H + HB(yn)H) + Hyn - xn“ + Hxn - Un”
lead to

lim ||u —u = 0.
oo ” ni+1 N H
Noticing that w,, — 4, we obtain

Auy, — AG, and z,, — u.

(37)

(39)

(40)

(41)

(42)
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Therefore,

Uny, = Uy [[tny, = G(uny )| = 0

I — ¢ is demiclosed at the origin

} = 1 € Fix(¢),

Zny, - ﬁ’? ||an - (p(znk)” —0

I — ¢ is demiclosed at the origin

} = 1 € Fix(p),

and
Auy,, — A, |[(I — ) Auy, || = 0
= Au € Fi )
I — 7 is demiclosed at the origin “ ()
So, @ € Q and wy,(uy,) C Q. Since z* = Po(I — B 4+ vp)z* is equivalent to
(I =B+vp)z" —a*y—a") <0(Vy € Q),
we attain

limsup(vp(a®) — B(z"), wns1 — &%) = lim (vp(a™) — B(z"), tny 11 — 7°)
n—00 k—o00 (43)
= (vp(z*) — B(z*), 4 — z*) < 0.
Based on (35), we have

[unt1 = 2*[1P < [1 = (7 = veo)ym]llun — 2*[|? + 29 (vp(a*) — B(z"), ups1 — ).
(44)
Based on (43), (44) and Lemma 2.2, we conclude u,, — z*. O

By considering A as the null operator, we are led to the following algorithm.

Algorithm 3.2. Let ug € Hy be an initial point.
Step 1. Assume the current iterate u, is given. Compute

T = (1 = O)up + 0[(1 — Nuy + Ap(un)].

Step 2. Compute

(6% (6%
Yn = (1 — J)xn + iﬁp(zn%

2 2

where
zn = (1 — an)zy, + anp(zn),
in which oy, = ep® and k = min{0,1,2,---} such that
anlle(zn) — (@n)]| < 020 — @0l

Step 3. Compute upt1 = Yvp(un) + (I — v B)yn. Set n:=n+ 1 and return to
Step 1.

Corollary 3.1. If Q; := Fix(¢) N Fix(¢) # 0, then the sequence {uy,} generated by
Algorithm 3.2 converges strongly to y* = Po,(I — B + vp)(y*).
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4. Conclusion

In this paper we study the SFPP (2) which is an extension of the SFP, as
well as of the well-known convex feasibility problem. Our problem involves in a
pseudocontractive operator and two demicontractive operators in Hilbert spaces.
To solve this problem, we proposed an iterative algorithm with self-adaptive rule
and the Krasnoselskii-Mann method for the computation of a solution of the SFPP
(2). The self-adaptive rule has does not rely on an a priori the Lipschitz constant
of the involved pseudocontractive operators. Under several adequate conditions, we
proved that the presented algorithm converges strongly to an element in €.
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