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MECHANISM FOR TESTING AND IMPROVING THE
ROBUSTNESS OF SMART MANUFACTURING SYSTEMS

Celestin DRAGANESCU?, Giorgiana CRISTESCU?, Oana CHENARU?®

The purpose of this paper is to highlight how the concept of antifragility can
be introduced in the design stage of evolved manufacturing systems, considered as
complex adaptive systems capable of maintaining the functionality at optimal
parameters under adverse conditions caused by unforeseen changes in context. The
paper presents in detail how this approach was applied on a manufacturing line
through the development of a digital twin model where uncertainty is handled
through decision-making based on failure modes and effects analysis.
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1. Introduction

Considered to be the "fourth industrial revolution”, Industry 4.0 brought as
the main novelty the concept of industrial digitization, supported by three other
conceptual pillars: Smart Manufacturing (SM), Smart Factory (SF) and Industrial
Internet of Things (1loT). Industrial areas are overwhelmed with the need to go
digital. Digitalization in supply chain management (SCM) in recent years has
opened up a broad area for academic research, especially oriented to boost supply
chain (SC) efficiency internally and externally. The most substantial increase in
performance is expected to be in fields of competitiveness, flexibility, and
working environment.

As the complexity of the processes driven by SM increases, the methods
of monitoring the functioning state and maintaining the performance at optimal
parameters became more sophisticated. Preventive maintenance consisting of
periodic interventions to verify and correct deviations from normal status based
on scenarios built on historical data records is gradually replaced by predictive
maintenance solutions that use continuous real-time measurements to detect
behavioral anomalies that can lead to failures, but which did not have an obvious
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causality. Limitations of probabilistic approaches based on predefined scenarios
can no longer cope with the uncertainty caused by this increasing complexity.

A novel, but somewhat risky solution is to combat uncertainty on the basis
of the antifragility paradigm. Antifragility is a concept introduced and developed
by Nassim Nicholas Taleb in his book ‘“Antifragile: Things That Gain from
Disorder” [1]. According to Taleb, antifragility is more than robustness (the
ability to withstand or overcome adverse conditions and therefore to recover from
failure) and more than resilience (the ability to resist failure). By definition,
antifragility is a property of systems that increase in capability, resilience, or
robustness as a result of harmful actions of stressors, shocks, noise, mistakes,
faults, attacks, or failures. In other words, the concept of antifragility is that
certain things can improve and even grow stronger when subjected to stress.

This paper states that ensuring antifragility property is the safest way to
exploit smart manufacturing systems under uncertain conditions, using an
association of emerging technologies, such as Artificial Intelligence, Cloud
Computing, Big Data Analytics and Digital Twin. The main driving problem for
such a system is that the fulfilling of the particular objectives is often conflicting
and therefore requires compromise solutions. In our opinion, an utility that
ensures the fulfilment of antifragile engineering goals is the Automatization of
Predictive Maintenance (APM).

2. Related works

A large group of works is that related to the development of SM
applications (derived from the Industry 4.0 paradigm) based on I1oT. Paper [2] is
one of the first dedicated to smart manufacturing, describing several scenarios
having a logistic-based life-cycle model compatible with Industry 4.0
requirements on efficiency improvement and decentralization assurance. In [3] the
authors propose an automatic data acquisition mechanism using loT technology to
ensure predictive maintenance in order to optimize assets management. Paper [4]
develops an analysis framework for IloT that can be used to enumerate and
characterize 11oT and Edge devices when studying system architectures and
analyzing security threats and vulnerabilities.

Another sector rich in references is the one dedicated to including SCM in
the wider SM framework, through digital transformation and digital connection in
collaborative networks. In paper [5] a supply chain model which allows to assess
its performance in a compactly interconnected with 1loT and Edge devices
environment is proposed. The purpose of [6] is to highlight how digitalization
ensures the transfer of current knowledge about the supply chain risk into
practical solutions to prevent it. Paper [7] describes the expected changes in the
control and planning processes determined by the use of Digitalization Elements
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and proposes an original method of designing them according to the requirements
of Industry 4.0 regarding SCM.

The literature on the use of DT in the industrial environment is rich and
rapidly expanding. However, we looked only for recent works that associate DT
with artificial intelligence, cyber-physical systems or hierarchical computer
networks, with the main objective of real-time simulation. Among these, [8]
justifies the need to use DT in combination with other technologies and in
different fields, including the relation to asset management, and predictive
maintenance. In [9], through the association of DT and Big Data, there is
presented a method for designing products on manufacturing lines using DT,
mentioning the maintenance operation, which includes three stages: performance
prediction (without reference to equipment status), manufacturing process
verification and function verification. In [10] the author points out that using the
information provided by the DT we can predict how the manufactured product
will be and then compare the result with the specification in the design phase, an
observation that actually underlies the predictive maintenance. Paper [11] points
out the importance of including in simulation hazards and uncertainties, which is
also a concern of the testing within the simulation framework offered by DT. In
[12] the authors point out the use of DT in cooperation with cyber-physical
models in predictive maintenance.

3. Automatization of predictive maintenance in smart manufacturing
systems

APM facilities are important attributes of the general control system of a
manufacturing process, because they allow the migration of control procedures to
mixed control, security and maintenance solutions. A first solution is the
elaboration of the so-called system models, which are capable of automatically
and permanently producing quality forecasts, to indicate the problems and failures
at an early stage or to diagnose the future abnormal behaviors of the process. Such
models can detect trends in process evolution, and thus can anticipate to what
extent the model's outputs correspond to consistent results. On the other hand, the
consistency of the models may be affected by the lack of expertise on new
processes, still unverified, or evaluated on an insufficient historical database.

An important breakthrough in this direction is the integration of APM
technology with a new simulation technology, called Digital Twin (DT) [13] A
DT is a virtual representation of a real asset. More than a model, DT can receive
continuous real-time data from the process and so can virtually monitor it. A
simulation platform based on DT offers a framework for replacing a real device
with its virtual counterpart, so as to allow efficient life cycle management, design
and reconfiguration of the industrial equipment by performing virtual mapping of
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the available assets (such as components, software, documents, services, robots,
logistics facilities, sensors, units and control components) from the real world in
the digital information world. The main strategy in providing APM based on DT
technology is to take action when the components or parts exhibit certain
behaviors that usually result in a malfunction of the machine, a poor performance
or a decrease in product quality.

Predictive maintenance (PdM) is one of the main tools proposed by
Industry 4.0 paradigm for improving productivity and optimizing Assets
Management. The fulfillment of these objectives is based on three pillars: 1) the
collection and primary real-time processing of the data regarding the status of the
production process and the resources involved in the work; 2) early detection of
anomalies in the evolution of the process or of failures of machines and
equipment; 3) accurate prediction of the time interval until the final fall and
support for the decision to solve the critical situation in this interval. Therefore,
for an antifragile system the optimization algorithms are multi-objective, aiming
at the same time to ensure the robustness and resilience of the production process,
the optimization of asset management and the optimization of the PdM
intervention.

To minimize the differences between real challenges (process control,
context awareness, antifragile operation) and control software, focused more on
improving production, maintenance and logistic support we developed a method
to be applied in a virtual environment.

Failure Mode and Effects Analysis (FMEA) is a structured technique
defined in IEC 60812 [14]. Using FMEA allows identification of several
performance indicators:

e Failure cause: why the process element failed

e Failure mode: how the process element failed

e Failure effect: the consequence of a defect mode regarding element
operation, function or state

e Failure severity: grading the severity associated with the failure of the
specific analyzed element or over interconnected elements

e Failure identification: Approach which considers correlated failure
severity and frequency of occurrence

To apply this test method on a manufacturing line, we consider splitting it
into operational units, and for each component of each unit failure modes must be
defined. The effects produced by each failure mode, the severity of the impact on
the current unit and potential causes are examined. The initial frequency of
occurrence of each failure mode is estimated by experienced engineers.

The cause-effect chain analyzed in a FMEA stage is illustrated in Fig. 1.
Each failure mode has a cause, and each consequence is associated with a failure
mode. A consequence can lead to unexpected behavior. The severity describes the
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importance and priority required by a scenario. The occurrence indicator is given
by the statistical probability of failure for the specific element.
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Fig.1. Cause-effect elements in FMEA
4. Dealing with uncertainties in antifragile manufacturing system

The struggle with the uncertainties is given by specific methods following
three main principles. The basic principle to be applied is that a decision is good
in the same extent that the information on which it is based is good. A second
principle is that uncertainty must be overcome at every stage of the life cycle of a
project, because it can surprise us with its ambiguity and unpredictability both in
the planning stage, in the production launch phase, in the execution phase, even in
the completion phase. Finally, the third principle is that uncertainty management
is more comprehensive and much more different than just applying risk
management techniques, and as such requires more cutting-edge solutions and
perhaps surprising ones.

The antifragile approach of the decision process regarding the
establishment and reconfiguration of the working parameters opens the way to
solve a multi-objective optimization problem (MOP) in conditions of uncertainty.
The main MOP challenge is the need to simultaneously optimize several
contradictory objectives in the context of uncertain input data. In this respect, the
biggest problem is that disturbances can occur in the input data and will propagate
through the model affecting the values of the quality parameters. Thus, the
propagation of uncertainties affects both the optimization process and the
decision-making process. An antifragile MOP can be solved considering that for a
system that has been designed to be robust and resilient, i.e. to keep its outputs
relatively insensitive in the presence of uncertain inputs. Specifically, objective
functions are calculated based on the expected uncertainty estimation using the
same method which takes robustness into account.
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Fig. 2. DT for risk assessment methodology

To support the development of such an approach we propose the use of a
digital twin (DT) as a reference for normal process operation, so that deviations
can be rapidly identified. We consider a systems approach, where we use data
available in the physical process to capture not only individual equipment
behavior, but also device-to-device interactions, allowing identification of
possible correlations between such deviations. A decisive role is to perform
process modelling as a DT representation of the system, with all phases, nodes
and dependencies. As illustrated in Fig. 2 this can be done through an FSM (Finite
State Machine) representation of the process where different diagrams capture
different detail levels of the plant, as well as dependencies between different
nodes, allowing a nested top-bottom approach.

Fig. 3 illustrates the steps required to build a behavioural model in such an
approach. The system is split in several independent phases, each defined by
inputs, events and outputs. Each phase is represented by branch and nodes or final
elements. A phase may include several branches, representing different operation
flows. A risk factor is assigned to each element, taking into consideration the
severity of possible failures, the occurrence and detectability probability. The risk
factor of a phase or branch consists in the sum of all included elements.
According to this data, a criticality matrix is built to represent elements failure
along with their occurrence and severity. The model is updated with real process
data, enabling both the verification of the virtual model in an initial testing and
validation phase, and also the anomalies identification and classification during
process operation.



Mechanism for testing and improving the robustness of smart manufacturing systems 53

‘ Yes
Yes
\\}< Increase More

No
detail? phases?

Fig.2. Building the behavior model

5. Experimental results

Testing and validation of the method was carried out on the testbed called
SMART Flexible Assembly System offered by the Laboratory L9: Innovative
Products and Processes to Increase Life Quality from the Research Center for
Smart Products, Processes and Innovative Services (PRECIS) of the Faculty of
Automatic Control and Computers, Politehnica University Bucharest, having as
main objective the use of advanced modeling and simulation technologies for
performance assessment of manufacturing mechatronic lines. The logistic support
for performing the tests is a laboratory model for a flexible assembly line of
industrial products with 5 workstations (WS 1...WS 5), presented in Fig.3.
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Fig. 3. Block diagram of the mechatronic assembly line

The technological flow consists in the succession of several processing
phases, one at each workstation. At the first workstation a pallet base used to store
the parts of the finished product is placed on the conveyor belt. At the second
workstation on the pallet is placed the first piece (the basis) of the product. At the
third workstation, the robotic arm executes assembly with several small parts. The
fourth workstation ensures the mounting of the last piece and so a compact
product is completed. The fifth workstation is responsible for stacking the
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product. The local operation of the physical process is implemented using
Siemens PLCs, while the DT model was implemented in Node-Red. Standard
Modbus communication protocol is used for data acquisition.

For each station of the manufacturing line a FSM (Finite State Machine)
representation was built, as a virtual DT representation of the physical process.
For example, Station 1 (Fig. 4) was modelled using 10 states and 12 transitions.
The states are represented by nr_pf, the number of products, and nr_pi, the
number of components for each product, given by the PLC, two inductive sensors,
SP1 and SP2, showing the product entered or exited the conveyor belt, 1 RFID
sensor, RFID1, to identify the stop position, one optical sensor SO1, to check
pallets availability in the rack, two feedback sensors SF1 and SF2, which confirm
the element is in the correct position and can be released from the stack, a
capacitive sensor SC for confirming the element reached the belt and B2_free, a
parameter confirming the next station accepts new elements. The transitions
represented through elements P1 to P12 check the cumulative conditions required
for each step for the element to be correctly processed until it leaves the station.
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Fig.4. Behavior model example for station 1

We considered for each transition in the FSM model a time parameter,
representing the time required to pass from one operational stage to another. This
parameter was determined during the initial testing and validation phase by
extracting the time between successive events, using the timestamp value of each
detected event. Statistical processing functions like mean and standard deviation
are used to identify faults from real-time data. This way we can determine, for
example, the expected time between the moment a piece handled by the
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manufacturing line entered a processing phase, and when it should exit towards
the next stage. Abrupt changes in the estimated processing time or the measured
tendency to go beyond the normal operation range will be signalled either as
warnings or as faults, depending on the event severity.

The FMEA analysis was applied on this station taking into consideration
for each element possible failure modes, causes and effects and assigning a risk
considering a factor between 1 and 10 for the severity of the event, the probability
of occurrence and the ease of detecting it. By multiplying these indices, we
obtained a risk factor which varies from 1 to 1000. The risk value is denoted RPN
(Risk Priority Number).

Starting from the FMEA analysis in our method we consider, at the
beginning, the same occurrence index for all elements, with the value 1, thus
making the initial risk of operation lower, corresponding to a proper operation.
The risk index for an individual element is computed as the maximum value
between all RPNs associated with that element. By overlapping the risk indices
over the elements represented in the FSM diagram we can compute in real time
the overall risk factor as the sum of all possible risks of all linked elements,
according to the state of each element. In a manufacturing line where
reconfiguration is possible, these values should be computed for all possible links,
and are set for each element thought the normal behaviour of the manufacturing
line.

We assign these values on each node of the behaviour model illustrated in
Fig. 4. During process operation, these values are adjusted to reflect the current
risk according to received process data. Fig. 5 illustrates the data acquisition and
processing modules, in this case applied for reading signal SP1. Data is collected
from the physical process using a Modbus TCP connection and stored in a local
database. The real-time value is displayed in the dashboard. Changes in the sensor
state trigger the acquisition of a new value. The time between successive data
acquisitions is be used to estimate the duration of a phase.
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Fig. 5. Signal acquisition, processing and storage example for SP1

We defined blocks to compute the mean and standard deviation for the
phase duration (Fig. 6). For this, we created a table for active signals which will
store each activation of the inductive sensors, as well as the timestamp of this
event. We chose not to store the values for these statistical parameters, but rather
to compute them online using database interrogation functions. The standard



56 Celestin Draganescu, Giorgiana Cristescu, Oana Chenaru

deviation was computed as: SELECT AVG ((SP1.time - sub.a) * (SP1.time -
sub.a)) as var from SP1, SELECT AVG(time) AS a FROM SP1) AS sub. The
mean was computed as SELECT value, time, time - LAG (time, 1, 0) OVER
(ORDER BY value) diferenta FROM SP1.
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Stergere tabel SP1
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Export Deviatie Standard SP1 _

Export Medie SP1

Fig. 6. Detail on computing signal attributes

The following cases are considered for fault identification:

- Communication link state: in case the Modbus client does not receive a
response from the server device it automatically triggers an alarm, visible
in the dashboard. The link will be marked as ACTIVE if the
communication works properly, otherwise INACTIVE.

- Bad value received from the sensor: this is signalled by the
communication protocol in case the corresponding register is unavailable.
In this case the signal is marked as INACTIVE.

- Untrusted value: each value is analysed according to the mean and
standard deviation of its previous values (to determine outlier behaviour),
relative to the values of its correlated parameters (to determine either a
root or independent failure) or and or/relative to its variation slope (to
measure the tendency of exceeding operational limits or under optimal
operation). If any of these cases are identified the received signal will be
marked as untrusted.

Fig. 7 shows how this information is used to update the parameters of the
RPN and adjust its value in real-time, during process operation. For this we
compute a new occurrence value according to detected faults, the severity
according to the cross-correlation with other parameters and the detection
probability according to the percentage of false failure detection in case of signals
marked as untrusted values. We used a join node to build a vector from these three
values and obtained the RPN values by multiplying these three parameters.
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Fig. 7. Example on computing RPN value associated with SP1

The presented results showed how a DT approach can be used to extend
traditional monitoring and control applications to support operational activities
and provide insight on the process state through a systematic view. The use of
Node-Red for the implementation provided flexibility in the integration interfaces
with both process and operational levels and in implementing the processing
functions. The results of this analysis can be forwarded to predictive maintenance
modules or updated to allow process reconfiguration based on alternative routes
defined in the FSM model.

4. Conclusions

In this paper we tried to discuss the possibility of designing a special
category of complex adaptive systems that permanently maintain performance at
optimum parameters, extending the operating time as much as possible, by
assuming calculated risk forms. In this aim we proposed an antifragile mechanism
that combine a predictive maintenance procedure with a procedure that combats
the negative effects of the uncertainties. This implies a fundamental change in
process planning policy. For example, if we consider as optimum policy a non-
delay schedule, which avoids idle time in the execution phase, the unexpected
changes in the environment may cause partially or totally revision of the initial
planning, depending on the robustness requirements proposed by the production
control antifragile solution. Therefore, the goal is to design a joint model that
integrates proactively the production scheduling and the preventive maintenance
procedure that will allow the optimization with the double objective of
improvement for both quality robustness and functional robustness.

Adding to this bold proposal for dynamic optimization procedure with
discrete and continuous variables the real-time simulation facilities in the Digital
Twin framework, we consider that the proposed mechanism offers the chance to
detect and eliminate hidden vulnerabilities and to facilitate learning and isolation
of wrong behavior processes.
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