
U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 3, 2016 ISSN 1223-7027

NOVEL APPROACHES IN IMPLEMENTING THE
LEGENDRE SPECTRAL-COLLOCATION METHOD USING

THE COMPUTE UNIFIED DEVICE ARCHITECTURE

Dana-Mihaela PETROŞANU1, Alexandru PÎRJAN2

In this paper, we develop and propose a powerful, efficient solution for
numerically solving second order partial differential equations with general
boundary conditions using the spectral discretization of the equations and the
Legendre spectral-collocation method. The developed solution has a multitude of
applications in solving general second order partial differential equations that allow
the separation of variables, with general boundary conditions. The novel aspect of
our research consists in developing and implementing a solving algorithm on the
latest parallel processing architecture, Maxwell, using the latest features of the
Compute Unified Device Architecture Toolkit 6.5, thus obtaining an efficient high
performance solution.

Keywords: partial differential equations, Legendre-Gauss-Lobatto grids, parallel
processing architecture, Compute Unified Device Architecture

1. Introduction

In the last years, the researchers expressed a great and increasing interest
for using parallel computing in computer science and in developing solutions for
solving problems from various fields: economy, biology, chemistry, physics,
mechanics, geospatial information systems, mathematics, medicine, architecture
and many others. The explosive evolution of the hardware and software
architectures potentiated the researches in the above-mentioned fields, facilitating
the development of efficient parallel computing algorithms, implemented on
graphics processing units (GPUs). The new generations of these processors, based
on the Compute Unified Device Architecture (CUDA), offer a huge parallel
processing power at affordable costs, leading to reduced execution times and
tremendous efficiency. Thus, new opportunities and challenges have emerged for
the researches from different fields. Among these, an area that proves to be of
particular interest consists in the study of numerical methods for partial
differential equations, in the development and implementation of algorithms on
CUDA-enabled GPUs [1], [2]. In some of these studies, the numerical Legendre

1 Lecturer, Department of Mathematics-Informatics, University POLITEHNICA of Bucharest,
Romania, e-mail: danap@mathem.pub.ro
2 Lecturer, Department of Informatics, Statistics and Mathematics, The Romanian-American
University, Bucharest, Romania, e-mail: alex@pirjan.com

194 Dana-Mihaela Petroşanu, Alexandru Pîrjan

spectral-collocation method poses a great interest, but none of the works so far (to
our best knowledge) has researched and implemented optimization solutions for
solving equations using the Legendre spectral-collocation method implemented on
the Maxwell architecture.

In this paper, we have first briefly recalled issues regarding the Legendre-
Gauss-Lobatto grids and afterwards, we have analyzed the matrix diagonalization
method, useful for the spectral discretization of the elliptic and parabolic
equations that allow the separation of variables. We have depicted the method and
its applications in solving elliptic bidimensional and tridimensional equations,
with homogeneous Dirichlet boundary conditions. The method can be extended to
more general second order partial differential equations that allow the separation
of variables, with general boundary conditions. As the matrix diagonalization
stage is a high resource consuming process, we have considered of paramount
importance to optimize this step of our computing algorithm by employing the
huge parallel processing power of a CUDA enabled Graphic Processing Unit
(GPU) from the Maxwell architecture and the new features offered by the CUDA
Toolkit 6.5 development environment. Afterwards, we have analyzed the latest
enhancements offered by the Compute Unified Device Architecture (CUDA)
Toolkit 6.5 and finally, using these features, in order to apply the above-
mentioned theory, we have analyzed a particular case of equation.

We have developed two versions of an application that implements the
algorithm for computing the numerical solutions of the considered equation, using
two different approaches: a “classical” approach, based on processing the data
solely on a Central Processing Unit (CPU) and a “novel” hybrid approach, based
on processing the data both on a CPU and on a CUDA enabled GPU from the
latest Maxwell architecture, Nvidia GTX 980, harnessing its huge parallel
processing power. Analyzing the obtained experimental results, we have
concluded that our novel approach for computing the numerical solution of
second order partial differential equations with general boundary conditions is a
high-performance and useful tool.

2. The Legendre-Gauss-Lobatto grids

The Legendre-Gauss-Lobatto grids are of paramount importance in
obtaining numerical solutions of partial differential equations using the nodal
spectral methods approach. The study of the zeros for the orthogonal polynomials
and their derivatives pose a lot of interest in the literature [3], [4]. We address this
subject as it represents the starting point for studying the Legendre-Gauss-Lobatto
grids, generated by the zeros of the Legendre orthogonal polynomials’ derivatives.
The Legendre polynomials are particular cases of the ultraspherical (or

Novel approaches in implementing the Legendre spectral-collocation method using… 195

Gegenbauer) polynomials that are briefly presented below, in order to recall their
definition and main properties.

Considering ߣ ൐ െ ଵ
ଶ
 and ݊ א Գ fixed parameters, the ultraspherical (or

Gegenbauer) polynomials ܥ௡
ሺఒሻof degree ݊ represent the orthogonal polynomials

on the interval ሺെ1,1ሻ, having the weighting function:
ሻݔሺఒሻሺߩ ൌ ሺ1 െ ଶሻఒିభݔ

మ. (1)
For any degree ݊ א Գ, these polynomials satisfy the symmetry relation:

௡ܥ
ሺఒሻሺെݔሻ ൌ ሺെ1ሻ௡ܥ௡

ሺఒሻሺݔሻ for all ݔ א Թ (2)
the differentiation rule:

݀

ݔ݀
௡ܥ

ሺఒሻሺݔሻ ൌ െ1݊ܥߣ2
ሺߣ൅1ሻሺݔሻ for all ݔ א Թ (3)

and are solutions of the linear ordinary differential homogeneous equation of the
second order:

ሺ1 െ "ݕଶሻݔ െ ሺ2ߣ ൅ 1ሻݕݔԢሺݔሻ ൅ ݊ሺ݊ ൅ ሻݔሺݕሻߣ2 ൌ 0. (4)
Using the Rodrigues formula for the orthogonal polynomials [5], the
ultraspherical polynomials can be written as:

௡ܥ
ሺఒሻሺݔሻ ൌ ܽ௡ሺ1 െ ଶሻݔ

భ
మିఒ ௗ೙

ௗ௫೙ ቂሺ1 െ ଶሻ௡ାఒିభݔ
మቃ, where ܽ௡ א Թ (5)

A particular case of the Gegenbauer polynomials is represented by the
Legendre polynomials ௡ܲ, obtained when ൌ ଵ

ଶ
 , therefore ௡ܲ ൌ ௡ܥ

ሺଵ/ଶሻ. In this case,
the weighting function is:

ሻݔሺߩ ൌ 1 (6)
and the Rodrigues formula applied for the Legendre polynomials gives the
following form of the Legendre polynomials:

௡ܲሺݔሻ ൌ ܽ௡
ௗ೙

ௗ௫೙ ሾሺ1 െ ଶሻ௡ሿ, where ܽ௡ݔ א Թ. (7)
Using the Legendre polynomials, one can define now the Legendre-Gauss-

Lobatto (LGL) nodes and grids. For each 0 ൑ ݇ ൑ ݊, ݇ א Գ, the LGL nodes ߦ௞
௡ of

order ݊ are the ሺ݊ ൅ 1ሻ zeros of the polynomial
ሺ1 െ ሻ (8)ݔଶሻܲԢ௡ሺݔ

where ܲԢ௡ is the first derivative of the ݊-th degree Legendre polynomial. We
consider the LGL nodes sorted in an increasing order, ߦ௞

௡ ൏ ௞ାଵߦ
௡ , for each

0 ൑ ݇ ൑ ݊ െ 1. The set of all these nodes,
Γ௡

௅ீ௅ ൌ ሼߦ௞
௡|0 ൑ ݇ ൑ ݊ሽ (9)

represents the LGL grid of order ݊.
For a Γ௡

௅ீ௅ grid, one can compute for every 0 ൑ ݇ ൑ ݊ െ 1, the
corresponding Legendre-Gauss-Lobatto intervals, having in the boundaries two
adjacent LGL nodes, ie:

Δ௞
௡ ൌ ሾߦ௞

௡, ௞ାଵߦ
௡ ሿ ؿ ሾെ1,1ሿ. (10)

of length ݈௞
௡ ൌ ௞ାଵߦ

௡ െ ௞ߦ
௡.

196 Dana-Mihaela Petroşanu, Alexandru Pîrjan

One must remark that the polynomial in the relation (8) has the zeros
଴ߦ

௡ ൌ െ1, ߦ௡
௡ ൌ 1 and ߦ௞

௡ א ሺെ1,1ሻ for 1 ൑ ݇ ൑ ݊ െ 1. (11)
Using the symmetry relation (2), one can easy conclude that the Legendre-

Gauss-Lobatto nodes are symmetric with respect to the origin,
௞ߦ

௡ ൌ െߦ௡ି௞
௡ for 0 ൑ ݇ ൑ ݊.

Therefore, the LGL grids on the ሾെ1,1ሿ interval are symmetric around
zero. If the degree ݊ א Գ of the Legendre polynomial is an even number, then
௡/ଶߦ

௡ ൌ 0 and it represents the middle of the ሾെ1,1ሿ interval. An interesting and
useful result regarding the Δ௞

௡ Legendre-Gauss-Lobatto intervals refers to their
lengths monotonicity. Thus, one can easily prove [6] that the LGL intervals’
lengths ݈௞

௡ are strictly increasing from the boundaries to the center of the
ሾെ1,1ሿ interval.

3. The matrix diagonalization method

In the following, we analyze the matrix diagonalization method, useful for
the spectral discretization of the equations that allow the separation of variables.
We consider an elliptic bidimensional equation, with homogeneous Dirichlet
boundary condition:

൜
ݑܽ െ Δݑ ൌ ଶܦ ݊݅ ݂ ൌ ሺെ1,1ሻ ൈ ሺെ1,1ሻ

డ஽మ|ݑ ൌ 0 . (12)

We denote by Π௡ the space of the polynomials having the degree ݇, 0 ൑
݇ ൑ ݊, by ܣ௡ ൌ ሼܲ א Π௡|ܲሺേ1ሻ ൌ 0ሽ and by ሼݔ௜ ൌ ,௜ݕ ݅ ൌ 0, ݊ሽ the set of
Legendre-Gauss-Lobatto nodes on the ܱݔ and ܱݕ axis. According to the formula
(11) from the previous section, we have ݔ଴ ൌ ଴ݕ ൌ െ1 and ݔ௡ ൌ ௡ݕ ൌ 1.

We now apply the Legendre spectral-collocation method, useful for
obtaining the numerical solution of ordinary differential equations, partial
differential equations and integral equations. We intend to find ݑ௡ א ௡ܣ ൈ ௡ thatܣ
satisfies the equation:

,௜ݔ௡൫ݑܽ ௝൯ݕ െ Δݑ௡൫ݔ௜, ௝൯ݕ ൌ ݂൫ݔ௜, ,௝൯ݕ 1 ൑ ݅, ݆ ൑ ݊ െ 1. (13)
We consider ܮ௝ሺݔሻ א Π௡, the Lagrange polynomials corresponding to

ሼݔ௞, ݇ ൌ 1, ݊ሽ, therefore ܮ௝ሺݔ௜ሻ ൌ δ௜௝, where δ௜௝ is the Kronecker’s delta. We
consider ݑ௡ሺݔ, :ሻ having the formݕ

,ݔ௡ሺݑ ሻݕ ൌ ∑ ,௜ݔ௡ሺݑ ௝ሻ௡ିଵݕ
௜,௝ୀଵ ሻ (14)ݕ௝ሺܮሻݔ௜ሺܮ

By introducing (14) in (13) and denoting:
݉௜௝ ൌ െܮ௝"ሺݔ௜ሻ, ܯ ൌ ሺ݉௜௝ሻଵஸ௜,௝ஸ௡ିଵ

ܷ ൌ ሺݑ௡൫ݔ௜, ௝൯ݕ ൌ ௜௝ሻଵஸ௜,௝ஸ௡ିଵ , (15)ݑ
ܨ ൌ ሺ݂൫ݔ௜, ௝൯ݕ ൌ ௜݂௝ሻଵஸ௜,௝ஸ௡ିଵ

the equation (12) could be written:
ܷܽ ൅ ܷܯ ൅ ்ܯܷ ൌ (16) .ܨ

Novel approaches in implementing the Legendre spectral-collocation method using… 197

In order to highlight the eigenvalues of the matrix ܯ and their corresponding
eigenvectors, we consider the equation:

ܧܯ ൌ Λ, (17)ܧ
where Λ is the matrix that contains on the principal diagonal the eigenvalues
,ଵߣ ,ଶߣ … , is the matrix whose columns are the ܧ while ,ܯ ௡ିଵ of the matrixߣ
corresponding eigenvectors. The values ߣଵ, ,ଶߣ … , ௡ିଵ are all real and positiveߣ
numbers [7].

Considering ܷ in the form:
ܷ ൌ (18) ்ܧܶܧ

and multiplying then in the equation (16) by ିܧଵat the left and by ்ିܧ at the
right, we obtain:

ܽܶ ൅ Λܶ ൅ ܶΛ ൌ ,ܪ where ܪ ൌ (19) ்ିܧܨଵିܧ
 If we write the equation (19) on components, we obtain the equations:

൫ܽ ൅ ௜ߣ ൅ ௝൯ߣ ௜ܶ௝ ൌ ݄௜௝. (20)
Each of these equations contains only the ሺ݅, ݆ሻ component of the unknown

matrix ܶ, thus there are decoupled equations, since the variables do not interact
with each other; each variable can be solved independently, without knowing
anything about the others.

In conclusion, in order to compute the components of the matrix ܷ, one
must first compute the matrices ܯ, ,ܧ ,ଵିܧ ܪ then the matrix ,߉ ൌ from ்ିܧܨଵିܧ
equation (19), then solve the decoupled linear system (20) for obtaining the matrix
ܶ and finally, compute ܷ through the equation (18). This ratiocination represents
the basis for the future development of our numerical computation algorithm for
obtaining the solutions of the previously studied type of equations (but also of
other types) and we will present it in detail later, in the Section 5.
 A similar ratiocination could be used in order to solve an elliptic
tridimensional equation on the domain ܦଷ ൌ ሺെ1,1ሻ ൈ ሺെ1,1ሻ ൈ ሺെ1,1ሻ, with
homogeneous Dirichlet boundary condition:

൜
ݑܽ െ Δݑ ൌ ଷܦ ݊݅ ݂

డ஽య|ݑ ൌ 0 ’ (21)

We obtain the same steps as in the two-dimensional case, the difference being that
all the calculations take place in Թଷ.

Moreover, the above-depicted method could be extended to more general
second order partial differential equations that allow the separation of variables,
with general boundary conditions [8]:

ە
ۖ
۔

ۖ
ሻݔ൫ܽሺۓ ൅ ܾሺݕሻ൯ݑ െ డ

డ௫
ሺߙሺݔሻ డ௨

డ௫
ሻ െ డ

డ௬
ሺߚሺݕሻ డ௨

డ௬
ሻ ൌ ݂ሺݔ, ଶܦ ݊݅ ሻݕ ൌ ሺെ1,1ሻ ൈ ሺെ1,1ሻ

,ݔሺݑଵߙ 1ሻ ൅ ,ݔሺݑଵߚ 1ሻ ൌ ଵ݃ሺݔሻ, ݔ׊ א ሺെ1,1ሻ
,ݔሺݑଶߙ െ1ሻ ൅ ,ݔሺݑଶߚ െ1ሻ ൌ ݃ଶሺݔሻ, ݔ׊ א ሺെ1,1ሻ

,ሺ1ݑଵߛ ሻݕ ൅ ,ሺ1ݑଵߜ ሻݕ ൌ ݄ଵሺݕሻ, ݕ׊ א ሺെ1,1ሻ
,ሺെ1ݑଶߛ ሻݕ ൅ ,ሺെ1ݑଶߜ ሻݕ ൌ ݄ଶሺݕሻ, ݕ׊ א ሺെ1,1ሻ

 (22)

198 Dana-Mihaela Petroşanu, Alexandru Pîrjan

From the computational point of view, the most resource consuming steps
of this algorithm are the ones in which the matrix multiplications are computed, ie
when the matrix ܪ from the equation (19) is computed and later, when computing
ܷ through the equation (18). Therefore, when processing these steps, it is of
paramount importance to employ the huge parallel processing power of the
CUDA enabled GPU and the new features offered by the development
environment CUDA Toolkit 6.5.

4. The latest enhancements offered by the Compute Unified Device
Architecture (CUDA) Toolkit 6.5

The Compute Unified Device Architecture (CUDA) has been developed
by the NVIDIA Company with the intent to create a perfect interaction between a
parallel computing platform and a programming model so that the overall
computing performance is significantly improved by harnessing the computational
power of the Graphic Processing Units (GPUs). The GPUs are no longer restricted
to graphics processing. Along with the introduction of this technology, CUDA
enabled GPUs can be used to perform general-purpose computations. In contrast
with the traditional central processing units (CPUs), the GPU expose a parallel
architecture in which data is processed using thousands of simultaneously
execution threads. In today’s information age many scientists, researchers and
developers use CUDA enabled GPUs in a broad range of applications and
researches from different fields: mathematics, informatics, physics, finance,
medicine, aeronautics etc. The CUDA development environment has been
evolving significantly ever since its first version was launched in 2006 up to the
latest CUDA 6.5 Toolkit from August 2014. This version brings a series of
significant improvements regarding the parallel programming features. In the
following, we briefly recall the main features offered by the CUDA Toolkit 6.5
development environment.

The Unified Memory is a significant feature offered by the CUDA Toolkit
6.5 that allows a software application to access both the CPU’s memory and the
GPU’s memory without having to copy explicitly the data between the host and
the device equipment. Thus, the programming effort of the developer is simplified
because certain steps are automatically processed without the need of explicit
supplementary programming instructions. Before CUDA 6, the CPU’s memory
was distinct from the GPU’s memory, the two memories being separated by the
PCI-Express bus. For sharing data between the two memories, the developers had
to use explicit memory allocation instructions on both the host and the device
along with explicit copy operations. This was a time consuming process for the
programmer that had to program all these steps in order to have access to the data.

Novel approaches in implementing the Legendre spectral-collocation method using… 199

The above-mentioned limitations can be overcome using the Unified
Memory feature leading to a simplified memory management process when
developing software applications that harness the parallel processing power of the
CUDA enabled GPUs. The Unified Memory offers a manageable memory zone
that is shared between the GPU and the CPU, eliminating the need to use explicit
allocation and copy instructions. The Unified Memory can be accessed by the
CPU and by the GPU using a single pointer.

The whole process can be summarized as follows: the system automatically
transfers the data from the Unified Memory between the CPU (the host) and the
GPU (the device). The Unified Memory acts as if it were CPU memory when it
receives data requests from the CPU and acts as GPU memory when the data
requests are made from the GPU. From the programmer’s point of view, the main
advantages that are obtained by using the Unified Memory are:

• The Unified Memory simplifies the process of parallel programming
when developing CUDA applications. Due to the improvements of the
Unified Memory, the programmers are now able to focus directly on
developing parallel CUDA kernels, without wasting time in
programming the details concerning the allocation and copying of
memory within the device equipment.

• By using the Unified Memory, the programming process within the
CUDA Toolkit 6.5 is more flexible and enhances the source code porting
on GPUs when necessary. The Unified Memory makes it easier to access
and manage the memory, to manage complex data structures within the
device.

• The Unified Memory automatically transfers the data between the CPU
and the GPU and offers to the GPU the same level of performance as if
the data had been stored in local memory while providing access to the
globally shared data. All of these new features are possible through
optimizations of the driver and of the CUDA runtime, offering the
possibility of developing the CUDA kernels at a much faster rate than it
had been possible before.

• One of the main objectives that must be targeted when employing the
Unified Memory concept is to harness the whole available bandwidth of
the CUDA streaming multiprocessors.

Another important aspect that must be taken into account for is that are
certain technical scenarios when a CUDA software application that uses streams
and asynchronous memory copies offers a higher degree of performance than a
program that uses solely the Unified Memory. The main cause for this situation
consists in the fact that the CUDA runtime does not have the same amount of
information that the human factor has regarding the data that has to be processed.
In order to successfully tune a CUDA application and obtain an optimum

200 Dana-Mihaela Petroşanu, Alexandru Pîrjan

performance, CUDA developers must use a complex set of tools for improving
the software performance: shared memory management, asynchronous memory
copies, CPU-GPU concurrency etc. A CUDA programmer must look upon the
Unified Memory Concept as an added tool available to improve his parallel
programming activity without neglecting the complex performance enhancing
solutions that the CUDA runtime has to offer.
 The cudaMemcpy() instruction is no longer mandatory but it is still
available to the developer as a powerful optimization tool. Using the new
cudaMallocManaged() instruction the Unified Memory is allocated and one can
share complex data structures between the CPU and the GPU. Therefore, the
CUDA programming can be performed with less effort because the kernel
functions can be coded directly instead of consuming time and resources for
managing the data, for maintaining data duplicates in both the memories of the
host and device equipment. The cudaMemcpy() and cudaMemcypAsync()
instructions are still available to the developer. These functions are extremely
useful for particular problems and can lead to a significant increase in
performance due to the source code’s optimization, but their use is no longer
mandatory. The NVIDIA Company intends to bring subsequent hardware and
software optimizations regarding the flexibility and performance of software
applications that have been developed using the Unified Memory feature. The
company intends to add features regarding data prefetching that stores in advance
the data in the cache memory before the processing operations are needed. The
support for operating systems is also going to be extended offering more
opportunities for broadening the software applications3.

5. Examples and numerical results

In the following, we discuss a particular case of the general equation and
boundary conditions (22), mentioned in the 3rd section,

ە
ۖ
۔

ۖ
ۓ ሺݔ ൅ ݑሻݕ െ డ

డ௫
ቀݔߨ݊݅ݏ డ௨

డ௫
ቁ െ డ

డ௬
ቀܿݕߨݏ݋ డ௨

డ௬
ቁ ൌ

ൌ ݁௫ା௬ ሾሺݔ ൅ ሻݕ െ ߨ cos ݔߨ ൅ ߨ sin ݕߨ െ sin ݔߨ െ cos ଶܦ ݊݅ ሿݕߨ ൌ ሺെ1,1ሻ ൈ ሺെ1,1ሻ
,ݔሺݑ 1ሻ ൌ ݁௫ାଵ, ,ݔሺݑ െ1ሻ ൌ ݁௫ିଵ, ݔ׊ א ሺെ1,1ሻ
,ሺ1ݑ ሻݕ ൌ ݁௬ାଵ, ,ሺെ1ݑ ሻݕ ൌ ݁௬ିଵ, ݕ׊ א ሺെ1,1ሻ

 (23)

We focus now our interest on analyzing the efficiency of the above-
depicted numerical method and therefore, we have chosen the equation (23) as we
already know its analytical solution,

,ݔሺݑ ሻݕ ൌ ݁௫ା௬ ݅݊ ܦଶ ൌ ሺെ1,1ሻ ൈ ሺെ1,1ሻ (24)
Our main purpose is to develop a numerical method, an algorithm for

computing the numerical solution that approximates the analytic one and

3 http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/, accessed on 04.06.2014

Novel approaches in implementing the Legendre spectral-collocation method using… 201

especially to develop implementations of the algorithm that provide maximum
software performance.

In this purpose, we develop two versions of an application and we
implement our algorithm for computing the numerical solutions of the equation
(23), using two different approaches:

• a “classical” approach, based on processing the data solely on a CPU
• a “novel”, hybrid approach, based on processing the data both on a CPU

and on a CUDA enabled GPU, from the latest Maxwell architecture,
Nvidia GTX 980, harnessing its huge parallel processing power.

In order to compute the components of the matrix ܷ from the equation
(18), we have designed the algorithm as to process the steps described in Table 1.

Table 1
The algorithm’s steps and the processing units on which they are implemented

The
step The executed tasks

The processing unit

The “classical”
implementation

The “novel”,
hybrid

implementation
1 Computes the elements of the matrix .ܯ CPU CPU

2 Computes the elements of the
matrices ܧ, ,ଵିܧ CPU GPU .߉

3 Computes the matrix ܪ ൌ from ்ିܧܨଵିܧ
equation (19), using data from Step 2. CPU GPU

4 Solves the decoupled linear system (20) for
obtaining the matrix ܶ. CPU GPU

5 Computes ܷ through the equation (18). CPU GPU

Our implementation on the CPU made use of the BLAS (Basic Linear

Algebra Subprograms) library and on the GPU we have used the corresponding
optimized CUDA Basic Linear Algebra Subroutines (cuBLAS) library. We have
optimized the memory management by using the Unified Memory feature
available in the CUDA Toolkit 6.5 for devices with the Compute Capability of
SM 3.0 and above in 64-bit environments. We have developed and implemented
the CUDA kernel so that it scales according to the input data’s size, offering a
high level of performance on a broad scale, from small sizes up to huge sizes of
the input data, the number of blocks and threads being automatically adjusted and
scaled accordingly. We have employed a load balancing strategy and
decomposition technique in order to increase the parallelism and achieve a higher
throughput.

In the benchmarking, we have used the following hardware and software
configuration: the Intel i7-4770K processor, operating at 3.5 GHz, with 16 GB
(2x8GB) of 1333 MHz, DDR3 dual channel; the Nvidia GeForce GTX 980
graphic card from the latest Maxwell architecture; programming and access to the
GPU used the CUDA toolkit 6.5.19, with the NVIDIA driver version 343.98. In

202 Dana-Mihaela Petroşanu, Alexandru Pîrjan

addition, in order to reduce the external traffic to the GPU, all the processes
related to graphical user interface have been disabled. We have used the Windows
8.1 64-bit operating system.

In both implementations, in order to compute the average execution time
that the processing units spend for computing the execution steps, we have used
the “StopWatchInterface” available in the CUDA Toolkit 6.5. In order to compute
correctly the average execution time, we have implemented separate timers for
each of the tasks. The GPU begins to execute the code while the CPU continues
the execution of the next line code before the GPU has finished, thus the
execution is asynchronous. We have taken into account this fact and so we had to
use the “cudaDeviceSynchronize()“ instruction in order to be sure that all the
execution threads have processed their tasks before timing the event. In this way,
we get a reliable measurement of the execution time.

In Table 2, we present the experimental results obtained by taking different
values for ݊, the maximum degree of the polynomials from the space Π௡
introduced in the Section 3. The value ݊ helps obtaining the cardinal ሺ݊ ൅ 1ሻ of
the set of Legendre-Gauss-Lobatto nodes ሼݔ௜ ൌ ,௜ݕ ݅ ൌ 0, ݊ሽ considered on the ܱݔ
and ܱݕ axis. Each of the 1-10 lines of the table represents an average of 10,000
iterations, computed after having removed the first five results, in order to be sure
that the GPU reaches its maximum clock frequency. The unit of measure is
milliseconds (ms).

Table 2
The average execution time for different values of ࢔

Test
number ࢔

The analyzed case
The execution time
in the “classical”

implementation T1

The execution time in
the “novel” hybrid
implementation T2

1 16 0.043 0.039
2 32 0.061 0.044
3 64 0.095 0.053
4 128 0.113 0.045
5 256 0.275 0.076
6 512 0.659 0.116
7 1024 1.542 0.214
8 2048 2.989 0.315
9 4096 5.33 0.517

10 8192 11.937 1.012

The impact that the values of ݊ has on the average execution time (based

on the results listed in the Table 2) is represented in Fig. 1.

Novel approaches in implementing the Legendre spectral-collocation method using… 203

Fig. 1. The average execution times for different values of n

As we had expected, the average execution time increases with the values

of n, but the performance penalty is more drastically felt in the case of the
“classical” implementation. As the values of ݊ increase, both the values of T1 and
T2 increase, but the value of T2 increases at a much slower pace than T1. Thus,
for ݊ ൌ 8192, ܶ1 ൌ while ܶ2 ݏ݉ 11.937 ൌ In order to highlight the .ݏ݉ 1.012
improvements in software performance brought by our second solution, the
“novel” hybrid implementation, we have also computed and represented the
software improvement ratio, ߙ ൌ ܶ1/ܶ2. The value of this ratio has been
varying in our experimental tests between 1.1 (corresponding to ݊ ൌ 16) and 11.8
(corresponding to ݊ ൌ 8192).

We have prototyped the CUDA kernel functions more efficiently with less
programming effort, by taking advantage of the new Unified Memory feature
available in the CUDA Toolkit 6.5.

6. Conclusions

The matrix diagonalization method and the Legendre spectral-collocation
method are useful for obtaining the numerical solutions of a wide range of
equations. In our research, we have used these methods for solving equations that
allow the separation of variables, with general boundary conditions. The
numerical method and the algorithm based on it have been successfully
implemented using two different approaches.

 The novel aspect of our research consists in developing and implementing
the algorithm on the latest Maxwell architecture using the novel features offered
by the CUDA Toolkit 6.5, thus obtaining an efficient high performance solution.
We have optimized the memory management by using the Unified Memory
concept. We have prototyped the CUDA kernels so that they offer a high level of

204 Dana-Mihaela Petroşanu, Alexandru Pîrjan

performance on a broad scale by automatically adjusting the number of blocks and
threads according to the input data’s size. In order to increase the parallelism and
achieve a higher throughput, we have applied a load balancing strategy and
decomposition technique.

Even if in the literature the Legendre spectral-collocation method poses a
great interest, none of the works so far (to our best knowledge) has researched and
implemented optimization solutions for solving equations using the Legendre
spectral-collocation method on the Maxwell architecture. Analyzing the obtained
experimental results, we can conclude that the Maxwell architecture proves to be a
novel approach for computing the numerical solution of second order partial
differential equations with general boundary conditions.

R E F E R E N C E S

[1]. F. Chen, J. Shen, A GPU Parallelized Spectral Method for Elliptic Equations in Rectangular
Domains, Journal of Computational Physics, Vol. 250, 555-564, 2013.

[2]. T. Takahashi, T. Hamada, GPU-accelerated boundary element method for Helmholtz’
equation in three dimensions, International Journal for Numerical Methods in Engineering,
80(10):1295–1321, July 2009.

[3]. C. Canuto, Stabilization of spectral methods by finite element bubble functions. Comput.
Methods Appl. Mech. Eng. 116, 13–26, 1994.

[4]. C. Canuto, M. A. Hussaini, Quarteroni,, T. Zang, Spectral Methods. Fundamentals in Single
Domains, Springer Verlag, Heidelberg, 2006.

[5]. R. Askey, The 1839 paper on permutations: its relation to the Rodrigues formula and further
developments, in S. Altmann, E. Ortiz, Mathematics and social utopias in France: Olinde
Rodrigues and his times, History of mathematics 28, Providence, R.I.: American
Mathematical Society, 2005.

[6]. K. Jordaan, F.Tookos, Convexity of the zeros of some orthogonal polynomials and related
functions. J. Comput. Appl. Math. 233(3), 2009.

[7]. G. H. Golub, C. F. van Loan, Matrix Computations, 2nd Edition, The John Hopkins
University Press, Baltimore, 1989.

[8]. J. Shen, T. Tang, L. L. Wang. Spectral Methods: Algorithms, Analysis and Applications,
volume 41 of Springer Series in Computational Mathematics, 2011.

