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PERFORMANCE ANALYSIS OF GENETIC ALGORITHMS 

FOR ROUTE COMPUTATION APPLIED TO EMERGENCY 

VEHICLES IN UNCERTAIN TRAFFIC 

Vlad CONSTANTINESCU1,2, Monica PĂTRAȘCU3 

Efficient transportation is an important requirement in today’s world. As 

modern cities grow in size and complexity, the travel distances for people and goods 

increase while available time decreases. Routes must be computed dynamically and 

close to real-time, while taking into consideration various factors such as road 

congestion and maximum speed allowed. In this paper, we explore the use of 

evolutionary algorithms to solve this multiple criteria optimization problem. The 

performance analysis included in this study identifies the best configuration for the 

genetic routing algorithm which provides the best consistency of correct routes.   

Keywords: intelligent transportation systems (ITS), genetic algorithms (GA), path 

planning, vehicle routing 

1. Introduction 

With the continuous increase in both size and complexity of modern cities, 

Intelligent Transportation Systems (ITS) play a more important role. ITS can be 

defined as the application of sensing, computing, electronics and communication 

technologies, together with management strategies, for improving the safety and 

efficiency of the transportation system [1]. The presence of ITS is an integral part 

of smart cities [2]. Traffic jams are an increasing problem in the modern cities. 

Infrastructure development is not always an option as real estate and financial 

limitations are often encountered. The development of ITS is important for 

decreasing travel times and pollution. Intelligent Transportation Systems provide 

a number of user services such as pre-trip travel information, incident 

management, traffic control or route guidance [3]. A study presented in [4] shows 

the use of route guidance systems for both local drivers and visiting drivers. With 

the increase in intelligence at vehicle level, more opportunities for increasing 

safety during transportation arise. These measures range from adaptive cruise 

control systems to collision avoidance and even driver monitoring. While applied 

to individual vehicles, they contribute to the overall safety and efficiency of travel 

through urban areas. To this respect, the European Union lists route guidance and 
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navigation as one of the core systems included in Vehicle Safety Systems as part 

of ITS [5]. 

According to the statistics of the Emergency Situations Department of the 

Romanian Ministry of Internal Affairs, from January to November 2018, 

emergency response crews answered to 1197 requests per day, in average [6]. The 

mean response time was between 13 minutes for fires and 12 minutes for medical 

emergencies (SMURD). More so, when the vehicles benefitting from optimum 

routes are emergency intervention crews, an efficient routing system through busy 

urban area is paramount to be integrated in any useful ITS. In 2017, for instance, 

the Brisbane City Council implemented a system for automatically turning traffic 

lights green when an ambulance or fire truck approaches the intersection [7]. This 

was done using Bluetooth and reduced the travel time of the emergency crews by 

26%. A study made in Spain in 2010 [8] suggests than a 10-minute reduction in 

the response time of the medical crew can lead to a 30% decrease in the number 

of fatalities. From smartphones to field-specific tablets and devices designed to 

help professionals in their work, the development of mobile technologies has 

opened the gates to new uses when it comes to transportation. Combined with the 

rapid expansion of communication technologies which allows users to connect 

with each other and with various databases, drivers can nowadays access more 

and more accurate traffic information, while they travel. Emergency vehicles can 

particularly profit from real-time updates which support dynamic routing 

applications. GAs have been applied in control systems engineering, as described 

in [9]. The authors underline the benefits of evolutionary algorithms, benefits such 

as flexibility in representing the decision variables and robustness to difficult 

search environments. They are tolerant to discontinuities and noise. Evolutionary 

algorithms can also be coupled with neural and fuzzy control schemes and allow 

multi-objective optimization.  

In this paper we evaluate the use of genetic routing algorithms for the path 

planning of emergency vehicles through urban traffic. In section 2 we present the 

genetic route computation method and the problems associated with computing a 

route. In section 3 we perform a comparative analysis of the algorithm for 

different parameters and determine the configurations which provide the best 

routing consistency. Finally, the last section contains the conclusions and future 

directions. 

2. Genetic Algorithms for Route Computation 

Urban traffic keeps increasing in density along with the development of 

urban conglomerates. Smart routing based on real-time data is preferred to offline 

modelling or prediction of traffic densities and flow. Computing the best route for 

a vehicle should take into consideration multiple criteria, such as route length, 

road occupancy, maximum speed allowed.  
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The route computation of emergency vehicles is a problem that is in part 

path planning and in part vehicle routing. For this study, we consider that an 

emergency vehicle is a vehicle taking part in urban traffic, actuated by a human 

driver, with law mandated maximum speed. The problem at hand is an 

optimization problem which must return a good and efficient route from a 

specified starting point to a specified destination for which time constraints are 

critical: the vehicle must reach the destination as soon as possible, i.e. with 

minimum waiting time, which translates into three requirements to be met 

concurrently: 
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where x is the length of a road segment delimited by two intersections, n is 

the total number of road segments, and z(t) is the number of vehicles at any given 

time on a road segment. The criteria IP, IC and IN refer to the minimization of route 

length, of road occupancy along the route, and number of route segments, 

respectively. Clearly, a good route must be comprised of few segments, of small 

total length, and with the least number of cars possible. This problem can be 

approached as a multi-objective optimization problem and because formal models 

of traffic are highly uncertain and usually non-linear, because the search space is 

not necessarily continuous, and because there are various constraints in play, a 

suitable optimization method is given by genetic algorithms (GAs), which have 

been successfully applied to this type of problem.  

Genetic Algorithms (GA) [10] are metaheuristic search algorithms for 

optimization in large multi-dimensional non-smooth spaces. This class of 

algorithms was inspired by biological evolution mechanisms (Fig. 1). Each 

individual of an artificially generated population represents a possible solution to 

the optimization problem at hand. The members of the population are called 

chromosomes and each element of a chromosome represents a gene. A fitness 

function evaluates the performance of the individual and a fitness value is 

computed for each of them. For maximization problems, the greater the fitness 

value, the better the solution, and vice-versa. For minimization, the lower the 

fitness value, the better suited the individual. The design of the fitness function 

influences the search toward the global optimum. If some criteria or constraints 

are prioritized, the algorithm might first seek to meet the major criteria, thus 

contracting the search space and subsequently refining the search. If, however, all 

requirements are equally weighted, the search time might increase. 
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Fig.1. Genetic Algorithm  
 

After the random set-up of the initial population, the algorithm uses 

mechanisms of selection, recombination and mutation (Fig. 1) for evolving the 

population. These operations are repeated until the stop condition—such as 

number of iterations or various quality criteria—is met.  

Selection mechanisms are used to choose the individuals on which 

mutation or recombination is applied so that new individuals are created. Some 

widely used selection methods include roulette wheel and tournament.  
 

 
Fig.2. Mutation and single-point recombination 
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The mutation operator modifies one gene of a chromosome and so creates 

a new individual (Fig.2). The alteration of the gene is usually made according to a 

parameter known as mutation probability. Mutation is important to maintain 

genetic diversity in the population. This probability-based operator usually 

ensures that the algorithm does not end in local optima. Previous studies [11,12] 

have shown that GA’s are highly sensitive to the mutation rate, which is the 

probability of an individual to suffer mutation. In its standard version, the 

mutation rate is defined as percentage of mutated individuals. When this rate is 

too small, the genetic diversity in the population cannot be maintained, but when 

too high, it slows down and even halts convergence. The recombination (or 

crossover) operator creates new chromosomes (children) by combining the 

features of other individuals(parents). The most basic recombination is called one-

point-crossover and creates two children from two parents: a crossover point is 

selected and new individuals are created by taking the first part of one parent and 

the second from the other; the second new individual is created with the second 

part of the first parent and the first from the other (Fig.1).  

The fitness function of the GA allows the integration of multiple criteria 

and so the obtained solution satisfies different objectives. The role of the fitness 

function is to compute a fitness value for each individual. Based on this value, a 

number of individuals from the population are selected and will be used for 

recombination. Depending on the type of selection, these individuals could be the 

best (elitist selection), or a combination of best or average (ranking selection), or 

even best and worst (separating selection). Termination criteria can be either one 

of several variations—a certain number of generations has been processed, a 

preset amount of time has passed, or the fitness value is within a desired range—

or a combination of these. 

Transferring the routing problem to genetic optimization raises three major 

questions: 

- route encoding: how to best transpose the routing information into a 

chromosome when route lengths might vary and how does this representation 

affect the evolution operators; 

- constantly changing search space due to vehicle moving throughout the 

road network and due to multiple constraints; 

- returning a viable solution in a feasible amount of time: for evolutionary 

algorithms convergence is highly dependent on parameters that drive it toward or 

away from a global optimum, on mechanisms that tend to cause stagnation in 

local minima, etc., therefore properly configuring the algorithm is necessary to 

ensure success in the least possible amount of time. 

The principle of genetic routing is illustrated in Fig. 3. The routing 

algorithm receives a destination point within the urban area and it knows the 

current position of the emergency vehicle. Based on current traffic data (received 
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from external sources), the algorithm searches for a viable route which is then 

transmitted to the driver of the emergency vehicle. For a route to be viable, it 

needs to comply with the following restrictions: a route cannot contain duplicate 

segments, i.e. the emergency vehicle should not double back or be expected to 

travel the same segment twice; a route must contain at least one segment, routes 

cannot be null; a route must start and end at the proper positions on the map; a 

route must be composed of continuous route segments. 

 
Fig.3. Genetic routing of emergency vehicles  

 

The fitness function for the routing algorithm takes into account the route 

restrictions and determines which would be the route that offers the least amount 

of travel time based on length and occupancy [13]. For a route of n segments, the 

route fitness F is computed by analyzing each section in terms of degree of 

occupancy on the i-th segment Di, length of route segments Li, and a scaling 

function ρ(P0, i) which minimizes the importance given to segments farthest away 

from the current position of the vehicle P0 (because their conditions might change 

by the time the driver reaches them): 
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The algorithm rewards short routes with a small number of participants, 

focusing on routes with sparse traffic condition which could take less time to 

travel even though geographically they are longer. In a crowded urban area, 

sometimes the shortest distance in space does not ensure the smallest travel time 

due to congestions or slow-moving traffic. The start and end points of a route 

have been a main concern when we first explored the concept of genetic 

optimization applied to the vehicle routing problem [13]. We explored two 

options: a) compute the route once, at departure; or b) re-compute the route 

dynamically during travel.  In [13] we determined that due to the ever-changing 

traffic conditions, recalculation of the route whenever possible is a better 

approach than computing the entire route from the start without adjustments. This 

choice, although it increases the computational resources the algorithm uses 

during travel, it also alleviates concerns regarding surety of convergence. GAs do 
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not guarantee an optimal solution, but even though the current suggested route is 

correct, this assessment might change due to the other participants or other events 

that might cause a route to become unviable (for instance an accident). The same 

is true for the reverse situation, in which a route is not optimal: we only need the 

first few segments to be suitable because the route is recalculated as the vehicle 

advances through the city and traffic changes.  

Another issue of genetic routing is the search space. In a large urban area 

with an interconnected network of streets, the fitness calculation in Eq. 2 is not 

enough to ensure that the emergency vehicle is driving toward the destination and 

not away or to ensure that all restrictions on route composition are met. We 

addressed these problems in [14] by designing a route encoding method which 

reduces the search space according to restrictions. Thus, we took an unnecessary 

computational strain off the fitness evaluation procedure and used it to gain an 

advantage in the search itself. This method is presented in Fig. 4. Given a simple 

map with 4 intersections (A,B,C,D), Fig. 4 illustrates the encoding of a route 

starting at A and ending at C: A→B→C, as shown with arrows in the figure.  

 
Fig.4 – Route encoding example 

 

All the road segments presented in the map are stored in a vector. When 

encoding a route in a chromosome, we store the indexes of the corresponding road 

segments forming the route. For example, the chromosome associated to the route 

formed by the road segments AB and BCis the vector c = [1 2]. Using this 

method, we reduced the search space significantly by eliminating all the routes 

which did not comply with the restrictions regarding duplicates, non-null routes, 

proper start and destination, continuity, and occupancy. However, this is not 

enough to ensure correct routes are returned in a feasible amount of time, due to 

the very nature of genetic optimization. These algorithms might perform well in 

uncertain, non-smooth spaces, but they are also sensitive to the evolution 

mechanisms and probabilistic operators that drive the search. Therefore, in order 

to make sure that a valid and optimum route is found, we need to tune and test the 
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implementation of the algorithm repeatedly until convergence times are satisfying 

and consistent.  

3. Performance Analysis and GA Tuning for Route Computation  

In [14] we have introduced a method of encoding routes into 

chromosomes and then applied a GA to compute the best route. The aim of the 

algorithm is to find the best route according to the specified criteria, such as least 

occupied and shortest distance travelled. A reduced search space ensures a more 

rapid convergence of the algorithm, so when encoding the routes into 

chromosomes we attempted to minimize the search space as much as possible. We 

used chromosomes with lengths similar to the possible routes lengths and each 

gene points to a road section that is part of the route. When computing the fitness 

function, only occupied genes (i.e. the segments part of the route, for instance 

segments AB and BC in Fig. 4) are taken into consideration. The value of the 

fitness function is increased if the encoded segments are continuous and if the 

route starts and ends at the start and destination point. If loops are found in the 

route or if the route contains no segments the value is decreased. The fitness 

function value is also adjusted according to the length of the route and to the 

number of cars present on the selected road segments. This ensures shorter and 

less occupied routes are found. The testing performed by the authors of [15] 

shows that tournament selection is the recommended selection mechanism for the 

basic traveling salesman problem. The tournament selection mechanism, with a 

tournament size of 2, is detailed in Fig. 5.  
 

 
 

Fig.5 – Tournament selection 
 

Tournament selection is a mechanism for selecting individuals from the 

population to create new members of the next generation using crossover and 

mutation. It has the following parameters: size of the tournament which represents 

the number of individuals selected from the population for the tournament, and 

probability which represents the probability with which the best individual is 

selected. The second-best individual is selected with a probability of p·(1-p) and 

so on. The Individuals are ranked by their fitness value. The best individual is the 

one with the highest fitness. For our tests, we used the SUMO (Simulation of 
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Urban Mobility) [16] software. The control of the traffic lights was implemented 

using agents [17]. For developing the agents, we used the JADE (JAVA Agent 

Development Framework) [18] environment. Our simulations ran on a system 

with 16GB RAM and an Intel Core I7 processor clocked at 2.9 GHz. 

In order to find the shortest convergence time, we ran the algorithm with 

different values for population size and genetic operators, as shown in Table 1. 

The last column in the table lists the percentage of correct routes (continuous and 

least occupied) out of 10 runs. An epoch represents a generation (one cycle of the 

GA comprised of evaluation, selection, recombination).As we can see in Table 1, 

the tournament size affects the outcomes significantly as a high value for this 

parameter means the selection pressure is high [19] so individuals with an 

increased fitness value are selected for mutation and crossover.  

A higher crossover probability increases the diversity in the population, 

but it can also decrease divergence by losing good individuals already found, as 

described in [20]. We also notice that an increased mutation probability tends to 

impede the gradual convergence to a solution and transform the progress of the 

algorithm to a random search in the solution space. 
Table 1 

Genetic algorithm analysis 

No. of 

Epochs 

Population 

size 

Tournament 

size 

Tournament 

probability 

Crossover 

probability 

Mutation 

probability 

Run 

time 

[s] 

% of 

valid 

routes 

10000 500 

20 

80% 

35% 

8,3% 

16 30% 

10 12 30% 

6 10 20% 

2 

5 90% 

20% 6.5 40% 

5% 7 90% 

2% 9 10% 

10% 

8.3% 

4 100% 

20% 5 100% 

50% 6 100% 

 

After running the tuning tests, we adjusted the algorithm with the best 

parameters and ran new tests for different population sizes to evaluate its 

consistency. The results are presented in Fig.6. We performed 100 runs for 

different numbers of epochs (between 5000 and 15000) with a population size of 

500, a tournament of size 2 and probability 80%. The genetic operators are one-

point crossover with 35% probability and mutation with 1/12~8.3% probability. 

Although a run with 5000 epochs offers over 85% correct routes, we need 

over 9000 epochs in order to ensure our algorithm provides over 95% correct 

routes, as presented in Fig. 6. A run with over 12000 epochs provides close to 

100% correct routes. For this implementation, we recommend an epoch number 
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of at least 12000 in order to minimize the running time and to maximize the 

probability of finding correct routes. 

 
Fig.6 – Percentage of correct routes for 100 runs of the GA vs number of epochs 

A computation with 5000 epochs takes 2-3 [sec] on our test system. A run 

with 15000 epochs takes 7-8 [sec] on the same system (average times computed 

across all simulations). With further code optimization, these computing times can 

be greatly reduced.  
 

4. Discussion: Advantages and Limitations 
 

If we compare the presented routing algorithm with the classical shortest 

path algorithms, we notice the advantage in computation speed of the classical 

algorithms, but these allow the use of a single criterion for selecting the route. 

For testing purposes, we build an implementation of the Dijkstra algorithm 

in JAVA. The algorithm found the shortest route in less than 1 [sec]. However, a 

problem arises when trying to incorporate multiple criteria in the search. For 

Dijkstra, the multiple criteria must be combined into a single scalar weight value 

for each route segment. Such a value is difficult to compute adaptively, as it needs 

to contain pertaining to the position of the segment represented by the arc relative 

to the current position of the vehicle. When the vehicle advances through traffic, 

its position changes and thus the entire graph would need to be updated. When 

using Dijkstra, the scalar weights for the entire road network need to be computed 

prior to running the algorithm. One way to incorporate multiple criteria in the 

scalar weight is to assign different weights to different separate criteria and to 

combine them into a final scalar weight. These secondary weights are different for 

each road segment; for example, if taking into consideration the vicinity to a 
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school and thus having reduced traffic requirement. Even so, there is no guarantee 

that a weighted sum is the best form of criteria combination. The computation 

cost of the arc weights would offset the small computation time of the 

optimization procedure, bringing it closer to the GA run times. Moreover, the GA 

implementation we used in this study is not optimized for real-time execution, in 

which case the run times can be significantly reduced.  

On the other hand, when using the GA variant, multiple criteria are easily 

added to the fitness function without additional design effort. For instance, the 

uncertainty associated to types of roads (for example roads that pass near schools) 

does not require explicit formalization using only one scalar that might or might 

not offer an accurate representation of the uncertainty. With these remarks in 

mind, we conclude that the standard GA might not be the best, and thus we 

propose a new approach that uses the advantages of both methods, classical and 

evolutionary.  

5. Conclusions 

In this paper we explore how different parameters influence the 

performance and convergence of a GA based vehicle routing algorithm. We aim 

to tune the algorithm in order to minimize computation time and improve 

convergence, so we can find the shortest and least occupied route while 

maintaining a short run time. By running test on our implementation, we 

concluded that, for a specific set of GA parameters, our algorithm converges to a 

correct route if the number of epochs is large enough (12000 or more).  

Our previous work has provided us with a proper encoding method, and 

we reduced the search space considerably. Therefore, further work will focus on 

improving the generic evolution mechanisms implemented here aiming to obtain a 

fully customized GA, specifically designed to solve the routing problem. By 

taking into account the encoding method, new operators might allow the reduction 

of the population size without losing consistency. Moreover, the search space and 

computation time can be further improved by introducing specialized mechanisms 

such as immunization, a powerful yet sensitive convergence driving tool. Given 

that the start and destination points are known, the GA can also start from a non-

random initial population and so achieve better convergence times. The runtimes 

we obtained for generating consistent correct routes include both the search part 

of the algorithm and the computationally heavy fitness evaluation. With proper 

code optimization on a dedicated tablet or mobile device, this runtime can be 

further reduced, thus making it viable for real world implementation and usage.  
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