
U.P.B. Sci. Bull., Series C, Vol. 86, Iss. 1, 2024                                                     ISSN 2286-3540 

PHOTOVOLTAIC POWER PREDICTION BASED ON 

IMPROVED PYRAFORMER 

Guodong LI 1, Wenhao CAI 2* 

The stochastic and high volatility of PV power generation poses a great 

challenge to the operational management of the electrical grid, while precise 

anticipation of PV power yield can reduce the impact of its uncertainty. Hence, a 

photovoltaic prediction model called PDGformer, based on an improved Pyraformer 

model, is proposed. The encoder of the PDGformer model employs a unique dual-

branch structure, wherein the local branch captures the local information of the 

photovoltaic power sequence, enabling the simultaneous capture of temporal and 

dimensional dependencies of the photovoltaic data. Conversely, the global branch 

captures the global information of the photovoltaic power sequence. The model's 

decoder incorporates an Attention mechanism to effectively integrate both local and 

global information and generate the final prediction results. Additionally, an MSE 

reweighting framework is introduced to alleviate the interference caused by abrupt 

changes in predictions. This framework reduces the loss caused by mutations while 

increasing the loss for normal states. Employing actual photovoltaic data from a 

specific location for illustrative analysis, the experiments demonstrate the superior 

performance of the proposed model compared to others, such as Pyraformer, in 

effectively predicting photovoltaic output power. 

Keywords: PV power prediction; Pyraformer; PDGformer; MSE reweighting 
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1. Introduction 

Solar energy has assumed an increasingly pivotal role in global power 

systems in recent years [1]. Among the diverse applications of solar energy, 

converting it into electricity through photovoltaic installations stands out as the 

most widely recognized method for harnessing solar power [2]. Not only does it 

offer the world a source of clean energy and diminish reliance on fossil fuels for 

societal advancement, but it also boasts a remarkably economical operation and 

maintenance cost, resulting in substantial economic benefits [3]. Despite these 

benefits, PV power generation faces challenges due to its stochastic nature and high 

volatility [4]. The increasing share of installed capacity amplifies uncertainty, 

leading to scheduling and operational challenges. Accurate prediction of PV power 

output is crucial for mitigating this impact, holding significance in grid scheduling, 

power generation technology advancement, and economic optimization of power 

plants [5]. 

Presently, PV power prediction methods are categorized into three groups: 

physical [6], statistical [7], and artificial intelligence [8] techniques. Physical 

methods use PV system design and NWP for forecasting without historical data. 

Statistical methods extract features from input data for future outcome prediction. 

Artificial intelligence methods, including machine learning and deep learning, have 

gained prominence. Machine learning techniques like neural networks [9], random 

forests [10], and support vector machines [11] outperform traditional statistics, but 

recent research focuses on advanced deep learning due to overfitting and 

generalization challenges [12]. The literature [13] proposes a CNN-LSTM model 

that effectively uses weather variables to predict photovoltaic power plant output 

with superior accuracy compared to various ML and DL models. 

In 2017, Google introduced the Transformer model, leveraging the attention 

mechanism [14]. Unlike RNNs, Transformers excel at capturing long-range 

dependencies, making them prevalent in time series forecasting, including 

photovoltaic power forecasting [15]. A novel Transformer-based model is proposed 

for one-hour-ahead photovoltaic power prediction [16]. Despite its effectiveness, 

the Transformer faces challenges of quadratic time complexity and memory usage, 

leading to the emergence of variants like Informer with lower complexity [17]. 

Pyraformer is another approach, a low-complexity pyramidal attention model for 

time series forecasting [18]. It primarily focuses on temporal dependencies but 

overlooks inter-variable connections. Incorporating related dimensions can enhance 

predictions in a specific dimension. Literature [19] underscores solar radiation, 

temperature, and other factors' significant impact on photovoltaic energy 

generation, aiding effective output prediction.  

The Long-Range Arena (LRA) benchmark [20] systematically evaluates 

sequential models across extensive contexts, spanning from 1K to 16K tokens. 
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Notably, Transformer-based models have found limited success in LRA, leading to 

the emergence of global convolutional networks. Particularly, the S4 model [21] 

draws from state-space models, akin to a global convolutional kernel. SGconv [22] 

re-evaluates global convolution and underscores its importance in modeling 

extended sequences. It emphasizes two design principles for global convolutional 

kernels: a sublinear (logarithmic) relationship between learnable parameters and 

input length, and a weight decay structure for the global kernel. 

Considering the pros and cons of the mentioned prediction methods, we 

introduce PDGformer, an innovative photovoltaic power prediction model. It's built 

upon an enhanced Pyraformer design, featuring a dual-branch encoder structure: 

local and global branches. The local branch captures local photovoltaic generation 

information. It employs the Cross-Variable Module (CVM) to learn variable 

dependencies and Pyraformer for temporal dependencies, effectively encompassing 

both dimensions. The global branch uses the Global Convolution Module (Gconv) 

to capture the global information of photovoltaic generation data. The decoder 

integrates both local and global information for prediction. Prior to input, we 

normalize photovoltaic generation using Dish-TS [23] and denormalize after 

predictions. Additionally, we propose an MSE reweighting framework to reduce 

mutation-induced loss while enhancing normal state loss.  

2. Pyraformer-based photovoltaic power forecasting  

The Pyraformer model is a neural network that utilizes a multi-resolution 

pyramid attention mechanism, which effectively captures dependencies in time 

series forecasting. It achieves linear time and space complexity, making it an 

efficient solution. Fig. 1 illustrates the model structure of Pyraformer. 

 
Fig. 1. Structure diagram of Pyraformer 
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2.1 Pyramid Attention Module (PAM) 

PAM serves as the fundamental module within the Pyraformer model. The 

module employs pyramid diagrams to depict temporal interdependencies within 

historical sequences with a multi-resolution approach, classifying connections into 

two types: connections within the same scale, connections between different scales. 

Connections between different scales lead to a C-fork tree summarizing diverse 

resolution features, while intra-scale adjacency connections capture diverse ranges 

of temporal dependencies. In the pyramid graph structure, lower nodes represent 

time points in the original sequence, and upper-layer nodes extract features to 

effectively represent characteristics at lower resolutions. By establishing 

connections between nodes within each layer, meaningful relationships among the 

nodes can be established. 

2.2 Coarse-Scale Construction Module (CSCM) 

The CSCM module's primary objective resides in the initialization of 

coarse-scale nodes within the pyramid graph, enabling efficient information 

exchange between these nodes in the subsequent PAM module. Specifically, in the 

temporal dimension, a series of convolutional layers is sequentially applied to the 

embedded sequence. These convolutional layers have a C-sized kernel and employ 

a C-sized step. This sequential convolutional operation results in coarse-grained 

sequences with a scale of s and a length of L/Cs. Before feeding these sequences 

into the stacked convolutional layers, the dimension of each node undergoes 

reduction via a fully connected layer, which is subsequently restored after the 

completion of all convolutional operations. Prior to entering the PAM module, 

these sequences, spanning from fine to coarse granularity, are interconnected. This 

meticulously crafted architecture significantly diminishes the parameter count 

within the module, thereby mitigating the risk of overfitting. 

3. PDGformer-based PV power prediction 

When predicting photovoltaic (PV) power, apart from historical power 

generation data, certain meteorological variables like historical wind speed, 

temperature, and others also contribute to the prediction. The Pyraformer model 

effectively captures temporal dependencies, yet it falls short in fully utilizing the 

interrelationships among the variables, thereby limiting its predictive capacity. 

Additionally, recent research [22] has highlighted the remarkable capability of 

global convolution kernels in capturing long-range dependencies. 

To address the aforementioned limitations of the Pyraformer model and 

improve the capture of long-range dependencies in PV power generation data, this 

paper proposes the PDGformer model. This model adeptly captures both inter-

temporal and cross-dimensional dependencies while effectively incorporating both 
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global and local information, maximizing their synergistic effects. Moreover, this 

paper introduces the Re-MSE, a mean squared error (MSE) reweighting framework, 

and employs it as the loss function during model training.  

The model's configuration, as expounded upon herein, is illustrated in Fig. 

2. The encoder adopts a unique two-branch design, with each branch dedicated to 

capturing and extracting specific types of information: local and global information, 

respectively. Subsequently, the model decoder integrates these two types of 

information to generate accurate prediction results. Since the generalized neural 

paradigm Dish-TS proves to be effective in removing and recovering non-stationary 

information from time series [23] we add Dish-TS layers before and after the 

proposed model.  

 

 
Fig. 2. PDGformer Model 
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     ( ) ( )tail,global global local localZ Branch X Z Branch X= =                            (1) 

3.2 Decoder  

In order to augment the exploitation of both global and local information, 

the decoder assumes the responsibility of integrating the global information ( globalZ

) and the local information ( localZ ), and it outputs the prediction results. The decoder 

module primarily consists of the cross-attention module, designed to ensure an 

efficient representation of the historical information in the photovoltaic generation 

sequence. Initially, the encoder linearly maps the global and local information, 

subsequently employing the global information as a query vector (q), while the local 

information serves as both key vector (k) and value vector (v). These vectors are 

then inputted into the Attention layer, thereby achieving the following 

representation:  

local( ), ( ), ( )global localq MLP Z k MLP Z v MLP Z= = =                                (2) 

( , , )
T

q

qk
Attention q k v softmax v

d

 
 =
 
 

                                         (3) 

3.3 Cross-Variable Module (CVM) 

Cross-time attention typically involves embedding all data points across 

different dimensions for a specific time period into a feature vector, with a primary 

focus on capturing the interdependencies existing across distinct time periods. 

While this approach effectively captures cross-time dependencies, it falls short in 

fully leveraging cross-dimensional dependencies, potentially constraining its 

predictive capabilities. As a solution to this limitation, the CVM module introduces 

cross-variable attention, which facilitates the learning of dependencies between 

variables, as illustrated in Fig. 3. 

 
a. Cross time attention                   b. Cross dimensional attention 

Fig. 3. Cross-Variable Attention 

 

The CVM module comprises two crucial components: a multi-head 

attention (MHA) mechanism and a feed-forward network (FFN). The input 

sequence X, representing the PV data, is a two-dimensional tensor characterized by 

the shape L × C, where C signifies the number of variables. Prior to processing, the 
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sequence X is required to be flipped. The cross-variable attention serves as a pivotal 

aspect of the MHA and is precisely defined as follows: 

( , , )
TQK

Attention Q K V softmax V
C

 
=  

 
                                      (4) 

In the equation, Q, K, and V are the query, key, and value matrices, 

respectively, while C denotes the quantity of variables. Q, K, and V are typically 

obtained through a linear transformation of the original input X. Due to the 

detrimental effects of additional embedding layers on temporal information and 

subsequent performance degradation, the input sequence is directly fed into the 

MHA module without any embeddings. Furthermore, as there is no temporal 

ordering among different variables, there is no need for positional encoding of the 

input sequence. 

3.4 Global Convolution Kernel (Gconv) 

Previous research has demonstrated the ability of global convolutional 

kernels to effectively capture and model long-range dependencies. Specifically, 

global convolutional kernels employ elongated filters that extend across the entire 

input sequence, thereby enabling the capture of prolonged interdependencies. 

Given the input sequence n du R  , the learnable global kernel n dk R  , and the 

output n dy R  , the operation of global convolution can be accomplished through 

the utilization of the rapid Fourier transform, indicated by F, resulting in a 

computational intricacy of O(NlogN). The specific details are expounded below: 

( ) ( )( )1y u k F F u F k−=  =                                          (5) 

Compared to local convolutions with fixed kernel sizes, global convolution 

requires kernels of the same size as the input sequence length, denoted as L. When 

dealing with long sequences, parametrizing the convolutional kernels in a 

straightforward manner, as done in local convolutions, becomes challenging. 

Therefore, it is crucial to have an efficient kernel parameterization method. SGConv 

[22] addresses this issue by constructing the global convolution kernel through a 

composition of sub-kernels, each with increasing sizes. The size of each subsequent 

sub-kernel is twice that of the previous sub-kernel. Importantly, all sub-kernels are 

upsampled from the same number of parameters, establishing a logarithmic 

relationship between the number of parameters and the input length. Additionally, 

a weighted combination of sub-kernels with weight decay is utilized, assigning 

smaller weights to larger sub-kernels. The global convolution kernel is defined as 

follows: 

  ( )max 1,00 1 1
2

1
, , , , i d

i
N i ik k k k k Upsample w

Z
  

 −−= =                    (6) 
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Within the equation,  represents the parameters for the i-th subkernel

ki , while ( )2log / 1N L d= +    represents the number of scales. To create sub-kernels 

of different scales, an upsampling operation using linear interpolation is employed. 

This operation, denoted as ( )max 1,0
2

i d iUpsample w 
 − , involves upsampling iw  to a length 

of max[ 1,0]2 i d− . Z is a normalization constant that ensures the convolution operation 

does not alter the scale of the input, while α is a decay coefficient that governs the 

rate of decay. 

3.5 Re-MSE 

In PV power prediction, unexpected or unknown events (e.g., PV sensor 

failures) may lead to drastic changes in PV power data. Despite their infrequent 

occurrence in the training set, the losses caused by these mutations can significantly 

impact the overall loss, thereby limiting the generalization performance of 

prediction models during the testing phase. 

To mitigate the influence of mutations, this paper introduces a reweighting 

framework that reduces the weight of losses caused by mutations while increasing 

the weight of losses caused by normal states. Subsequently, the training is 

conducted using the reweighted Re-MSE loss function. Given a photovoltaic power 

dataset, it can be partitioned, resulting in sets for training, validation, and testing. 

Let 1{( , )}N
t t tD X Y ==  indicates the training set, with tX  signifying the input sequence 

and tY  representing the output sequence. This framework primarily addresses the 

issue of loss imbalance, which arises from significant differences between adjacent 

input-output pairs ( aX  and aY ) compared to other input-output pairs ( tX and tY ). 

Here, a represents the timestamp associated with a mutation. 

To address this issue, the concept of Local Differences (LD) is introduced 

to quantify the discrepancy between two adjacent input-output sequences, tX and 

tY . It is denoted as: 

( )
22

, :

t

t t
t t t

tX Y

X Y
LD X Y v

SS

I O


−
= =

+ +

                                      (7) 

Within the equation, tX  signifies the input series mean, while 
tX

S denotes 

its standard deviation, I signifies the input series length, and O signifies the output 

series length. 

Drawing inspiration from the work introduced in [24] regarding deep 

imbalance regression, the next step involves computing the LD density, which 

serves as an indicator of the frequency of temporal changes. This is achieved by 

utilizing kernel density estimation with the LD values obtained from the training 

samples. The calculation process for determining the LD density is as follows: 

d
iw R
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( ) ( ) ( ): ,
V

p v k v v p v dv =                                                  (8) 

In the equation provided, the term p(v) represents v's frequency of 

occurrence within the training data. The function k (v, v') represents a symmetric 

kernel function.  

After estimating the LD density p̃(v), weights are assigned to each 

training sample using the formula ( ) ( )t t tw c p v p v=   , where c is a constant that acts 

as a scaling factor. The primary aim of this reweighting procedure is to mitigate the 

impact of mutations while also attending to the challenge of imbalanced loss. The 

reweighted mean squared error (Re-MSE) loss function can be defined as follows, 

incorporating the assigned weights: 

( ) ( )
1 2

0

1ˆ ˆ,
O

w t t t t

i

Re - MSE Y Y w Y Y
O

−

=

=  −                                  (9) 

In this expression, ˆ
tY represents the predicted output sequence obtained by 

using tX  as input, while tY  represents the corresponding ground truth values. O 

signifies the length of the output sequence, denoting the predicted extent.  

4. Case study 

4.1 Experimental dataset and pre-processing 

The text utilizes a photovoltaic energy generation dataset obtained from the 

Yulara Solar System 1 site, located at the DKASC in Australia. The dataset 

encompasses the timeframe spanning from January 1, 2017, to December 31, 2021, 

with data recorded at an hourly resolution. 

For the accuracy and effectiveness of the predictive model, the raw dataset 

undergoes preprocessing. Occasionally, data loss may occur due to maintenance 

issues or equipment failures at the solar site. In such cases, missing values are filled 

using linear interpolation. Additionally, any negative values in the generated power 

are replaced with zero for consistency. For model training, evaluation, and testing, 

the dataset is then partitioned into subsets: 70% for training, 20% for validation, 

and 10% for testing. 

4.2 Experimental parameterization and evaluation metrics 

The meticulous choice of suitable model parameters greatly impacts the 

model's predictive efficacy. In this experiment, the local branch of the PDGformer 

model maintains a constant input length of 96, while the global branch adopts an 

enlarged window (336) to encompass more information. Prediction lengths are set 

at 24, 48, 72, 96, and 192, respectively. A batch size of 32 is specified, with the 

epoch set at 10, and a learning rate established at 0.0001. Throughout the training 

process, the loss function introduced in this text, namely RE-MSE, is employed. 

tw
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Within the PDGformer model's encoder, the local branch comprises two 

modules: CVM and Pyraformer. These modules are respectively dedicated to 

capturing inter-dimensional dependencies and temporal interdependencies. CVM is 

configured with 2 layers, while Pyraformer's pyramid attention consists of 4 layers 

and 4 attention heads. In CSCM, the convolutional kernel size C is designated as 4, 

with a stride of 4. PAM entails that A, the number of adjacent nodes attended to by 

nodes within the same scale, is set to 3. The global branch Gconv within the 

PDGformer model's encoder is established as a single layer. 

With the intent to evaluate the predictive precision of the model, the study 

utilizes four different evaluation metrics: Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-Squared (R2).  

4.3 Experiment and Analysis 

To assess the effectiveness of the suggested model in predicting solar energy 

generation, this manuscript compares it with benchmark models, including LSTM, 

Transformer, Informer, and Pyraformer. All models are used to forecast with five 

different prediction horizons: 24, 48, 72, 96, and 192. The results obtained from 

these models are presented in Table 1 for comparison and analysis. 

Based on the analysis of Table 1, it is evident that the PDGformer model 

surpasses various benchmark models in relation to different assessment criteria 

across distinct prediction lengths (24, 48, 72, 96, and 192). (1) Compared to the 

traditional Pyraformer model, PDGformer exhibits higher prediction accuracy, with 

reductions in MSE of 13.5% (24), 10.9% (48), 21.2% (72), 22.8% (96), and 32.4% 

(192). Additionally, MAE is reduced by 10.9% (24), 11.6% (48), 11.5% (72), 

17.4% (96), and 20.6% (192). These results underscore the effectiveness of 

PDGformer's dual-branch design, Cross-Variable Module (CVM), and MSE 

reweighting framework (Re-MSE). (2) Notably, as the prediction length extends, 

there is a typical decline in prediction accuracy across all models. However, the 

PDGformer model shows a relatively slower decline, maintaining high R2 values 

even as the length extends from 96 to 192. This observation suggests that the dual-

branch structure allows the PDGformer model to concurrently capture global and 

local information, maximizing their complementary strengths and maintaining 

competitiveness in long-term forecasting tasks. (3) Moreover, compared to 

Informer, Transformer, and LSTM models, PDGformer achieves an average MSE 

reduction of 29.6% (24), 27.7% (48), 31.9% (72), 38.0% (96), and 45.5% (192), 

indicating superior predictive performance across various prediction lengths. 

Fig. 4 illustrates the prediction curves of all models for a prediction length 

of 192. It is evident that the PDGformer model excels in capturing and 

reconstructing the intricate details of the fluctuations in the photovoltaic power 

generation. While transformer-based models (Pyraformer, Informer, and 

Transformer) accurately capture overall fluctuation patterns, they fall short in 
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predicting certain crucial elements. In contrast, PDGformer demonstrates 

exceptional performance, accurately reconstructing subtle variations and turning 

points, outperforming other models in capturing finer details of the fluctuations. 
 

Table 1 

Evaluation of the accuracy of photovoltaic power prediction 

Prediction 

Length (h) 
Metrics PDGformer Pyraformer Informer Transformer LSTM 

 

24 

 

MSE 

MAE 

RMSE 

R2 

0.134 

0.212 

0.366 

0.860 

0.155 

0.238 

0.393 

0.838 

0.178 

0.248 

0.422 

0.814 

0.175 

0.249 

0.418 

0.817 

0.226 

0.313 

0.475 

0.749 

 

48 

MSE 

MAE 

RMSE 

R2 

0.156 

0.222 

0.395 

0.838 

0.175 

0.251 

0.419 

0.815 

0.196 

0.259 

0.443 

0.793 

0.193 

0.244 

0.439 

0.797 

0.276 

0.335 

0.525 

0.709 

 

72 

MSE 

MAE 

RMSE 

R2 

0.164 

0.239 

0.406 

0.826 

0.208 

0.270 

0.456 

0.781 

0.219 

0.273 

0.468 

0.768 

0.216 

0.275 

0.464 

0.772 

0.307 

0.344 

0.554 

0.683 

 

96 

MSE 

MAE 

RMSE 

 R2 

0.173 

0.242 

0.416 

0.817 

0.224 

0.293 

0.474 

0.762 

0.259 

0.301 

0.509 

0.725 

0.257 

0.294 

0.507 

0.727 

0.334 

0.367 

0.578 

0.646 

 

192 

MSE 

MAE 

RMSE 

 R2 

0.186 

0.258 

0.432 

0.800 

0.275 

0.325 

0.524 

0.706 

0.309 

0.334 

0.556 

0.670 

0.315 

0.329 

0.561 

0.664 

0.419 

0.401 

0.647 

0.532 

 
Fig. 4. All models PV power prediction curves 

Furthermore, the methods proposed in the literature [25] to [28] were 

selected for a comprehensive comparative analysis, underscoring the heightened 
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performance of the proposed method. Table 2 presents distinct prediction outcomes 

for each method when forecasting at a length of 96. 
 

Table 2 

Comparison of different prediction methods in the published literature 

Prediction method MSE MAE RMSE R2 

Ref. 25 0.221 0.278 0.470 0.765 

Ref. 26 0.206  0.274  0.454 0.781 

Ref. 27 0.194  0.269  0.441  0.795 

Ref. 28 0.191 0.256 0.437 0.799 

Proposed 0.173 0.242 0.416 0.817 

The superior predictive performance of the proposed PDGformer model is 

evident when compared with CNN-Informer in reference [25], VMD-CNN-

TransNN in reference [26], CNN-LSTM-Transformer in reference [27], and 

RevIN-DLinear in reference [28], as illustrated in Table 2. 

4.4 Ablation Experiment 

In this section, a ablation study is conducted with a prediction length of 96 

to validate the efficacy of various enhancements within the PDGformer model. 

Throughout the experimental process, utilizing PDGformer as the foundation, 

models are derived by removing specific components: PDGformer-C (removal of 

CVM module), PDGformer-G (removal of global convolution kernel), and 

PDGformer-R (absence of Re-MSE). A comparative analysis of performance is 

conducted between PDGformer and PDGformer-C, PDGformer-G, and 

PDGformer-R, with the empirical findings tabulated in Table 3. 

Table 3 

Outcomes of predicting performance  

 PDGformer PDGformer-C PDGformer-G PDGformer-R 

MSE 0.173 0.182 0.192 0.189 

MAE 0.242 0.258 0.267 0.260 

RMSE 0.416 0.427 0.438 0.435 

R2 0.817 0.805 0.796 0.801 

From the provided table, it is evident that removing the global convolutional 

module leads to an 11.0% increase in MSE, emphasizing its significant impact on 

result prediction accuracy. When using ordinary MSE instead of Re-MSE, the MSE 

increases by 9.2%, suggesting that the reweighting framework proposed by Re-

MSE can effectively balance the loss caused by mutations, reducing model loss and 

improving prediction accuracy. Moreover, removing the CVM module results in a 

5.2% increase in MSE, showcasing its role in capturing cross-dimensional 

dependencies and improving prediction accuracy. 
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Statistical analysis reveals the PDGformer model, with its performance 

enhancement techniques, outperforms others. The global convolutional module 

proves most effective in enhancing accuracy, followed by the Re-MSE framework 

and the CVM module. 

5. Conclusions 

This paper presents the PDGformer model, an improved version of the 

Pyraformer model, to address photovoltaic power prediction. The PDGformer 

model's encoder captures both global and local information of the photovoltaic 

power sequence, while the decoder integrates these two types of information to 

maximize their complementarity. During model training, a novel MSE loss function 

called Re-MSE is introduced. Using actual PV data as an example, the PDGformer 

model is compared with other competitive models for photovoltaic power 

prediction, yielding the following main conclusions: 

(1) The Pyraformer model focuses on capturing temporal dependencies but 

overlooks inter-variable dependencies. The introduction of the cross-variable 

module (CVM) in the PDGformer model effectively captures the 

relationships between variables, leveraging the correlated information from 

other dimensions to enhance the precision of photovoltaic power prediction. 

(2) The Global convolutional module (Gconv) in the PDGformer model is pivotal 

in capturing global dependencies within the input sequence. By utilizing 

attention mechanisms, the Gconv module facilitates the integration of global 

and local information, leading to a significant improvement in prediction 

accuracy. 

(3) To balance the loss caused by mutations, this paper introduces Re-MSE, a 

novel mean squared error (MSE) loss function. Re-MSE reduces the weight 

of losses caused by mutations while increasing the weight of losses caused by 

normal states, thereby further enhancing the model's prediction accuracy. 
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