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STUDY OF THE NUMERICAL PHENOMENA MET IN THE 
EVALUATION OF THE MAIN PHYSICAL PARAMETERS OF 

CCDS BY THE CLASSICAL GRADIENT METHOD  

Dan A. IORDACHE1, Paul E. STERIAN2, and Ionel TUNARU3 

As it is known, the assignment of the defects and impurities embedded in the 
crystalline lattice of  the Charge Coupled Devices (CCDs), used as particle 
detectors is achieved starting from the values of some physical parameters, mainly 
of the: a) difference |Et – Ei| between the energies corresponding to the traps and to 
the intrinsic Fermi level, respectively, b) the polarization degree of the capture 
cross-sections of free electrons and holes, respectively, c) the pre-exponential factor 
Dep of the depletion dark current.  

In the frame of the classical gradient method, the values of these physical 
parameters are found by means of the attraction centers (attractors) of the iterative 
procedure. For this reason, the present work aims to study the main features of the 
attraction centers (and of some related numerical phenomena) intervening in the 
evaluation of the main physical parameters of (the temperature dependence of the 
dark current in) CCDs by means of the classical gradient method. 

 
Keywords: charge coupled devices, diffusion and depletion dark current, classical 

gradient method, attraction centers (domains and strength levels), 
numerical phenomena. 

1. Introduction  

The use of the Charge Coupled Devices (CCDs) as particle detectors was 
examined by the scientific monographs [1], [2]. Their possibilities of 
identification of the contaminants and/or defects produced in the CCDs crystalline 
lattice were recently examined by us in the frame of the work [3]. 

The main physical parameters of CCDs [the difference |Et-Ei| between the 
trap energy Et and that of the intrinsic Fermi level, Ei, and the pre-exponential 
factor of the depletion dark current (or its natural logarithm lnDep)] which allow 
the assignment of the different contaminants and/or defects can be evaluated by 
the method of the Dark Current Spectroscopy (DCS) [4], [5], which analyzes the 
temperature dependence of the dark current. 

The main numerical procedure used to achieve the evaluation of these 
physical parameters is that of the classical gradient method [6] - [8]. 
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In this aim, it was found that the searched physical parameters |Et-Ei| and 
lnDep are among the 4 dominant uniqueness parameters describing the 
temperature dependence of the dark current in impurified semiconductors [3].  

2. Basic Notions of the Gradient Method Procedures 

 As it is known, the classical gradient method aims to find the values of the 
effective uniqueness parameters (described by the column-vector u ), by means of 
the minimization of the sum S of weighted squares of the deviations of the 
calculated values ),( sutcalc  relative to the corresponding experimental values 
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and the deviation vector is defined by the expression: exp
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where )(
.

I
calct  is the column-vector of the calculated values of the test parameters in 

the iteration I. 
An important feature of the gradient method efficiency is the so-called 

relative standard deviation, defined starting from the weighted sum of the 
deviations squares (1), by means of the expression: 
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where N is the number of the studied (independent) test parameters. 
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3. Correspondences between the evolutions in the non-periodic regime 
of the damped oscillator and for the Gradient Method Procedures 

Starting from the theoretical elements concerning the physics of the over-
damped oscillators [10] (p. 138), the attractors of the oscillators with friction [11] 
(p. 186), as well as from the Computational Physics studies of the gradient method 
procedure [6] – [8], [9] (pp. 177-183), it is possible to establish some 
correspondences between the basic characteristic parameters of the evolutions of 
the over-damped mechanical oscillators and those of the gradient method 
procedures. The main such correspondences are synthesized in the frame of Table 
1 and of the Figures 1 and 2. 

Table 1 
Correspondences between the evolutions in the non-periodic regime of the damped 

oscillators and in the gradient method procedures, respectively 
Over-damped mechanical oscillator Gradient method procedures 

x (space coordinate) u (uniqueness parameter) 
t (time) I (iteration) 

U (potential energy) σ (relative standard error) 
x  (velocity) Iu ∂∂ /  

sΔ  (change of minimized parameters) τΔ  (change of the minimized test parameters) 
xΔ  (for 1 time step) x∝   

uJ
Cu

∂∂
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τ
 (for 1 additional iteration) 

 
 
 

 
 
 
 
 

 
 

                                                     
                                                                                                          

  

4. Specific features of the CCDs gradient method problem 

The Charge Coupled Devices (CCDs) are complex systems, i.e. their 
rigorous (quantum) theoretical description requires the use of a huge number of 
(independent) uniqueness parameters (see e.g. [12]). It is possible though to 
achieve some numerical descriptions of the complex systems in the limits of the 
existing experimental errors using a restricted (finite) number of uniqueness 
parameters, called “effective” parameters. In this aim, it is necessary to identify 
firstly the dominant uniqueness parameters, the effective ones being the dominant 
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parameters that ensure a description of the studied complex system in the limits of 
the existing experimental errors. 

The choice of the effective uniqueness parameters starts from the most 
accurate existing theoretical model of the studied complex system [13], [14]. As it 
was found, this “constitutive” theoretical model of the semiconductor materials 
involved by CCDs is the rather old, but still the most effective, HSR quantum 
model of Hall [15], Shockley and Read [16].  
 Inside the CCD region depleted of carriers, where n and p << ni, the 
rigorous quantum SRH relations (1) and (5) of the work [5] lead to the following 
expression of the dark current: 
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where n is the number of contaminant traps types, kσ  is the geometrical average 

( pknkσσ ) of the capture cross-sections of the free electrons and holes, 
respectively, and pdgn,k is the polarization degree of capture cross-sections 
corresponding to traps of type k. 
 Finally, the depletion dark current [the second term of relation (7)] can be 
described by the “global” expression:  
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where the effective depletion pre-exponential factor is a weighted sum [the 
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where Ntk is the number of traps of type k in the considered pixel.  
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corresponding weights being the pre-exponential factors −
ktrapDe ,0  for trap type k. 

 For |Et – Ei| > 0.15 eV, the depletion dark current will be less than 0.8% of 
its value for Et = Ei, hence the depletion dark current will become negligible 
relative to the diffusion one, and its study will become very difficult or even 
practically impossible. For this reason, for the Widenhorn-Bodegom version [5], 
[12] of DCS present interest only the very deep level traps, whose energies fulfill 
the condition: |Et – Ei| ≤ 150 meV.  
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 Taking into account that the last factor of the expression (2) depends 
considerably on the trap type, the effective depletion current pre-exponential 
factor is in fact a weighted sum of the pre-exponential factors for each type of 
traps:         De-

0,trap k = ½ xdepApixcnVthσkNtk ,        (10) 
where σk and Ntk are the capture cross-section and the number of traps of type k in 
the considered pixel. Excepting the pixel area (Apix), the values of the other 5 
factors from the expression (5) of the depletion dark current pre-exponential 
factor: (i) the size xdep of the depletion region, (ii) the pre-exponential factor cn = 
ni·T-3/2·exp(Eg/kT) of the intrinsic carrier concentration ni, (iii) the thermal velocity 
Vth  (due to its dependence Vth = [8kT/(π·m*)]1/2 on the carrier effective mass), (iv) 
the capture cross-sections σk of the carriers of type k, and: (v) the concentration 
Ntk of the k-type of traps, are not accurately evaluated, their relative errors have 
frequently the magnitude order of 50%.  
 From relation (3) one finds that the contribution of each type of type k to 
the depletion dark current pre-exponential factor is: 
                  De-

0,trap k/( xdepApixNtk) = ½ cnVthσk  ,      (10’)  
hence the total depletion dark current pre-exponential factor corresponding to the 
studied pixel is:                De-

0,dep.pixel = ½ cn ΣVth,kσkNtk∈pixel .       (11) 
According to our studies, the most accurate expression of the dark current 

(as the sum of the diffusion and depletion dark current) in CCDs is [3]: 
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is the so-called “polarization degree” of the capture cross-sections of electrons 
(σn) and holes (σp), respectively. The accomplished study [17] pointed out the 
compatibility of the HSR quantum theoretical model with the existing 
experimental data for CCDs. A thorough examination of the expression (12) 
points out the following monotonic decreasing order of the 5 identified “effective” 
uniqueness parameters in respect with their relative strength on the dark current 
values: (i) the energy gap Eg (the strongest), (ii), (iii) the natural logarithms of the 
diffusion DiffD diff lnln .,0 ≡−  and depletion DepD dep lnln .,0 ≡−  dark current (in this  
order), (iv) the difference |Et-Ei| of the energies corresponding to the embedded 
traps and to the intrinsic Fermi level, and: (v) the polarization degree d ≡ pdg (of 
weakest strength), respectively [3]. 
 Unfortunately, the most important effective parameters for the 
identification of the defects and/or contaminants embedded in CCDs are the 
weakest strength ones: lnDep (see also [17]), |Et -Ei| and d ≡ pdg [3]. For this 
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reason, the accuracy of these effective parameters evaluation will be carefully 
examined by this work. 
 

5. Main features of the classical gradient procedure used to the 
evaluation of the basic CCDs physical parameters 

 Given being the complex character of CCDs, the evaluation of their 
physical parameters cannot be achieved by means of deterministic procedurs, 
being necessary the use of some successive approximations (iterations) 
procedures, as that of the gradient method. In this case, the estimated values will 
correspond to the central part of some specific attractors basins [11]. The 
identification of these central parts of the attractors basins is achieved using the 

least squares principle, minimizing the sum: ∑ −=
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N

i
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of the weighted sum of the squares of deviations of the calculated values ti, calc. of 
the test parameters (of the dark current and different temperatures, particularly) 
relative to the experimental values ti, exp. (Wi  is the weight associated to the test 
parameter i, where i = 1, 2, … N). 
 Unfortunately, the practical use of the classical gradient method is 
sometimes hindered or misled by some specific numerical phenomena (instability, 
large oscillations, or pseudo-convergence, distortions, respectively) [18] - [22]. 
For the complex systems with several effective uniqueness parameters (as the 
CCDs), the intervening numerical phenomena are considerably more intricate than 
for the “mono-parameter” probllems (e.g. the damped oscillator [10], the wave 
propagation in ideal media [18], [19], etc.). 
 For this reason, this work is intended to the examination of the basic 
features of the attraction basins for some (CCDs) complex systems with several 
effective uniqueness parameters.  
 

5.1. Choice of the zero-order approximations. Study of the structure of 
the experimental input data 

It is very well known the extremely important role of the zero-order 
approximations to avoid the unpleasant numerical phenomena possibly 
intervening in the classical gradient method use. 

The analysis of the main procedures used to choose the zero-order 
approximations corresponding to the numerical study of the temperature 
dependence of the dark current in CCDs [the so-called Dark Current Spectroscopy 
(DCS) method] points out the presence of 2 different strategies: a) that 
considering the whole ensemble of the existing experimental data [4], [5], b) the  
works preferring the choices of the zero-order approximations specific to the 
particular structure (for each pixel) of the experimental input data. 
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The first (general) procedure of the zero-order approximations choice 
starts from the overall analysis of the existing available results, defining these 
approximations by means of some average values for silicon: lnDiff(0) ≈  34.9 [5], 
p. 199, lnDep(0) ≈ 19 [5], p. 200, Eg = 1.08 eV [4], fig. 2, p. 2557, the value Eg = 
1.10 eV [4], p. 2556 being probably a rounded version of the previous one. We 
will mention also that all our numerical tests of the Sze [23] – Varshni [24] 

empirical expression:                      
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where Ego = 1.1557 [24] … 1.17 eV [23], ( ),]23[73.4]...24[021.7/10 4 ×= − KeVα  β = 
1108 [24] … 636 K [23], led to considerable disagreements with the experimental 
data. As it concerns the difference of energies of the traps and of the intrinsic 
Fermi level, respectively: |Et – Ei|, the analysis of the numerical results presented 
by the synthesis works [25], [26], [3] shows that a reasonable value of the zero-
order approximation is: |Et – Ei|(0)  ≈ 0.1 eV.  

The second procedure of the zero-order approximations choice starts [14]  
from the least-squares fits of the temperature dependencies (specific to each pixel) 
of the dark current corresponding to the lowest (222… 242 K, field where the 
depletion dark current is prevailing) temperatures, and to the highest (272…  292 
K, where the diffusion current prevails) ones, the indicated temperatures 
corresponding to the experimental studies [5], [12]. One finds [17] that the values 
of the zero-order approximations of the main uniqueness parameters can be 
evaluated by means of the relations: ksE diffg ⋅−≅)0( , diffdiffdiff TcDe ~ln3ln ,0 ⋅−≅− , (16),   

and:  2ln~ln
2
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where depdiff ss ,.  and: depdiff cc ,.  are the slopes and the ordinates of the crossing 
points (intercepts), respectively, of the regression lines (least-squares fits) of the 
temperature dependencies of the dark current in the regions of prevalence of the 
diffusion, and of the depletion dark current, respectively: 

T
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while depdiff TT ~,~  are the average temperatures corresponding to the above indicated 
temperature ranges. 
 One finds [17] that the ratio of the slopes diffdep ss ,  corresponding to the 

depletion and diffusion prevalence, respectively, is:  
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 Given being the energy gap Eg of the CCDs semiconductors is the 
strongest uniqueness parameter of the temperature dependence of their dark 
current, it is possible to find an efficient compromise of the 2 above presented 
methods of zero-order approximations choice. In this aim, one observes that 
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while: a) the Sze’s  limit for silicon: Ego ≈ 1.17 eV is considerably larger than the 
usually accepted values (see e.g. [4]): Eg = 1.08÷1.10 eV, b) the modulus Eg,Lin of 
the slope of the line joining the points corresponding to the extreme temperatures 

(222 and 291 K, for the experimental data [5], [12]) of the plot ⎟
⎠
⎞

⎜
⎝
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is less than Eg (it is practically equal to Eg for the diffusion term of the dark 
current [first term in equation (1)], but it is considerably less than Eg 
(approximately equal to Eg/2) for the depletion term [the second one in (1)], so 
that the average value can be used successfully as a zero-order approximation of 
the energy gap:                       ( )LingSzegoAvegg EEEE ,,,
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together with other “general” zero-order approximations (see above). 
 
5.2. Numerical regularities intervening in the successive approximations 

provided by the classical gradient method for the evaluation of the main 
parameters of CCDs 

 This work studies the experimental data concerning the temperature 
dependence of the dark current in CCDs reported in the frame of the works [5] 
and [12]. Given being the approximately exponential rise of the dark current with 
temperature [see relation (7)], the values of the dark current at the lowest studied 
temperatures (222 and 232 K) are very small and the corresponding evaluation 
errors are rather high. That is why our numerical results refer to the sets of the 
dark currents corresponding to the highest 6 temperatures studied by the works 
[5], [12] (between 242 and 291 K), and to the sets for all the 8 studied 
temperatures (from 222 to 291 K). 
 From the huge amount of obtained numerical data, we selected and we 
present in the frame of the Table 2 below the found numerical regularities 
referring to the ratios of the successive relative standard errors )(Iσ  for the sets of 
studied temperatures, and of the deviations )(ID  of the calculated dark current for 
some of the studied temperatures from the corresponding experimental values 
[12]. 

Table 2 
Calculated ratios of the successive relative standard errors )(Iσ  for some pixels [12] and sets 

of studied temperatures, and of deviations )(ID  of the calculated dark current from the 
experimental value, respectively 

Pixel )1(/)( +II σσ for 31; 247  29; 88 

Itera-
tion I 222…291 K 252…291 K )1(/)( +II σσ   

252…291 K 
)1(/)( +IDID   

for 232 K 
)1(/)( +IDID   

for 291 K 
1 1.309 1.300 2.723 2.731 2.720 
2 1.287 1.286 2.728 2.741 2.723 
3 1.287 1.286 2.744 2.740 2.731 
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4 1.287 1.286 2.789 2.732 2.751 
5 1.288 1.287 2.920 2.749 2.810 
6 1.289 1.287 3.330 2.817 2.979 
7 1.290 1.288 4.886 3.081 3.515 
8 1.291 1.289 4.941 4.492 5.753 
9 1.292 1.290 1.0123 -5.733 422.984 
10 1.294 1.292 1.0009252 -3.941 - 0.0658 
11 1.295 1.293 1.00002024 0.378 1.08456 
12 1.297 1.295 1.0000005399 1.098317 0.98708 
13 1.299 1.297 1.0000000246 0.9835195 1.002218 
14 1.300 1.300 0.99999999827 1.00285946 0.9996161 
15 1.300 1.303 1.000000000232 0.99950476 1.00006653 
16 1.300 1.305 0.9999999999629 1.00008583 0.99998847 
17 1.291 1.308 1.000000000006524 0.99998512 1.000001998 
18 1.277 1.311 0.9999999999988699 1.0000025779 0.9999996537 
19 1.254 1.314 1.000000000000195 0.999999553 1.00000006001 

 
 The obtained numerical data synthesized by Table 2 point out a new numerical 
phenomenon: the first 2 figures of the ratios of successive standard errors )1(/)( +II σσ  
and deviations )1(/)( +IDID  of the calculated dark current for some of the studied 
temperatures from the corresponding experimental values, respectively, are common for  
the first figures, for the first iterations. Concerning the newly found numerical 
phenomenon, we can underline that its mechanism can probably be explained by means 
of the method of “transfer coefficients” (see e.g. [18], [19]), but its implementation will 
be considerably more difficult due to the multiple (independent) uniqueness parameters 
corresponding to this application.  

By means of the above finding, it is possible to define the upper limit of the Ilin. of 
this property (see Table 3). Similarly, it is possible to define the center Isteep. of the 
steepest descent zone, as the value of the iteration I coresponding to the largest value of 
the ratio )1(/)( +II σσ . Finally, we can define the limits of the attractor’s neighborhood 
region and of the attractor’s central zone by means of the integers Ineighb., Icentr.z., as the 
nearest to the values %3.22223.0)(5.1)(ln ≡≈→−= II σσ  and →−= 0.4)(ln Iσ  

%83.10183.0)( ≡≈Iσ . In order to be possible to understand better the meaning of these 
notions, Table 3 below indicates the values of these 4 indices for the pixels and 
temperature ranges presented by Table 2. 

 Table 3 
Values of indices Ilin., Isteep., In and Ic  for the pixels and sets of studied temperatures 
Pixel )1(/)( +II σσ for 31;247  29; 88 

Iindex 222…291 K 252…291 K )1(/)( +II σσ  
252…291 K 

)1(/)( +IDID   
for 232 K 

)1(/)( +IDID   
for 291 K 

Ilin. 13 13 4 4 5 
Isteep. 15 23 7; 8 9 9 
Ineighb. 21 21 8 2 - (never reached) 

Icentr.z. 
- (never 
reached) 30 ≈ 10 4 … 5 - (never reached) 
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 The above defined parameters allow to divide the attractor’s space along the 
gradient procedure trajectory in 4 regions: 
 I. The far linear (in σln ) ≡ exponential (in σ) regions of the attractor’s 
basin, between )0(u  and )( .limIu , where the last two vectors correspond to the 
ensembles of uniqueness parameters for the zero-order approximation and for the 
“limit” iteration with 2 common figures of the studied ratios, 
 II. The steepest descent region, between )( .limIu  and )( .neighbIu , 
 III. The attractor’s neighborhood region, between )( .neighbIu  and )( ..zcentrIu , 
 IV. The attractor’s central zone, between )( ..zcentrIu  and )(lim I

I
u

∞→
. 

5.3. Descent of the relative standard error well (pit) in the frame of the 
successive approximations (iterations) of the classical gradient method used 
for the evaluation of the main parameters of CCDs 
 Given being the already reported results, we consider as the most suitable 
representation of the standard error well descent – the plot )(ln If=σ . To illustrate 
the above presented considerations, as well as  to illustrate with some examples 
the typical evolutions of the classical gradient method procedure applied to the 
evaluation of the basic parameters of the temperature dependence of the dark 
current in CCDs, figures 4 and 5 below indicate the plots )(ln If=σ  for the pixels 
31, 247; 61, 140 and 121, 200, respectively. 
 Fig. 4 illustrates the 4 main regions of the attractor’s space, along the 
direction of the gradient method procedure, for the versions of high accuracy 
(processing of the experimental results for the 6 higher temperatures: 242…291 
K) and of lower accuracy (the above plot), of the classical evolution regime I of 
an over-damped oscillator (see fig. 1). Fig. 5 presents both the local climbing of 
the standard error hill (regime II) by means of the )(ln If=σ  plot corresponding to 
pixel 121, 200 (for the 6 higher temperatures 242…291 K), as well as the apparent 
“relaxation” (regime III) after an accidental fit of the lowest level of the standard 
error. We have to mention also that: (i) the plot a) from figure 5 involves 
additionally multiple oscillations, as effect of the several freedom degrees 
(described by Eg, lnDiff, lnDep and |Et – Ei|, (ii) the bottom of the standard error  
well can be determined more accurately by means of the method of damped 
gradient method (see e.g. [8]), which corrects the relation (3) by the introduction – 
in the zone of the studied pit bottom – of an attenuation factor λ (less than 1) 

suitably chosen:                  )()(
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6. Study of the strength levels of attractors 
Given being the following study will meet different types of typical 

numerical phenomena: a) Instability (symbol Inst.), b) Pseudo-Convergence 
(symbol Ps.), c) Oscillations (symbol Osc.), and – of course: d) the Convergence 
towards some specific (with physical meaning) attractors, denoted in terms of  
their strength: (i) VS (very strong), (ii) S (strong), (iii) MS (medium-strong), (iv) 
M (medium), (v) MW (medium-weak), (vi) W (weak), (vii) VW (very weak) and 
(viii) VVW (extremely weak), we will present below in figure 6 the typical 
appearance of these phenomena in the uniqueness parameters evaluation by the 
gradient method procedure (see also [17]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Main types of numerical phenomena met in the evaluation of the uniqueness parameters by 

the gradient method 
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 Given being that the usual single precision corresponds to 7 decimal places 
(for a 32-bit word machine [11], p. 23), it is possible to define the strength levels 
of an attractor relative to a certain uniqueness parameter by means of the number 
of common first decimals for several neighbor zero-order approximations: 7 
common first decimals (VS), 6 (S), 5 (MS), 4 (M), 3 (MW), 2 (W), 1 (VW), 0 but 
a  certain weak convergence (VVW). Of course, the general attractor’s strength 
level will be its strength level relative to the weakest studied uniqueness 
parameters, i.e. relative to |Et – Ei| for the charge coupled devices.  
 Taking into account that: a) the effective energy gap Eg,eff. is the strongest 
uniqueness parameter intervening in the description of the temperature 
dependence of CCDs dark current [see e.g. (12)], b) the most efficient zero-order 
approximation of this parameter is given by the average value Eg,Ave , calculated 
by means of relation (20), starting from the Sze’s general estimation Eg,Sze and the 
so-called linear approximation Eg,Lin (specific to each pixel), we will define the 
required successive neighbor zero-order approximations by means of the integer 

{ }10,8,6,4,2,0,2,4,6,8,10 −−−−−=m  and of the relation: 

       )(
10

)( ,,,
)0(

AvegSzegAvegg EEmEmE −+= .             (21) 

 In this manner, the study of the attractors strength levels becomes possible 
for all pixels, and we will select – by means of Tables 4 …7 - only few, but most 
significant, particular examples. 

Table 4 
Final results concerning the values of the uniqueness parameters Eg, lnDiff, lnDep and |Et – 

Ei| by means of the classical gradient method (for the experimental data see [5] and [12]) 
Coordi-
nates of 
the pixel 

Eg 0-order 
Approxi-
mation m 

 
Eg,eff. (eV) 

 
lnDiff 

 
lnDep 

 
|Et – Ei|, 

meV 

Numerical  
phenomenon & 

Attractor  
 
 
 
 
61, 140 

-10  0.580869* 9.402933* 39.026176* 381.94396* Pseudo-
convergence -8 0.564653* 8.573753* 40.444841* 414.60294* 

-6 1.072556 31.079047 17.52459 28.92168  

Very strong  

attractor 

-4 1.072556 31.079047 17.52459 28.92168 
-2 1.072556 31.079047 17.52459 28.92168
0 1.072556 31.079047 17.52459 28.92168 
2 1.072556 31.079047 17.52459 28.92168 
4 1.072556 31.079047 17.52459 28.92168

6; 8 & 10 Instability starting from iteration 4 (m = 6) and 2 (m = 8 and 10), respectively 
 
 
 
 
121, 200 

-10 1.067221 30.865956 15.540974 13.31129  
 

Weak attractor; 
additionally,  

medium 
amplitude 
oscillations 

-8 1.067238 30.866604 15.567840 12.93887 
-6 1.067272 30.867992 15.659601 13.543185 
-4 1.067263 30.867633 15.630247 13.350595 
-2 1.067251 30.867136 15.596534 13.128485 
0 1.067257 30.867372 15.611681 13.22839
2 1.067259 30.867458 15.617526 13.2669 

4; 6; 8; 10 Instability starting from iteration 4 (m = 4) and 2 (m = 6; 8 and 10), 
respectively 

 -10 1.074871 31.172302 15.917362 11.094875 Extremely Weak 
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241, 320 

-8 1.075900 31.212400 16.033195 9.955040 attractor;  
Additionally, 

large amplitude  
oscillations 

-6 1.075840 31.210004 16.349191 6.748465 
-4 1.075873 31.211324 16.765059 8.779725 
-2 1.075894 31.212169 15.976038 9.669870 
0 1.075681 31.203713 15.338220 6.802035 
2 1.075685 31.203874 15.336640 6.792465 

4; 6; 8; 10 Instability starting from iteration 3 (m = 4) and 2 (m = 6; 8 and 10), 
respectively 

 
 
 
 

31, 247 

-10 0.587015* 10.54143* 44.932172* 406.37874* Pseudo-
convergence 

-8 Instability starting from iteration 9 
-6 0.574936* 9.935104* 45.115503* 472.32972* Pseudo-

convergence 
-4 1.190187* 35.636207 19.734559 9.742655 Extremely Weak 

pseudo-
attractor; 

additionally, 
large amplitude 

oscillations 

-2 1.190174* 35.635711 19.830541 10.175875 
0 1.190169* 35.635528 19.859227 10.302720 
2 1.190204* 35.636852 19.641657 9.317010 
4 1.190280* 35.639586 19.217493 7.276885 
6 1.190267* 35.639176 19.303182 7.692265 

8; 10 Instability starting from iteration 2 
 Finally, a last question: could be possible to predict the convergence behavior of 
the gradient method procedure for the existing set of experimental data )(TfDe =−  
corresponding to a certain pixel? Obviously, the efficiency of the classical gradient 
method procedures depends on the accuracy of the chosen set of zero (0) -order 
approximations. That is why our analysis (see Table 5) will start from the 0-order 
approximations provided by the structures of experimental data [see relations (16)-(19)].  

We have to mention that we found [17] the values of the effective uniqueness 
parameters of the 20 studied CCDs pixels as located inside the intervals: 

eVEg 11.1...048.1= , 36.32...19.30ln =Diff , 41.19...59.14ln =Dep  and eVEE it 4.45...8.6|| =− . 
As it concerns the zero-order approximations, it is expected to be sometimes even outside 
these intervals, but not too much (for Eg and lnDiff, especially).  

The symbols of the attractors’ strength levels are indicated by bold characters in 
the last column of Table 5, while the atypical values of the zero-order approximations 
provided by the experimental data structure [relations (16)-(19)] are underlined. 

Table 5 
Main parameters of the structure of the considered set of experimental data and the 
numerical phenomena intervening in the classical gradient procedure of evaluation 

of the main parameters of CCDs 
Studied 

pixel 

)0(
.,effgE  

(eV) 
depdiff ss /

 

)0(ln Diff
 

)0(ln Dep  
)0(|| it EE −

meV 

Successive (m↑) 
convergence 

behaviors 

41, 120 1.0754 1.0948 31.2582 35.0979 443.8277 Inst., Pseudo-conv.  
61, 140 1.0951 1.8344 29.7980 16.2707 46.7512 Ps; VS; Inst. 
81, 160 1.0573 1.6633 30.6121 19.5750 107.015 Ps; MW; Inst. 

101, 180 1.0825 1.7172 31.6006 18.9916 89.1394 W 
121, 200 1.0634 1.5713 30.8481 21.4230 145.0874 W 
141, 220 1.0730 1.8727 31.2196 16.2769 36.4761 Ps; W; Inst. 
161, 240 1.0833 1.6352 31.6390 20.5334 120.8284 Ps; Inst.; VS; Inst. 
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181, 260 1.0817 1.7283 31.5467 18.7122 85.0232 Ps; W; Inst. 
201, 280 1.0667 1.7984 31.0414 18.1095 59.7857 Ps; Inst.; MW; Inst.  
221, 300 1.0801 1.9380 31.5415 16.1143 17.2792 Ps; MS; Inst. 
241, 320 1.0647 1.5424 30.9015 22.1473 157.1197 VVW; Inst. 
261, 340 1.0725 1.6102 31.2647 21.6275 129.8126 Ps; Inst.; Ps; Inst. 
281, 360 1.0534 1.7251 30.5313 19.0919 83.9176 Ps; VS; Inst. 
301, 380 1.0122 1.62016 28.9163 19.5766 118.6561 Ps; Inst. 
321, 400 1.1261 1.6477 33.3843 20.8546 120.3996 Inst.; MW; Inst. 
341, 420 1.0234 1.5826 29.3075 20.5133 134.943 Inst.; Ps; Inst. 

29, 88 1.0950 1.6684 32.1206 20.8211 108.801 Ps; MS; Inst. 
31, 247 0.9894 1.6873 27.9587 18.0671 91.6646 Ps; Inst.; Ps; Inst. 

161, 289 1.1384 1.1654 33.7624 34.1341 407.632 W 
188, 471 1.0888 1.7897 31.8896 17.6422 63.9686 S 

 The analysis of the results synthesized by Table 5 points out that: a) the 
chosen definitions ensure a  rather uniform distribution of the 20 CCD pixels 
indicated by work [12] over the attractors’ strength levels: 3 very strong attractors 
(pixels 61, 140; 161, 240 and 281, 360), one strong attractor (pixel 188, 471), 2 
medium-strong (29, 88 and 221, 300), 3 MW (81, 160; 201, 280 and 321, 400), 5 
weak (101, 180; 121, 200; 141, 220; 181, 260 and 161, 289), one VVW (241, 
320), 4 pseudo-convergence cases (261, 340; 301, 380; 341, 420 and 31, 247) and 
a set of experimental data leading to instability (that of pixel 41, 120); b) though  
there is a sure co-relation between the atypical values of certain zero-order 
approximations and the pseudo-convergence or instability of the gradient method 
iterative process, sometimes a set of atypical values of the zero-order 
approximations can equilibrate the computation system leading to some (of 
course, weak or very weak) physical attractors (see e.g. pixels 161, 289 or even 
321, 400); c) if the knowledge of the contaminants and/or defects embedded by 
the crystalline lattice if a certain pixel is important, but the structure of the first 
measurements (e.g. [12]) leads to pseudo-convergence of instability, it is 
necessary to repeat these measurements. The criterion of an accurate structure of 
the new set of experimental data is to find the inclusion of the zero-order 
approximations calculated by means of relations (16)-(19) in the already found 
intervals (see above and [17]). 
 
 Conclusions 
 This work studied the main features of the classical gradient procedure for 
some complex (with a huge number of uniqueness parameters) physical system, 
i.e. for some particle detectors as the charge coupled devices (CCDs). It was 
found that: 
 a) the effective (i.e. dominant parameters, used to reduce the number of the 
studied uniqueness parameters to a level allowing efficient computation 
procedures) uniqueness parameters have slightly, but different values than their 
corresponding physical parameters; e.g. while: (i) the physical energy gap Eg is 
temperature dependent, its associate effective parameter Eg,eff. is temperature 
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independent, (ii) the physical difference of energies of a certain trap (Et) and of 
the intrinsic Fermi level (Ei): |Et – Ei| corresponds to a given contaminant or lattice 
defect, its effective parameter |Et – Ei|eff. could be (if the studied pixel involves 
more than one type of traps) an average over the different types of involved traps, 
 b) the first iterations of the gradient method procedure present usually a 
monotonic (in arithmetic progression) decrease of the logarithm of the standard 
error σln , i.e. a new numerical phenomenon, identified by this work, 
 c) using the newly found numerical phenomenon, it was possible to define 
the main domains of each attraction center (attractor): (i) the linear (in σln , or 
exponential in the standard error σ) field, (ii) the steepest descent region of the 
standard error well (pit): )(ln If=σ , (iii) the attractor’s central zone (for σln < -
4), (iv) the attractor’s neighborhood [for ( )4;5.1ln −−∈σ ], 
 d) there were defined and determined for the sets of experimental data 
concerning the temperature dependence of the dark current corresponding to the 
20 studied CCDs pixels [17] the attractors strength levels relative to: (i) each 
effective uniqueness parameter, (ii) a studied pixel. Given being that these 
strength levels are strongly related to the accuracy of the uniqueness parameters 
evaluation, their knowledge (and eventual improvement, by new measurements) 
seems to be essential for accurate assignments of the contaminants and/or defects 
embedded in the crystalline lattice of the pixels of certain particle detectors, as  
the charge coupled devices (CCDs) [3]. 
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