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PULSATING FLOW THROUGH VERTICAL POROUS
CHANNEL WITH VISCOUS DISSIPATION EFFECT

Samuel O. ADESANYA'!, J. A. FALADE? and O.D. MAKINDE?

This study investigates the effect of viscous dissipation on the pulsatile flow
through a vertical porous channel subjected to periodic heating at the heated
walls. The flow governing equations are transformed into corresponding non-
dimensional form. The dimensionless nonlinear coupled system of partial
differential equations are then reduced to ordinary differential equations.
Approximate solutions in the form of Adomian decomposition method (ADM) are
obtained and the solutions are shown to be convergent. Important properties of the
overall structure of the flow are presented and discussed including skin friction
and Nusselt number.
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1. Introduction

Pulsatile flows has gained considerable attention over the past few decades
due to its extensive applications in many industrial, engineering and physiological
processes. The phenomena occurs in the cooling of electronic components, air-
conditioning, thermal insulation, geothermal systems, flow of urine in the ureter,
movement of spermatozoa’s, blood flow in arterial network and human respiration
to mention just a few. In recent times, a number of significant work have been
done. For instance, in the purely oscillatory case Makinde and Mhone [1]
investigated the radiative heat transfer to oscillatory flow of hydromagnetic heat
absorbing fluid through a channel saturated with porous medium. This study was
extended by Mehmood and Ali [2] by introducing effect of Navier slip at the
interface of the porous wall and the porous walls. Bitla and Iyengar [3] studied the
pulsating flow of an unsteady flow in which a periodic variation in flow velocity is
superimposed on steady velocity.

Eldabe et al [4] presented pulsatile flow behavior of oscillatory hydromagnetic
couple stress fluid without heat transfer. Since the result in [4], there have been a
lot of appreciable work on the pulsatile fluid flow. For instance, Zuecco and Beg
[5] applied the Network numerical simulation to the pulsatile case of the result in
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[4]. In addition, Adesanya and Ayeni [6] extended the pulsatile case examined in
[5] to variable viscous case in which the channel is filled with porous medium.
Similarly, Adesanya and Makinde [7] extended the result in [4] to the thermo-
dynamical case in which the effect of radiative heat transfer to was considered in
the pulsatile fluid flow.

In all the above studies, the effect of viscous dissipation was neglected.
However, as explained by Jha and Ajibade [8], of all fluid properties viscosity is
the most sensitive to temperature changes. This fluid property has a great
influence on viscous dissipation because variation in fluid viscosity due to
temperature may affect the flow characteristics as well as the efficient operation of
industrial machinery where lubrication is important. Motivated by [8], the specific
objective of this paper is to investigate the mixed convective pulsatile fluid flow
through a heated porous channel with time-periodic boundary conditions which
has net been accounted for in the previous models in the literature.

In the rest of the paper, section 2 gives the Mathematical formulation of
the problem including model assumptions and non-dimensionalization. Section 3,
presents the detailed method of solution via the rapidly convergent Adomian
decomposition method. Similar method has been used for nonlinear problems [9]
— [13]. Results are presented and discussed in section 4 while section 5 concludes
the paper

2. Mathematical Analysis

We consider an unsteady flow of a viscous dissipating fluid flow through
infinite vertical plates located at y = +h and subjected to steady-periodic heating.
The x' - axis is taken along the infinite plate and y’ - axis normal to it as shown in
Fig. 1. The flow is acted upon by a pulsatile pressure gradient in the direction of
the flow together with buoyancy forces. The fluid is assumed to be injected with a
certain constant velocity V, on one part of the plate and sucked off with the same

velocity on the other plate. All fluid properties are assumed constant except the
density which varies with temperature.
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Fig. 1: Flow geometry
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The equations governing the forced convective fluid flow can be written as [8]:
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together with appropriate initial-boundary conditions;
Clt,y)=0, T(y,t)=T, t<0 o

u'(t,y)=0, T(y,t)=T,+(T, -T,)Cos(awt") y'=+h t'>0
additional terms in (1) is the pressure gradient and V,, is due suction/injection of

fluid at porous walls. Introducing the following dimensionless parameters and
quantities,
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subject to the boundary conditions
u(0,y)=0, 6(y,t)=0 t<0 )

u(t,y)=0, &(y,t)=1+Cost) y==11t>0
where
Cp — specific heat at constant pressure, 4 - dynamic fluid viscosity, v - kinematic
viscosity, g — acceleration due to gravity, h —channel width, Pr — Prandtl number,
(p, p') — dimensional and dimensionless fluid pressure, (t',t) — dimensional and

dimensionless time, T, — initial fluid temperature, 1,— fluid temperature ,(T, 6? —
dimensional and dimensionless temperature of the fluid, u'- fluid velocity, u —
dimensionless velocity of fluid, U - characteristic velocity, (X',X) dimensional
and dimensionless horizontal component of velocity, f — coefficient of thermal
expansion, K — thermal conductivity, p — density of the fluid, ® — pulsating
frequency, (V,,S) is the dimensional and dimensionless suction/injection
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parameter, Gr is the Grashof number, EC is the Eckert number and Stis the
Strouhal number.

3. Method of Solution

To obtain the solution of the coupled nonlinear equations (4)-(5), we
assume a perturbative solution in the form:

a i i i
P o+ 48", ult.y)= Ay)+ B(y)e", 6(t.y)=F(y)+P(y)e". (6)
and neglecting higher orders. Where A(y) — steady velocity profile, B(y) —
unsteady velocity profile, F(y) — steady temperature profile, P(y) — unsteady

temperature profile and A,, 4, are positive constants.
with (6) in (4) — (5), we have

A(y)-sA(y)=—4,~GrAy);, Az1)=0 (7)
B"(y)-sB'(y)-iStB(y)= -4 -GrP(y); B(x1)=0 )
F(y)-sF(y)=-EdA(y)); Fz1)=1 ©)
P"(y)-sP'(y)-istP(y)=—-2EcA(y)B'(y) P(x1)=1. (10)
Transforming (7) — (10) to integral equations we get
Aly)= jyldAd( )dY+H sA'(Y )= 4, — GrF(y)dYdy (11)
B(y)= jyl dE;(Y dy + j j sB'(Y)— 4, +iStB(Y)—GrP(Y )dYdY (12)
F(y)=1+ ijF dy + H(sF Ec(A(Y)) hvdy (13)

P(y)=1+ jydp dy + j j sP'(Y )+iStP(Y )— 2EcA'(Y)B'(Y))dYdY .  (14)

By ADM [9] —[13], we assume a series solution in the form

=§An(y), )= 3 8,01 (15)

ZF ), P(y) = ZP (16)

using (15) — (16) in the Volterra 1ntegral equations (11) — (14) leads to an iterative
scheme given by
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where the nonlinear terms written as
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are decomposed into Adomian polynomials as follows
Q =(A(Y)
2R (V)A() o0
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and
M, = AL (Y)B;(Y)
M, Y Y
= A(Y)BI(Y)+ A(Y)Bi (Y) o

M, = AV BLIY b+ AV BIY )+ ALY B3 1)

equations (17)-(21) are then coded on a computer symbolic package- mathematica
version 8§ and mathematical expression for the unknown constants are obtained

using the rest boundary conditions at y =1.
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Let us define M to be the truncation point, then the partial sums given by

are the approximate solutions of the coupled system of equations (7)-(10) which
are substituted into the assumed solution (6). Due to large output of the symbolic
series solutions only the graphical results will be presented.

Other parameter of interest includes the skin friction at the heated plates

a 8A oB
Sf = C dt), (23)
and the rate of heat transfer
00 oF OP
Nu :_E —E—ECOS&), (24)
4, Results and Discussion
Table 1:
Convergence result for EC=0,m=5,t=0.1,1=s=Gr=4,=4, =St
ABS. Error ABS. Error
y uEXACT uADOMIAN 0EXACT QADOMIAN
-1 0 0 8.40745%x 10 ~'8 1.995 1.995 4.44089
x10 7"
-0.75 0.585714 0.58624 5.26129%x 10" 1.95208 1.95175 3.34076x107*
-0.5 1.06577 1.06701 1.245290% 1073 1.90692 1.90613 7.92176x107*
-0.25 1.42206 1.42431 2.25663%x107° 1.86734 1.8659 1.43945%x 1072
0 1.62986 1.63349 3.63445%x107° 1.84116 1.83883 233120107
0.25 1.65389 1.65917 5.27784%x107° 1.83585 1.83243 3.42464%x 1073
0.5 1.44332 1.44992 6.59776x 107> 1.85775 1.85338 436695%107°
0.75 0.925758 0.931744 5.98569%x 10> 1.91087 1.9068 4.07589% 107
1 0 0 3.64385%x 10~V 1.995 1.995 0

Table 1 shows the convergence of the solution in the special case whenEc=0.
The accuracy of the solution can be improved by computing more terms, that is,
asnh — 0. To illustrate the effects of fluid parameters of the flow, the following
graphs are presented. Computations were done for A, =4, =1. Figs. 2 represents

the effect of variations in Eckert number on velocity profile. From the plot, it is
observed that an increase in Eckert number has an increasing effect on the
velocity profile. This is due to rise in the kinetic energy due to heat source. Figure
3 shows the effect of Grashof number on velocity profile. The result shows that an
increase in Grashof number increases the velocity profile due to rise in buoyancy
forces. Figure 4 depicts the plot of velocity profile for variations in Strouhal
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number. The result also shows that an increase in the Strouhal number reduces the
flow velocity. This is because as the pulsating frequency increases there is
reduction in the maximum displacement and the flow tends toward a mean steady
state. Similar phenomenon is seen in Figure 5 for the temperature distribution
within the channel. Figure 6 shows that, as Eckert number increases, the fluid
temperature also increases. This is true since additional heat is generated within
the moving fluid as a result of rise in the kinetic energy within the channel. Figure
7 represents the effect of rise in Prandtl number on the fluid temperature. The
results shows that an increase in Prandtl number means decrease in the thermal
conductivity of the fluid. This eventually lowers the fluid temperature within the
channel as observed in the plot. Figures 8 and 9 show the effect of Eckert number
on the fluid flow and temperature distribution respectively. As observed, an
increase in Eckert number enhances the flow and temperature distribution with
increase in time. However, it is observed in Figures 10 and 11, that an increase in
the pulsating frequency parameter lowers the fluid velocity and the temperature.
Figure 12 shows the effect of Eckert number on the skin friction. It is observed
that an increase in Eckert number enhances the skin friction at the suction wall
while it weakens skin friction at the wall with injection. Finally in Figure 13, an
increase in Eckert number is observed to enhance the rate of heat transfer from the
walls to the fluid. However, the rate of heat transfer is observed to decrease along
of the heated plates. This is because as the plate get hotter, the rate of heat transfer
decreases.
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Fig. 2: velocity profile with different values of Eckert number
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Fig. 3: velocity profile with different values of Grashof number
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Fig. 4: velocity profile with different values of Strouhal number
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Fig. 5: Temperature profile with different values of Strouhal number
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Fig. 6: Temperature profile with different values of Eckert number
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Fig. 7: Temperature profile with different values of Prandtl number
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Fig. 8: pulsating velocity profile with different values of Eckert number
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Fig. 9: temperature distribution with different values of Eckert number
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Fig. 10: pulsating velocity profile with different values of Strouhal number
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Fig. 11: temperature distribution with different values of Strouhal number
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Fig. 12: wall skin friction with different values of Eckert number
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Fig. 13: heat transfer rate with different values of Eckert number

5. Conclusion

We have studied the mixed convective flow of pulsatile fluid through a vertical
porous channel with viscous dissipation and time periodic boundary conditions.
Based on oscillatory flow assumption, the coupled partial differential problems
are reduced to couple nonlinear ordinary differential equations. The system of
equations are uncoupled by using Adomian decomposition approach. In the
present analysis, the contributions to knowledge are as follows: An increase in the
Eckert number enhances the fluid temperature and velocity due to additional heat
generated as a result of increase in the kinetic energy of the fluid particles.
Moreover, as Eckert number increases, rate of heat transfer from the walls to the
fluid increases while skin friction increases at the wall with suction on the other
hand it got weakened at the injection wall.
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