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STUDY OF THE NUMERICAL PHENOMENA MET IN THE
EVALUATION OF THE MAIN PHYSICAL PARAMETERS OF
CCDs BY THE CLASSICAL GRADIENT METHOD

Dan A. IORDACHE!, Paul E. STERIAN?, and Ionel TUNARU?

As it is known, the assignment of the defects and impurities embedded in the
crystalline lattice of the Charge Coupled Devices (CCDs), used as particle
detectors is achieved starting from the values of some physical parameters, mainly
of the: a) difference |E, — E;| between the energies corresponding to the traps and to
the intrinsic Fermi level, respectively, b) the polarization degree of the capture
cross-sections of free electrons and holes, respectively, c) the pre-exponential factor
Dep of the depletion dark current.

In the frame of the classical gradient method, the values of these physical
parameters are found by means of the attraction centers (attractors) of the iterative
procedure. For this reason, the present work aims to study the main features of the
attraction centers (and of some related numerical phenomena) intervening in the
evaluation of the main physical parameters of (the temperature dependence of the
dark current in) CCDs by means of the classical gradient method.

Keywords: charge coupled devices, diffusion and depletion dark current, classical
gradient method, attraction centers (domains and strength levels),
numerical phenomena.

1. Introduction

The use of the Charge Coupled Devices (CCDs) as particle detectors was
examined by the scientific monographs [1], [2]. Their possibilities of
identification of the contaminants and/or defects produced in the CCDs crystalline
lattice were recently examined by us in the frame of the work [3].

The main physical parameters of CCDs [the difference |Ei-E;| between the
trap energy E; and that of the intrinsic Fermi level, E;, and the pre-exponential
factor of the depletion dark current (or its natural logarithm InDep)] which allow
the assignment of the different contaminants and/or defects can be evaluated by
the method of the Dark Current Spectroscopy (DCS) [4], [5], which analyzes the
temperature dependence of the dark current.

The main numerical procedure used to achieve the evaluation of these
physical parameters is that of the classical gradient method [6] - [8].
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In this aim, it was found that the searched physical parameters |E-E;| and
InDep are among the 4 dominant uniqueness parameters describing the
temperature dependence of the dark current in impurified semiconductors [3].

2. Basic Notions of the Gradient Method Procedures

As it is known, the classical gradient method aims to find the values of the
effective uniqueness parameters (described by the column-vector # ), by means of
the minimization of the sum S of weighted squares of the deviations of the
calculated values 7., (uz,5) relative to the corresponding experimental values
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where (7.4 —t'exp,)T is the transposed of the difference of the column-vectors

feale.» Texp. > W is the diagonal matrix of weights, and 5 is the vector of the state

(or process) parameters.

The vector €D of the corrections of the vector i of the uniqueness
parameters in a certain successive approximation (iteration) / is obtained by
means of the minimization condition of the sum S (exact if the functions
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and the deviation vector is defined by the expression: D) = Zc(al)c. ~lexp » )
where Ec(él)a is the column-vector of the calculated values of the test parameters in

the iteration /.
An important feature of the gradient method efficiency is the so-called
relative standard deviation, defined starting from the weighted sum of the

deviations squares (1), by means of the expression:
S(I ) 1 N 2
o(l)= ~ \/ﬁ i§1(t£‘1’3€‘i _texp.i) 3 (6)

where N is the number of the studied (independent) test parameters.
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3. Correspondences between the evolutions in the non-periodic regime
of the damped oscillator and for the Gradient Method Procedures

Starting from the theoretical elements concerning the physics of the over-
damped oscillators [10] (p. 138), the attractors of the oscillators with friction [11]
(p. 186), as well as from the Computational Physics studies of the gradient method
procedure [6] — [8], [9] (pp. 177-183), it is possible to establish some
correspondences between the basic characteristic parameters of the evolutions of
the over-damped mechanical oscillators and those of the gradient method
procedures. The main such correspondences are synthesized in the frame of Table

1 and of the Figures 1 and 2.
Table 1
Correspondences between the evolutions in the non-periodic regime of the damped
oscillators and in the gradient method procedures, respectively

Over-damped mechanical oscillator Gradient method procedures
x (space coordinate) u (uniqueness parameter)
¢ (time) 1 (iteration)
U (potential energy) o (relative standard error)
x (velocity) oulol
As (change of minimized parameters) At (change of the minimized test parameters)
Ax (for 1 time step) oc x 1 .. . .
Au=Coc—oc (for 1 additional iteration)
J 0r/du
X Xeals o
hl:ﬂdit‘: t
X, ol | direction
equil. 1 \
5 uftan‘gent
Accidental fit .
ccidental fi ORI " o o

Fig. 1. Evolution types Fig. 2. Explanation of the local  Fig. 3. Evolution and the poten-
climbing of the standard error hill  tial and standard error hill profile

4. Specific features of the CCDs gradient method problem

The Charge Coupled Devices (CCDs) are complex systems, i.e. their
rigorous (quantum) theoretical description requires the use of a huge number of
(independent) uniqueness parameters (see e.g. [12]). It is possible though to
achieve some numerical descriptions of the complex systems in the limits of the
existing experimental errors using a restricted (finite) number of uniqueness
parameters, called “effective” parameters. In this aim, it is necessary to identify
firstly the dominant uniqueness parameters, the effective ones being the dominant
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parameters that ensure a description of the studied complex system in the limits of
the existing experimental errors.

The choice of the effective uniqueness parameters starts from the most
accurate existing theoretical model of the studied complex system [13], [14]. As it
was found, this “constitutive” theoretical model of the semiconductor materials
involved by CCDs is the rather old, but still the most effective, HSR quantum
model of Hall [15], Shockley and Read [16].

Inside the CCD region depleted of carriers, where n and p << m;, the
rigorous quantum SRH relations (1) and (5) of the work [5] lead to the following
expression of the dark current:

E
. . 3/2
Jdark (T)= Jdiff +T : exp{_ Eg]} “Cp

thhxdepApix n

E,-E;
Zo-thksech{ L
2 k=1

+ pdgn,kj| s (7)

where 7 is the number of contaminant traps types, o is the geometrical average
(/OO i ) of the capture cross-sections of the free electrons and holes,

respectively, and pdg,, is the polarization degree of capture cross-sections
corresponding to traps of type k.

Finally, the depletion dark current [the second term of relation (7)] can be
described by the “global” expression:

. _ E, - E; Egef.
Jdep (T =q 'DeO,dep.eff. -sec h[ : -+ pdgnj 'T3/2 -Cxp[— ;TefoJ B (8)
eff.
where the effective depletion pre-exponential factor is a weighted sum [the
weights being the hyperbolic secant factors: sech(E’k —Ei | pdgn,kj] of the pre-
exponential factors of each type of traps: Deg ., 1 = lxa,q,,A pixnVin kN » 9

2
where Ny is the number of traps of type k in the considered pixel.
E - E

Similarly, the effective value of the hyperbolic secant sech[ + pdgj

off.

. . . E,—FE;
is an weighted average of functions sed{[l{lch+pdg”kj for each trap type, the

corresponding weights being the pre-exponential factors Deg ., , for trap type k.

For |E,— E|| > 0.15 eV, the depletion dark current will be less than 0.8% of
its value for E;, = E;, hence the depletion dark current will become negligible
relative to the diffusion one, and its study will become very difficult or even
practically impossible. For this reason, for the Widenhorn-Bodegom version [5],
[12] of DCS present interest only the very deep level traps, whose energies fulfill
the condition: |E;— E;| < 150 meV.
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Taking into account that the last factor of the expression (2) depends
considerably on the trap type, the effective depletion current pre-exponential
factor is in fact a weighted sum of the pre-exponential factors for each type of
traps: De o,irap k = V2 XdepApixCnVin0kNik (10)
where oy and Ny are the capture cross-section and the number of traps of type & in
the considered pixel. Excepting the pixel area (4yix), the values of the other 5
factors from the expression (5) of the depletion dark current pre-exponential
factor: (1) the size xqep Of the depletion region, (ii) the pre-exponential factor ¢, =
ni'T 3/z-exp(Eg/kT) of the intrinsic carrier concentration #;, (iii) the thermal velocity
Vin (due to its dependence Vi, = [8kT/mm*)]"* on the carrier effective mass), (iv)
the capture cross-sections oy of the carriers of type &, and: (v) the concentration
N of the k-type of traps, are not accurately evaluated, their relative errors have
frequently the magnitude order of 50%.

From relation (3) one finds that the contribution of each type of type & to
the depletion dark current pre-exponential factor is:

De o rap i/ ( XaepApixNix) = V2 conVinow (10"
hence the total depletion dark current pre-exponential factor corresponding to the
studied piXCl is: De-o,dep_pjxg]: Y5 ca ZVth,kO'thkepixel . (1 1)

According to our studies, the most accurate expression of the dark current
(as the sum of the diffusion and depletion dark current) in CCDs is [3]:

E E _E
De(T):T3ex{lnDe0’diff—iﬂJ+ ¥ 2-ex{lnDe()’dep— g’eﬁ']-sech{Etkﬁ+d} (12)
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where: d = pdg, = argtanh——L | = L Zn (13)
o,+0), 2 \op

is the so-called “polarization degree” of the capture cross-sections of electrons
(0,) and holes (o,,), respectively. The accomplished study [17] pointed out the
compatibility of the HSR quantum theoretical model with the -existing
experimental data for CCDs. A thorough examination of the expression (12)
points out the following monotonic decreasing order of the 5 identified “effective”
uniqueness parameters in respect with their relative strength on the dark current
values: (i) the energy gap E, (the strongest), (ii), (iii) the natural logarithms of the

diffusion InDg 4 =InDiff and depletion InDg 4, =InDep dark current (in this

order), (iv) the difference |E-E;| of the energies corresponding to the embedded
traps and to the intrinsic Fermi level, and: (v) the polarization degree d = pdg (of
weakest strength), respectively [3].

Unfortunately, the most important effective parameters for the
identification of the defects and/or contaminants embedded in CCDs are the
weakest strength ones: InDep (see also [17]), |E, -E;| and d = pdg [3]. For this
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reason, the accuracy of these effective parameters evaluation will be carefully
examined by this work.

5. Main features of the classical gradient procedure used to the

evaluation of the basic CCDs physical parameters

Given being the complex character of CCDs, the evaluation of their
physical parameters cannot be achieved by means of deterministic procedurs,
being necessary the use of some successive approximations (iterations)
procedures, as that of the gradient method. In this case, the estimated values will
correspond to the central part of some specific attractors basins [11]. The
identification of these central parts of the attractors basins is achieved using the
least squares principle, minimizing the sum: S = ng,- (ti.cale. —tiex p4)2 (14)

i=
of the weighted sum of the squares of deviations of the calculated values ¢; .4 of
the test parameters (of the dark current and different temperatures, particularly)
relative to the experimental values ¢ .y, (W; is the weight associated to the test
parameter i, where i = 1, 2, ... N).

Unfortunately, the practical use of the classical gradient method is
sometimes hindered or misled by some specific numerical phenomena (instability,
large oscillations, or pseudo-convergence, distortions, respectively) [18] - [22].
For the complex systems with several effective uniqueness parameters (as the
CCDs), the intervening numerical phenomena are considerably more intricate than
for the “mono-parameter” probllems (e.g. the damped oscillator [10], the wave
propagation in ideal media [18], [19], etc.).

For this reason, this work is intended to the examination of the basic
features of the attraction basins for some (CCDs) complex systems with several
effective uniqueness parameters.

5.1. Choice of the zero-order approximations. Study of the structure of
the experimental input data

It is very well known the extremely important role of the zero-order
approximations to avoid the unpleasant numerical phenomena possibly
intervening in the classical gradient method use.

The analysis of the main procedures used to choose the zero-order
approximations corresponding to the numerical study of the temperature
dependence of the dark current in CCDs [the so-called Dark Current Spectroscopy
(DCS) method] points out the presence of 2 different strategies: a) that
considering the whole ensemble of the existing experimental data [4], [5], b) the
works preferring the choices of the zero-order approximations specific to the
particular structure (for each pixel) of the experimental input data.
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The first (general) procedure of the zero-order approximations choice
starts from the overall analysis of the existing available results, defining these
approximations by means of some average values for silicon: InDiff’” = 34.9 [5],
p. 199, InDep® = 19 [5], p. 200, E, = 1.08 eV [4], fig. 2, p. 2557, the value E, =
1.10 eV [4], p. 2556 being probably a rounded version of the previous one. We
will mention also that all our numerical tests of the Sze [23] — Varshni [24]

2
empirical expression: Eg=Egy— O;JFT i (15)
where E,, = 1.1557 [24] ... 1.17 €V [23], a=10"% eV / K x(7.021[24]..4.73[23]), B =

1108 [24] ... 636 K [23], led to considerable disagreements with the experimental
data. As it concerns the difference of energies of the traps and of the intrinsic
Fermi level, respectively: |E; — Ej, the analysis of the numerical results presented
by the synthesis works [25], [26], [3] shows that a reasonable value of the zero-
order approximation is: |E, — E{® ~0.1 eV.

The second procedure of the zero-order approximations choice starts [14]
from the least-squares fits of the temperature dependencies (specific to each pixel)
of the dark current corresponding to the lowest (222... 242 K, field where the
depletion dark current is prevailing) temperatures, and to the highest (272... 292
K, where the diffusion current prevails) ones, the indicated temperatures
corresponding to the experimental studies [5], [12]. One finds [17] that the values
of the zero-order approximations of the main uniqueness parameters can be

evaluated by means of the relations: Eg)) ==sqifr -k » InDeg gify = cqyfy _3'1nfdiﬁ”, (16),
_ 3 = 0
and:  InDeg g, ;cdep—zlanep—ln2, |Et_Ei|( ) E(st,-ﬁr—sdep)~k, 17

where sy, 540 and: cggr, cqe, are the slopes and the ordinates of the crossing
points (intercepts), respectively, of the regression lines (least-squares fits) of the
temperature dependencies of the dark current in the regions of prevalence of the
diffusion, and of the depletion dark current, respectively:

_ 1 _ 1
In Degiffiision prevailence = Cdiff ~Sdiff T InDégepietion prevailene = Cdep_sdep'? , (18)
while fd,ﬁ-, fdep are the average temperatures corresponding to the above indicated

temperature ranges.
One finds [17] that the ratio of the slopes sg,, 54 corresponding to the

depletion and diffusion prevalence, respectively, is: S 2 .(19)
Sdep  1+2|E; —Ej|/ Eg

Given being the energy gap E, of the CCDs semiconductors is the
strongest uniqueness parameter of the temperature dependence of their dark
current, it is possible to find an efficient compromise of the 2 above presented
methods of zero-order approximations choice. In this aim, one observes that
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while: a) the Sze’s limit for silicon: Eg, = 1.17 eV is considerably larger than the
usually accepted values (see e.g. [4]): E; = 1.08+1.10 eV, b) the modulus Eg;, of
the slope of the line joining the points corresponding to the extreme temperatures
(222 and 291 K, for the experimental data [5], [12]) of the plot InDe™ (T) = f (ﬁj
is less than E, (it is practically equal to E, for the diffusion term of the dark
current [first term in equation (1)], but it is considerably less than FE,
(approximately equal to E,/2) for the depletion term [the second one in (1)], so
that the average value can be used successfully as a zero-order approximation of

1
the energy gap: E g)) =Eg dve = 5 (E g0,5z¢ T Eg.Lin ) (20)

together with other “general” zero-order approximations (see above).

5.2. Numerical regularities intervening in the successive approximations
provided by the classical gradient method for the evaluation of the main
parameters of CCDs

This work studies the experimental data concerning the temperature
dependence of the dark current in CCDs reported in the frame of the works [5]
and [12]. Given being the approximately exponential rise of the dark current with
temperature [see relation (7)], the values of the dark current at the lowest studied
temperatures (222 and 232 K) are very small and the corresponding evaluation
errors are rather high. That is why our numerical results refer to the sets of the
dark currents corresponding to the highest 6 temperatures studied by the works

[5], [12] (between 242 and 291 K), and to the sets for all the 8 studied

temperatures (from 222 to 291 K).

From the huge amount of obtained numerical data, we selected and we
present in the frame of the Table 2 below the found numerical regularities

referring to the ratios of the successive relative standard errors o) for the sets of

studied temperatures, and of the deviations D) of the calculated dark current for
some of the studied temperatures from the corresponding experimental values
[12].

Table 2

Calculated ratios of the successive relative standard errors o) for some pixels [12] and sets

of studied temperatures, and of deviations DU of the calculated dark current from the
experimental value, respectively

Pixel o(I)/ o(I +1)for 31; 247 29; 88
Iitfnrna} 222 291K | 252 291K o)/ o(l+1) D(I)/ D(I+1) D(I)/ D(I+1)
252..291 K for 232 K for 291 K
1 1.309 1.300 2.723 2.731 2.720
2 1.287 1.286 2.728 2.741 2.723
3 1.287 1.286 2.744 2.740 2.731
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4 1.287 1.286 2.789 2.732 2.751

5 1.288 1.287 2.920 2.749 2.810

6 1.289 1.287 3.330 2.817 2.979

7 1.290 1.288 4.886 3.081 3.515

8 1.291 1.289 4.941 4.492 5.753

9 1.292 1.290 1.0123 -5.733 422.984

10 1.294 1.292 1.0009252 -3.941 - 0.0658

11 1.295 1.293 1.00002024 0.378 1.08456

12 1.297 1.295 1.0000005399 1.098317 0.98708

13 1.299 1.297 1.0000000246 0.9835195 1.002218
14 1.300 1.300 0.99999999827 1.00285946 0.9996161
15 1.300 1.303 1.000000000232 0.99950476 1.00006653
16 1.300 1.305 0.9999999999629 1.00008583 0.99998847
17 1.291 1.308 1.000000000006524 0.99998512 1.000001998
18 1.277 1.311 0.9999999999988699 1.0000025779 0.9999996537
19 1.254 1.314 1.000000000000195 0.999999553 1.00000006001

The obtained numerical data synthesized by Table 2 point out a new numerical
phenomenon: the first 2 figures of the ratios of successive standard errors o(7)/o(I +1)

and deviations D(/)/D(I+1) of the calculated dark current for some of the studied

temperatures from the corresponding experimental values, respectively, are common for
the first figures, for the first iterations. Concerning the newly found numerical
phenomenon, we can underline that its mechanism can probably be explained by means
of the method of “transfer coefficients” (see e.g. [18], [19]), but its implementation will
be considerably more difficult due to the multiple (independent) uniqueness parameters
corresponding to this application.

By means of the above finding, it is possible to define the upper limit of the 7, of
this property (see Table 3). Similarly, it is possible to define the center /., of the
steepest descent zone, as the value of the iteration / coresponding to the largest value of
the ratio o(/)/o(I +1). Finally, we can define the limits of the attractor’s neighborhood

region and of the attractor’s central zone by means of the integers lueigns., Lcens-, as the
nearest to the values Ino(/)=-15—->0(1)~0223=223% and Inoc(/)=-4.0—

o(1)~0.0183=1.83%. In order to be possible to understand better the meaning of these

notions, Table 3 below indicates the values of these 4 indices for the pixels and
temperature ranges presented by Table 2.

Table 3

Values of indices lin, lseep, In @and I, for the pixels and sets of studied temperatures
Pixel o(I)/ o(I +1)for 31;247 29; 88

Lue | 222..291K | 252..291K o(l)/o(I+1) D(I)/ D(I+1) D(I)/ D(I +1)

252...291 K for 232 K for 291 K

Ilin. 13 13 4 4 5

Lsseep. 15 23 7; 8 9 9
Lycighp. 21 21 8 2 - (never reached)

- (never -

y p— reached) 30 ~10 4..5 - (never reached)
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The above defined parameters allow to divide the attractor’s space along the
gradient procedure trajectory in 4 regions:
L. The far linear (in Inc) = exponential (in o) regions of the attractor’s

basin, between #® and i#Ulim) where the last two vectors correspond to the

ensembles of uniqueness parameters for the zero-order approximation and for the
“limit” iteration with 2 common figures of the studied ratios,

I1. The steepest descent region, between ulim) and i Uneighb.) ,

—Lneighb.) —(1
u e and u( centr.z.) ,

I).

1. The attractor’s neighborhood region, between

IV. The attractor’s central zone, between u Ucenr.z) and lim
[—x

5.3. Descent of the relative standard error well (pit) in the frame of the
successive approximations (iterations) of the classical gradient method used
for the evaluation of the main parameters of CCDs

Given being the already reported results, we consider as the most suitable
representation of the standard error well descent — the plot Ino = () . To illustrate

the above presented considerations, as well as to illustrate with some examples
the typical evolutions of the classical gradient method procedure applied to the
evaluation of the basic parameters of the temperature dependence of the dark
current in CCDs, figures 4 and 5 below indicate the plots Ino = £(I) for the pixels

31,247; 61, 140 and 121, 200, respectively.

Fig. 4 illustrates the 4 main regions of the attractor’s space, along the
direction of the gradient method procedure, for the versions of high accuracy
(processing of the experimental results for the 6 higher temperatures: 242...291
K) and of lower accuracy (the above plot), of the classical evolution regime I of
an over-damped oscillator (see fig. 1). Fig. 5 presents both the local climbing of
the standard error hill (regime II) by means of the Ino = f(I) plot corresponding to

pixel 121, 200 (for the 6 higher temperatures 242...291 K), as well as the apparent
“relaxation” (regime III) after an accidental fit of the lowest level of the standard
error. We have to mention also that: (i) the plot a) from figure 5 involves
additionally multiple oscillations, as effect of the several freedom degrees
(described by E,, InDiff; InDep and |E; — Ej|, (i1) the bottom of the standard error
well can be determined more accurately by means of the method of damped
gradient method (see e.g. [8]), which corrects the relation (3) by the introduction —
in the zone of the studied pit bottom — of an attenuation factor 4 (less than 1)

— = nT = 7 =/ nT —
suitably chosen: C(I)z—i(J(]) 'W~J(1)J T . pD, 3
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Fig. 4. Descent of the standard error wrell (pif)
for the pixel 31, 247 and the ensembles of
2 temperatures 222 . 291 K (abowe) and
6 temperatures 242 . 291 K (helow)

Fig. 5.a) Local climbings of the standard ervor hall
(for pixel 121, 200 at T = 242 . 201 K, plot matked
by 0, b Accidental (helow) identification of the
standard error pit bottom (pixel &1, 140, all 8
temperatures, symbol &), followed by relavation

6. Study of the strength levels of attractors

Given being the following study will meet different types of typical
numerical phenomena: a) Instability (symbol Inst.), b) Pseudo-Convergence
(symbol Ps.), c) Oscillations (symbol Osc.), and — of course: d) the Convergence
towards some specific (with physical meaning) attractors, denoted in terms of
their strength: (i) VS (very strong), (ii) S (strong), (iii) MS (medium-strong), (iv)
M (medium), (v) MW (medium-weak), (vi) W (weak), (vii) VW (very weak) and
(viii) VVW (extremely weak), we will present below in figure 6 the typical
appearance of these phenomena in the uniqueness parameters evaluation by the
gradient method procedure (see also [17]).

AULE-E)

INSTABILITY

N

Zy(ero order appmximallous a
hof uniqueness parameters)

OSCILLATION

PSEUDD—CDNVERGENCE

Domain of
hysical meaning
D Sigmificant
! 1(Dey, W) TP ATTRACTORS
Stable OF DIFFERENT
STRENGTH
LEVELS

Uy (InDifr)

» U, (InDep)
UNIQUENESS PARAMETERS

3(Eg)

Fig. 6. Main types of numerical phenomena met in the evaluation of the uniqueness parameters by
the gradient method
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Given being that the usual single precision corresponds to 7 decimal places
(for a 32-bit word machine [11], p. 23), it is possible to define the strength levels
of an attractor relative to a certain uniqueness parameter by means of the number
of common first decimals for several neighbor zero-order approximations: 7
common first decimals (VS), 6 (S), 5 (MS), 4 (M), 3 (MW), 2 (W), 1 (VW), 0 but
a certain weak convergence (VVW). Of course, the general attractor’s strength
level will be its strength level relative to the weakest studied uniqueness
parameters, i.e. relative to |E; — Ej| for the charge coupled devices.

Taking into account that: a) the effective energy gap E, .y is the strongest
uniqueness parameter intervening in the description of the temperature
dependence of CCDs dark current [see e.g. (12)], b) the most efficient zero-order
approximation of this parameter is given by the average value Eg 4. , calculated
by means of relation (20), starting from the Sze’s general estimation E, s.. and the
so-called linear approximation Eg;;, (specific to each pixel), we will define the
required successive neighbor zero-order approximations by means of the integer
m=1{-10,-8,-6,-4,-2,0,2,4,6,8,10} and of the relation:

Eg)) (m)= Eg,Ave +%(Eg,Sze _Eg,Ave) . (21)

In this manner, the study of the attractors strength levels becomes possible
for all pixels, and we will select — by means of Tables 4 ...7 - only few, but most

significant, particular examples.
Table 4
Final results concerning the values of the uniqueness parameters Eg, InDiff, InDep and |E; -
Ei| by means of the classical gradient method (for the experimental data see [5] and [12])

Coordi- | E, 0-order Numerical
nates of | Approxi- | Eg.; (eV) InDiff InDep |E,— El, phenomenon &
the pixel | mation m meV Attractor
-10 0.580869* | 9.402933* | 39.026176* | 381.94396* Pseudo-
-8 0.564653* | 8.573753* | 40.444841* | 414.60294* convergence
-6 1.072556 | 31.079047 17.52459 28.92168
-4 1.072556 | 31.079047 17.52459 28.92168
61, 140 2 1.072556 | 31079047 | 17.52459 | 28.92168 Very strong
0 1.072556 | 31.079047 17.52459 28.92168 attractor
2 1.072556 | 31.079047 17.52459 28.92168
4 1.072556 | 31.079047 17.52459 28.92168
6;8 & 10 | Instability starting from iteration 4 (m = 6) and 2 (m = 8 and 10), respectively
-10 1.067221 [ 30.865956 | 15.540974 1331129
-8 1.067238 | 30.866604 | 15.567840 12.93887
-6 1.067272 | 30.867992 | 15.659601 13.543185 | Weak attractor;
-4 1.067263 | 30.867633 15.630247 | 13.350595 additionally,
121,200 -2 1.067251 | 30.867136 | 15596534 | 13.128485 medium
0 1.067257 | 30.867372 | 15.611681 13.22839 amplitude
2 1.067259 | 30.867458 | 15.617526 13.2669 oscillations
4;6;8; 10 Instability starting from iteration 4 (m = 4) and 2 (m = 6; 8 and 10),
respectively
-10 1.074871 | 31.172302 | 15917362 | 11.094875 | Extremely Weak
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-3 1.075900 | 31.212400 | 16.033195 9.955040 attractor;
-6 1.075840 | 31.210004 | 16.349191 6.748465 Additionally,
-4 1.075873 | 31.211324 | 16.765059 8.779725 large amplitude
241, 320 -2 1.075894 | 31212169 15.976038 9.669870 oscillations
0 1.075681 | 31.203713 | 15.338220 6.802035
2 1.075685 | 31.203874 | 15.336640 6.792465
4;6;8; 10 Instability starting from iteration 3 (m = 4) and 2 (m = 6; 8 and 10),
respectively
-10 0.587015* | 10.54143* | 44.932172* | 406.37874* Pseudo-
convergence
-8 Instability starting from iteration 9
-6 0.574936* | 9.935104* | 45.115503* | 472.32972* Pseudo-
31, 247 convergence
-4 1.190187* | 35.636207 19.734559 9.742655 Extremely Weak
2 1.190174* | 35.635711 | 19.830541 10.175875 pseudo-
0 1.190169* | 35.635528 | 19.859227 | 10.302720 attractor;
2 1.190204* | 35.636852 | 19.641657 9.317010 additionally,
4 1.190280* | 35.639586 | 19.217493 | 7.276885 | large amplitude
6 1.190267* | 35.639176 | 19.303182 | 7.692265 oscillations
8; 10 Instability starting from iteration 2

Finally, a last question: could be possible to predict the convergence behavior of
the gradient method procedure for the existing set of experimental data De™ = f(T)

corresponding to a certain pixel? Obviously, the efficiency of the classical gradient
method procedures depends on the accuracy of the chosen set of zero (0) -order
approximations. That is why our analysis (see Table 5) will start from the 0-order
approximations provided by the structures of experimental data [see relations (16)-(19)].
We have to mention that we found [17] the values of the effective uniqueness
parameters of the 20 studied CCDs pixels as located inside the intervals:
Eg =1.048..1.11eV, In Diff =30.19...32.36, InDep=14.59...19.41 and |E; —E; |=6.8...454¢V .

As it concerns the zero-order approximations, it is expected to be sometimes even outside
these intervals, but not too much (for £, and InDiff, especially).

The symbols of the attractors’ strength levels are indicated by bold characters in
the last column of Table 5, while the atypical values of the zero-order approximations
provided by the experimental data structure [relations (16)-(19)] are underlined.

Table 5
Main parameters of the structure of the considered set of experimental data and the
numerical phenomena intervening in the classical gradient procedure of evaluation
of the main parameters of CCDs

. 0 0 Successive (m1)

sudied | Ehe | Sy [sdep | 1nDigr® | mpep® | 1E1 ~E1C] onergene

pixel (eV) meV behaviors
41,120 1.0754 1.0948 31.2582 35.0979 443.8277 Inst., Pseudo-conv.
61, 140 1.0951 1.8344 29.7980 16.2707 46.7512 Ps; VS; Inst.
81, 160 1.0573 1.6633 30.6121 19.5750 107.015 Ps; MW, Inst.
101, 180 1.0825 1.7172 31.6006 18.9916 89.1394 W
121, 200 1.0634 1.5713 30.8481 21.4230 145.0874 W
141, 220 1.0730 1.8727 31.2196 16.2769 36.4761 Ps; W, Inst.
161, 240 1.0833 1.6352 31.6390 20.5334 120.8284 Ps; Inst.; VS; Inst.
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181, 260 1.0817 1.7283 31.5467 18.7122 85.0232 Ps; W; Inst.
201, 280 1.0667 1.7984 31.0414 18.1095 59.7857 Ps; Inst.; MW; Inst.
221, 300 1.0801 1.9380 31.5415 16.1143 17.2792 Ps; MS; Inst.
241, 320 1.0647 1.5424 30.9015 22.1473 157.1197 VVW; Inst.
261, 340 1.0725 1.6102 31.2647 21.6275 129.8126 Ps; Inst.; Ps; Inst.
281, 360 1.0534 1.7251 30.5313 19.0919 83.9176 Ps; VS; Inst.
301, 380 1.0122 1.62016 28.9163 19.5766 118.6561 Ps; Inst.
321, 400 1.1261 1.6477 33.3843 20.8546 120.3996 Inst.; MW; Inst.
341, 420 1.0234 1.5826 29.3075 20.5133 134.943 Inst.; Ps; Inst.
29, 88 1.0950 1.6684 32.1206 20.8211 108.801 Ps; MS; Inst.
31,247 0.9894 1.6873 27.9587 18.0671 91.6646 Ps; Inst.; Ps; Inst.
161, 289 1.1384 1.1654 33.7624 34.1341 407.632 W
188,471 1.0888 1.7897 31.8896 17.6422 63.9686 S

The analysis of the results synthesized by Table 5 points out that: a) the
chosen definitions ensure a rather uniform distribution of the 20 CCD pixels
indicated by work [12] over the attractors’ strength levels: 3 very strong attractors
(pixels 61, 140; 161, 240 and 281, 360), one strong attractor (pixel 188, 471), 2
medium-strong (29, 88 and 221, 300), 3 MW (81, 160; 201, 280 and 321, 400), 5
weak (101, 180; 121, 200; 141, 220; 181, 260 and 161, 289), one VVW (241,
320), 4 pseudo-convergence cases (261, 340; 301, 380; 341, 420 and 31, 247) and
a set of experimental data leading to instability (that of pixel 41, 120); b) though
there is a sure co-relation between the atypical values of certain zero-order
approximations and the pseudo-convergence or instability of the gradient method
iterative process, sometimes a set of atypical values of the zero-order
approximations can equilibrate the computation system leading to some (of
course, weak or very weak) physical attractors (see e.g. pixels 161, 289 or even
321, 400); c) if the knowledge of the contaminants and/or defects embedded by
the crystalline lattice if a certain pixel is important, but the structure of the first
measurements (e.g. [12]) leads to pseudo-convergence of instability, it is
necessary to repeat these measurements. The criterion of an accurate structure of
the new set of experimental data is to find the inclusion of the zero-order
approximations calculated by means of relations (16)-(19) in the already found
intervals (see above and [17]).

Conclusions

This work studied the main features of the classical gradient procedure for
some complex (with a huge number of uniqueness parameters) physical system,
i.e. for some particle detectors as the charge coupled devices (CCDs). It was
found that:

a) the effective (i.e. dominant parameters, used to reduce the number of the
studied uniqueness parameters to a level allowing efficient computation
procedures) uniqueness parameters have slightly, but different values than their
corresponding physical parameters; e.g. while: (i) the physical energy gap E, is
temperature dependent, its associate effective parameter E,.; is temperature
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independent, (ii) the physical difference of energies of a certain trap (£;) and of
the intrinsic Fermi level (£)): |E;— Ei corresponds to a given contaminant or lattice
defect, its effective parameter |E; — Ej|; could be (if the studied pixel involves
more than one type of traps) an average over the different types of involved traps,

b) the first iterations of the gradient method procedure present usually a
monotonic (in arithmetic progression) decrease of the logarithm of the standard
error Ino, i.e. a new numerical phenomenon, identified by this work,

¢) using the newly found numerical phenomenon, it was possible to define
the main domains of each attraction center (attractor): (i) the linear (in Ino, or
exponential in the standard error o) field, (i1) the steepest descent region of the
standard error well (pit): Ino = f(1), (iii) the attractor’s central zone (for no < -

4), (iv) the attractor’s neighborhood [for Ino e (-1.5;,-4)],

d) there were defined and determined for the sets of experimental data
concerning the temperature dependence of the dark current corresponding to the
20 studied CCDs pixels [17] the attractors strength levels relative to: (i) each
effective uniqueness parameter, (ii) a studied pixel. Given being that these
strength levels are strongly related to the accuracy of the uniqueness parameters
evaluation, their knowledge (and eventual improvement, by new measurements)
seems to be essential for accurate assignments of the contaminants and/or defects
embedded in the crystalline lattice of the pixels of certain particle detectors, as
the charge coupled devices (CCDs) [3].
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