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q-DONOHO-STARK’S UNCERTAINTY PRINCIPLE AND q-TIKHONOV

REGULARIZATION PROBLEM

Akram Nemri 1

This paper deals with the extension of the Donoho-Stark’s uncertainty prin-

ciple for the class of Fourier multiplier operators Tm := F−1
q (mFq) to time scale. Fur-

thermore, the Bochner-Riesz mean operator, the Weierstrass transform and the Poisson

integral are given using Fourier multiplier operators. Finally, the exact expression and
some properties of the extremal functions of the so-called Tikhonov regularization prob-

lem are also determined; using reproducing kernel methods.
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1. Introduction

A time scale, denoted by T, is a nonempty closed subset of the real numbers. We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The calculus on time scales is a relatively new area that unifies
the difference and differential calculus, which are obtained by choosing the time scale T for
example the real numbers R, the integers Z, the natural numbers N, the nonnegative integers
N0, the h-numbers hZ := {h k, k ∈ Z} with fixed h > 0, and the q-numbers qZ := {qk, k ∈ Z}
with fixed q ∈ (0, 1). A strong current research has been developed in many different fields
in which dynamic processes can be described with discrete, continuous, or hybrid models.
The time scale theory was found promising because it demonstrates the interplay between
the theories of continuous time and discrete-time systems. It leads to a new understanding
and analyzing of dynamical systems on any nonuniform time domains that are closed subsets
of R. In particular, calculus on the time scale T := Rq,+ = {qk, k ∈ Z}, q ∈ (0, 1) is called
“Quantum calculus” or “q-calculus” and much recent research activity and applications
has focused on this theory. This branch of mathematics continues to find new and useful
applications. Quantum calculus is the modern name for the investigation of calculus without
limits. It’s appeared as a connection between mathematics and physics. Quantum calculus
has its own definition of derivative, integral, exponential, sine, cosine etc. All these notions
depend on an a priori given number q. Many q-notions approach their classical analogs as
q ↑ 1. The real line R is replaced, essentially, by the set Rq of points accumulating at 0.

In this paper, we present a unification proof of many inequalities and approximations
for the classical and discrete case; by means of the theory of time scales. The idea is to
extend the cosine Fourier transformation Fq to time scale, which sends a function f on Rq,+

to a function Fq(f) on the same set; and has many properties analogous to those of the
classical Fourier transform. In particular, it acts as an isometry of the space L2(Rq,+) of
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functions f on Rq,+ with finite norm ∥.∥L2(Rq,+), defined by

∥f∥L2(Rq,+) := (1− q)
(∑

n∈Z

qn | f(qn) |2
)1/2

.

Moreover, it satisfies Fq(Fq(f)) = f .
In this paper we study the Fourier multiplier operators Tm defined for f ∈ L2(Rq,+)

by

Tmf := Fq(mFq(f)),

where m : T → R is a bounded function. Thus the Fourier transform of Tm reduces to the
multiplication by m. Such multiplier operators play a decisive role in the classical Fourier
analysis.
Central to this work is the best approximation problem in quantum calculus,

inf
f∈Hs

∗,q(Rq)

{
η∥f∥2Hs

∗,q(Rq)
+ ∥g − Tmf∥2L2(Rq,+)

}
(1.1)

for an unknown function f , where g ∈ L2(Rq,+) is a given function and η > 0, s > 1/2 are
parameters with s fixed throughout and η approaching eventually 0. Here Hs

∗,q(Rq) is the
q-analog of the Sobolev space of fractional order s,

Hs
∗,q(Rq) :=

{
f ∈ L2(Rq,+) : (1 + z2)s/2Fq(f)(z) ∈ L2(Rq,+)

}
.

We provide some analysis of the minimizer f∗
η,g of the problem (1.1). Especially we use the

theory of Fourier transform in quantum calculus, to give integral representations of f∗
η,g;

and to examine the convergence rates of these type of representations.
In the limit case η ↑ 0, the problem (1.1) reduces to the Tikhonov regularization

problem

inf
f∈Hs

∗,q(Rq)

{
∥g − Tmf∥2L2(Rq,+)

}
.

The paper is divided into five sections and is organized as follows. This paper is orga-
nized as follows. In Section 2, we present preliminaries, definitions and concepts concerning
time scale calculus and basic notions that will be needed in the proofs of the main result.
In Section 3, we define and study the Fourier multiplier operators Tm on Rq,+ and we give
three examples: the q-Bochner-Riesz mean operator, the q-Weierstrass transform and the
q-Poisson integral. In Section 4, we present extensions of an Donoho-Stark’s uncertainty
principle for the class of Fourier multiplier operators Tm on time scale. In the last section,
we give an application of the theory of Fourier transform on time scale, to examine the
minimizer f∗

η,g of the problem (1.1).

2. Preliminaries

Throughout the paper assume that 0 < q < 1. For a ∈ C, the q-shifted factorial
(a; q)k is defined as a product of k factors

(a; q)0 = 1, (a; q)k = (1− a)(1− aq)...(1− aqk−1), k = 1, 2, ...

This definition remains meaningful for k = ∞ as a convergent infinite product

(a; q)∞ =

∞∏
k=0

(1− aqk).

The q-derivative of a function f given on a subset of R or C is defined by

Dq,xf(x) :=
f(x)− f(qx)

(1− q)x
, x, q ̸= 0,
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where x and qx should be in the domain of f . By continuity we set (Dqf)(0) = f
′
(0)

provided f
′
(0) exists.

For a > 0 and a function f given on (0, a] we define the q-integral by∫ a

0

f(x)dqx := (1− q)a

∞∑
n=0

f(aqn)qn.

The improper integral is defined in the following way∫ ∞

0

f(x)dqx := (1− q)

+∞∑
k=−∞

f
(
qk
)
qk.

We begin by putting

Rq = {±qk, k ∈ Z}, Rq,+ = {qk, k ∈ Z}, R̃q,+ = {qk, k ∈ Z} ∪ {0}.

Let E := [0, a]q := {qk, k ∈ Z, k ≥ n}, a = qn be subset of Rq,+.
We denote by µ the measure on Rq,+ given by dqµ(y) := cqdqy; and by Lp(Rq,+), 1 ≤ p ≤ ∞,
the space of functions f on Rq,+, such that

∥f∥Lp(Rq,+) :=
(∫ ∞

0

|f(y)|pdqµ(y)
)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(Rq,+) := ess sup
y∈Rq,+

|f(y)| < ∞,

where

cq =
(1 + q

1− q

)−1/2

Γ−1
q2 (1/2), (2.1)

and the q-gamma function (see [7, 8], Section 1.3) is defined by

Γq(z) :=
(q; q)∞
(qz; q)∞

(1− q)1−z, 0 < q < 1, z ̸= 0,−1,−2, ...

We take the definition of q-trigonometric function [9] and we write q-cosine as a series
of functions

cos(x; q2) :=

∞∑
n=0

(−1)nbn(x; q
2) =

∞∑
n=0

(−1)n
qn(n+1)

(q; q)2n
x2n.

On ±qZ this function is bounded and there it satisfy

| cos(x; q2)| ≤ 1

(q; q2)2∞
.

Let f be a function in L1(Rq,+), the q-even translation operators Tq,x are defined by

Tq,xf(y) :=

∫ ∞

0

f(z)Dq(x, y, z)dqz,

where cq is given by (2.1) and Dq(x, y, z) is defined for x and y in Rq,+ by

Dq(x, y, z) := c2q

∫ ∞

0

cos(xt; q2) cos(yt; q2) cos(zt; q2)dqt.

In particular the following product formula holds

Tq,y cos(tx; q
2) = cos(tx; q2) cos(ty; q2).

Specially, we need the positivity of the q-even translation operator [6] for proving the fol-
lowing inequality for f ∈ L1(Rq,+),

∥ Tq,xf ∥L1(Rq,+)≤∥ f ∥L1(Rq,+) .
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This positivity property holds if q ∈ (0, q0], where q0 is first zero of the q-hypergeometric
function [7] q 7→ 1φ1(0; q; q, q).

For f ∈ L1(Rq,+) the q-cosine Fourier transform is defined by

Fq(f)(x) :=

∫ ∞

0

cos(xy; q2)f(y)dqµ(y), x ∈ Rq,+.

The q-analogue of the elementary exponential functions are crucial. They are defined
by

E(x; q) := (−(1− q)x; q)∞ =

∞∑
0

q
n(n−1)

2
(1− q)n

(q; q)n
xn, x ∈ R, (2.2)

and

e(x; q) :=
1

((1− q)x; q2)∞
=

∞∑
0

(1− q)n

(q; q)n
xn, |x| < 1

1− q
. (2.3)

The q-cosine Fourier transform Fq satisfies the following properties.
(i) L1 − L∞-boundedness. For all f ∈ L1(Rq,+), Fq(f) ∈ L∞(Rq,+) and

∥Fq(f)∥L∞(Rq,+) ≤
1

(q; q2)2∞
∥f∥L1(Rq,+). (2.4)

(ii) Inversion theorem ([4], Theorem 3.2). Let f ∈ L1(Rq,+), such that Fq(f) ∈
L1(Rq,+). Then

f(x) = Fq(Fq(f))(x), x ∈ Rq,+. (2.5)

(iii) Plancherel theorem ([4], Theorem 7.7). The q-cosine Fourier transform Fq extends
uniquely to an isometric isomorphism of L2(Rq,+) onto itself. In particular,

∥Fq(f)∥L2(Rq,+) = ∥f∥L2(Rq,+). (2.6)

3. q-Fourier multiplier operators on Rq,+

Let m be a function in L∞(Rq,+). The q-cosine Fourier multiplier operators Tm [13],
are defined for f ∈ L2(Rq,+) by

Tmf := Fq(mFq(f)). (3.1)

Then, for f ∈ L2(Rq,+), we have

∥Tmf∥L2(Rq,+) ≤ ∥m∥L∞(Rq,+)∥f∥L2(Rq,+). (3.2)

As applications, we give the following examples.
Example 3.1. Let m be the function defined for t > 0 and β > 0 by

m(z) := Wβ+ 1
2
(z/t; q2)χ[0,t]q (z), z ∈ Rq,+,

where Wα is the q-binomial function [5] given by Wα(x; q
2) =

(x2q2; q2)∞
(x2q2α+1; q2)∞

, which tend

to (1− x2)α−1/2 as q ↑ 1− . Then Tmf = σβ,t;q(f), where σβ,t;q(f) is the q-analogue of the
Bochner-Riesz mean operator of f (see [2, 3]) given by

σβ,t;q(f)(x) :=

(
1− q

1 + q

)1/2 Γq2(β + 1) t

(1 + q)Γq2(β + 3/2)

∫ ∞

0

f(z)Tq,xjβ+1/2(tz; q
2)dqµ(y).

Here, jα(z; q) is The normalized third Jackson’s q-Bessel function of order α jα(z; q) :=
(q; q)∞

(qα+1; q)∞
z−αJ (3)

α (z; q), where J
(3)
α (.; q) is the third Jackson’s q-Bessel function (this is

called the Hahn-Exton q-Bessel function Jα(.; q) (see [9], (3.3)).
Example 3.2. Let m be the function defined for t > 0 by m(z) := eq2

(
−tz2

)
, z ∈ Rq,+,
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where eq2 (x) is given by (2.3). Then Tmf = Wt,q(f), where Wt,q(f) is the q-analogue of the
Weierstrass transform of f (see [10, 14]) given by

Wt,q(f)(x) := A−1(t; q2)

∫ ∞

0

f(z)Tq,xeq2

(
− z2

qt(1 + q)2

)
dqµ(z),

where A(t; q2) = q−
1
2 (1− q)

1
2

(− 1−q
1+q

1
t ,−

1+q
1−q q

2t; q2)∞

(− 1−q
1+q

1
qt ,−

1+q
1−q q

3t; q2)∞
.

Example 3.3. Let m be the function defined for t > 0 by m(z) := E
(1/2)
q (−tz), z ∈ Rq,+,

where the function E
(1/2)
q is defined [1] by E(α)

q (z) :=

∞∑
k=0

qαk
2/2

(q; q)k
zk , α ∈ C.

Then Tmf = Pt,q(f), where Pt(f) is the q-Poisson integral of f (see [11]) given by

Pt,q(f)(x) :=

(
1− q

1 + q

)1/2

A−1(
1

q(1 + q)2
; q2)

∫ ∞

0

f(z)Tq,x

[
t

z2 + t2

]
dqµ(z).

4. q-Donoho-Stark’s uncertainty principle for Tm

In this section we establish a q-Donoho-Stark’s uncertainty principle for the operators
Tm. Let E := [0, a]q := {qk, k ∈ Z, k ≥ n}, a = qn be a subset of Rq,+. We say that a
function f ∈ L2(Rq,+), is ε-concentrated on E, if

∥f − χEf∥L2(Rq,+) ≤ ε∥f∥L2(Rq,+), (4.1)

where χE is the indicator function of the set E.
Let S be a subset of Rq,+ and let f ∈ L2(Rq,+). We say that that Tmf is ν-

concentrated on S, if

∥Tmf − χSTmf∥L2(Rq,+) ≤ ν∥Tmf∥L2(Rq,+). (4.2)

Theorem 4.1. Let f ∈ L2(Rq,+) and let m ∈ L1 ∩ L∞(Rq,+). If f is ε-concentrated on E
and Tmf is ν-concentrated on S, then

(µ(E))1/2(µ(S))1/2 ≥ (q; q2)4∞
∥mFq(f)∥L2(Rq,+) − (ν + ε)∥m∥L∞(Rq,+)∥f∥L2(Rq,+)

∥m∥L1(Rq,+)∥f∥L2(Rq,+)
.

Proof. Let f ∈ L2(Rq,+) and let m ∈ L1 ∩ L∞(Rq,+). Assume that µ(E) < ∞ and
µ(S) < ∞. From (3.2), (4.1) and (4.2) it follows that

∥Tmf − χSTm(χEf)∥L2(Rq,+) ≤ ∥Tmf − χSTmf∥L2(Rq,+) + ∥χSTm(f − χEf)∥L2(Rq,+)

≤ ν∥Tmf∥L2(Rq,+) + ∥Tm(f − χEf)∥L2(Rq,+)

≤ ∥m∥L∞(Rq,+)

(
ν∥f∥L2(Rq,+) + ∥f − χEf∥L2(Rq,+)

)
≤ (ν + ε)∥m∥L∞(Rq,+)∥f∥L2(Rq,+).

Then the triangle inequality shows that

∥Tmf∥L2(Rq,+) ≤ ∥χSTm(χEf)∥L2(Rq,+) + ∥Tmf − χSTm(χEf)∥L2(Rq,+)

≤ ∥χSTm(χEf)∥L2(Rq,+) + (ν + ε)∥m∥L∞(Rq,+)∥f∥L2(Rq,+).

But

∥χSTm(χEf)∥L2(Rq,+) =

(∫
S

|Tm(χEf)(x)|2dqµ(x)
)1/2

,
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and

|Tm(χEf)(x)| ≤ 1

(q; q2)2∞
∥mFq(χEf)∥L1(Rq,+)

≤ 1

(q; q2)2∞
∥m∥L1(Rq,+)∥Fq(χEf)∥L∞(Rq,+)

≤ 1

(q; q2)4∞
∥m∥L1(Rq,+)∥χEf∥L1(Rq,+)

≤ 1

(q; q2)4∞
∥m∥L1(Rq,+)∥f∥L2(Rq,+)(µ(E))1/2.

Thus,

∥χSTm(χEf)∥L2(Rq,+) ≤
1

(q; q2)4∞
∥m∥L1(Rq,+)∥f∥L2(Rq,+)(µ(E))1/2(µ(S))1/2

and

∥Tmf∥L2(Rq,+) ≤ 1

(q; q2)4∞
∥m∥L1(Rq,+)∥f∥L2(Rq,+)(µ(E))1/2(µ(S))1/2

+ (ν + ε)∥m∥L∞(Rq,+)∥f∥L2(Rq,+).

By applying (2.6), we obtain

(µ(E))1/2(µ(S))1/2 ≥ (q; q2)4∞
∥mFq(f)∥L2(Rq,+) − (ν + ε)∥m∥L∞(Rq,+)∥f∥L2(Rq,+)

∥m∥L1(Rq,+)∥f∥L2(Rq,+)
,

which gives the desired result. �

Example 4.2. Let m be the function defined for t > 0 and β > 0 by

m(z) := Wβ+ 1
2
(z/t; q2)χ[0,t]q (z), z ∈ Rq,+,

Then ∥m∥L∞(Rq,+) = 1, ∥m∥L1(Rq,+) = Dq(t) =
(1−q)1/2Γq2 (β+1) t

(1+q)3/2Γq2 (β+3/2)
and

(µ(E))1/2(µ(S))1/2 ≥ D−1
q (t)(q; q2)4∞

∥σβ,t;q(f)∥L2(Rq,+) − (ν + ε)∥f∥L2(Rq,+)

∥f∥L2(Rq,+)
.

Example 4.3. Let m be the function defined for t > 0 by m(z) := eq2
(
−tz2

)
,

z ∈ Rq,+.

Then ∥m∥L∞(Rq,+) = 1, ∥m∥L1(Rq,+) = A−1(t; q2) and

(µ(E))1/2(µ(S))1/2 ≥ A(t; q2) (q; q2)4∞
∥Wt,q(f)∥L2(Rq,+) − (ν + ε)∥f∥L2(Rq,+)

∥f∥L2(Rq,+)
.

Example 4.4. Let m be the function defined for t > 0 by m(z) := E
(1/2)
q (−tz),

z ∈ Rq,+.

Then ∥m∥L∞(Rq,+) = 1, ∥m∥L1(Rq,+) = Kq =
(

1−q
1+q

)1/2

A−1( 1
q(1+q)2 ; q

2) and

(µ(E))1/2(µ(S))1/2 ≥ K−1
q (q; q2)4∞

∥Pt,q(f)∥L2(Rq,+) − (ν + ε)∥f∥L2(Rq,+)

∥f∥L2(Rq,+)
.
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5. Extremal functions and q-Tikhonov regularization for the operators Tm

We define the q-Sobolev space [12] of order s ≥ 0, that will be denoted Hs
∗,q(Rq),

as the set of all f ∈ L2(Rq,+) such that (1 + z2)s/2Fq(f) ∈ L2(Rq,+). The space Hs
∗,q(Rq)

endowed with the inner product

⟨f, g⟩Hs
∗,q(Rq) :=

∫ ∞

0

(1 + z2)sFq(f)(z)Fq(g)(z)dqµ(z),

and the norm ∥f∥Hs
∗,q(Rq) =

√
⟨f, g⟩Hs

∗,q(Rq).

The Hilbert space Hs
∗,q(Rq) satisfies (see [12]) the following properties.

(a) H0
∗,q(Rq) = L2(Rq,+).

(b) For all s > 0, the space Hs
∗,q(Rq) is continuously contained in L2(Rq,+) and

∥f∥L2(Rq,+) ≤ ∥f∥Hs
∗,q(Rq).

(c) The space Hs
∗,q(Rq), s ≥ 0, endowed with the inner product ⟨., .⟩Hs

∗,q(Rq) is a

Hilbert space.
Remark 5.1. ([12], Example 3.1) For s > 1/2, the function y → (1 + z2)−s/2 belongs
to L2(Rq,+). Hence for all f ∈ Hs

∗,q(Rq), we have ∥Fq(f)∥L2(Rq,+) ≤ ∥f∥Hs
∗,q(Rq), and by

Hölder’s inequality,

∥Fq(f)∥L1(Rq,+) ≤
[∫ ∞

0

dqµ(z)

(1 + z2)s

]1/2
∥f∥Hs

∗,q(Rq) .

Then the function Fq(f) belongs to L1 ∩ L2(Rq,+), and therefore

f(x) =

∫ ∞

0

cos(xz; q2)Fq(f)(z)dqµ(z), x ∈ Rq,+.

Let η > 0. We denote by ⟨., .⟩η,Hs
∗,q(Rq) the inner product defined on the space

Hs
∗,q(Rq) by

⟨f, g⟩η,Hs
∗,q(Rq) := η⟨f, g⟩Hs

∗,q(Rq) + ⟨Tmf, Tmg⟩L2(Rq,+), (5.1)

and the norm ∥f∥η,Hs
∗,q(Rq) :=

√
⟨f, f⟩η,Hs

∗,q(Rq) .

On Hs
∗,q(Rq) the two norms ∥.∥Hs

∗,q(Rq) and ∥.∥η,Hs
∗,q(Rq) are equivalent.

This (Hs
∗,q(Rq), ⟨., .⟩η,Hs

∗,q(Rq)) is a Hilbert space with reproducing kernel given by the fol-

lowing theorem.
Theorem 5.2. Let η > 0, s > 1/2 and let m ∈ L∞(Rq,+). The space (H

s
∗,q(Rq), ⟨., .⟩η,Hs

∗,q(Rq))

has the reproducing kernel

ks(x, y) =

∫ ∞

0

Tq,x cos(yz; q
2)

|m(z)|2 + η(1 + z2)s
dqµ(z), (5.2)

that is
(i) For all y ∈ Rq,+, the function x → ks(x, y) belongs to Hs

∗,q(Rq).

(ii) The q-reproducing property: for all f ∈ Hs
∗,q(Rq) and y ∈ Rq,+,

⟨f, ks(., y)⟩η,Hs
∗,q(Rq) = f(y).

Proof. (i) Let y ∈ Rq,+ and s > 1/2. The function Φy : z → cos(yz;q2)
|m(z)|2+η(1+z2)s belongs to

L1 ∩ L2(Rq,+). Then, the function ks is well defined and by (2.5), we have

ks(x, y) =

∫ ∞

0

cos(xz; q2) cos(yz; q2)

|m(z)|2 + η(1 + z2)s
dqµ(z) = Fq(Φy)(x), x ∈ Rq,+.
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From (2.6), it follows that ks(., y) belongs to L2(Rq,+), and

Fq(ks(., y))(z) =
cos(yz; q2)

|m(z)|2 + η(1 + z2)s
, z ∈ Rq,+. (5.3)

Then by (2.4), we obtain |Fq(ks(., y))(z)| ≤ 1
η(q;q2)2∞(1+z2)s , and

∥ks(., y)∥Hs
∗,q(Rq) ≤

1

η(q; q2)2∞

(∫ ∞

0

dqµ(z)

(1 + z2)s

)1/2

< ∞.

This proves that for all y ∈ Rq,+ the function ks(., y) belongs to Hs
∗,q(Rq).

(ii) Let f ∈ Hs
∗,q(Rq) and y ∈ Rq,+. From (5.1) and (5.3), we have

⟨f, ks(., y)⟩η,Hs
∗,q(Rq) = η

∫ ∞

0

(1 + z2)s
Fq(f)(z) cos(yz; q

2)

|m(z)|2 + η(1 + z2)s
dqµ(z)

+

∫ ∞

0

Fq(mFq(f))(z)Fq(mFq(ks))(z)dqµ(z)

= η

∫ ∞

0

(1 + z2)s

|m(z)|2 + η(1 + z2)s
Fq(f)(z) cos(yz; q

2)dqµ(z)

+

∫ ∞

0

|m(z)|2

|m(z)|2 + η(1 + z2)s
Fq(f)(z) cos(yz; q

2)dqµ(z)

=

∫ ∞

0

Fq(f)(z) cos(yz; q
2)dqµ(z),

and from Remark 4.1, we obtain the reproducing property

⟨f, ks(., y)⟩η,Hs
∗,q(Rq) = f(y).

This completes the proof of the theorem. �
The main result of this section can be stated as follows.

Theorem 5.3. Let s > 1/2 and let m ∈ L∞(Rq,+). For any g ∈ L2(Rq,+) and for any
η > 0, there exists a unique function f∗

η,g, where the infimum

inf
f∈Hs

∗,q(Rq)

{
η∥f∥2Hs

∗,q(Rq)
+ ∥g − Tmf∥2L2(Rq,+)

}
(5.4)

is attained. Moreover, the extremal function f∗
η,g is given by

f∗
η,g(y) =

∫ ∞

0

g(x)K(x, y; q2)dqµ(x), (5.5)

where

K(x, y; q2) =

∫ ∞

0

m(z)Tq,x cos(yz; q
2)

|m(z)|2 + η(1 + z2)s
dqµ(z).

Proof. The existence and unicity of the extremal function f∗
η,g satisfying (5.4) is obtained

in [10, 15]. Especially, f∗
η,g is given by the reproducing kernel of Hs

∗,q(Rq) with ∥.∥η,Hs
∗,q(Rq)

norm (Theorem 5.2) as

f∗
η,g(y) = ⟨g, Tm(ks(., y))⟩L2(Rq,+), (5.5)
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where ks is the kernel given by (5.2).
But by (2.5) and (5.3), we have

Tm(ks(., y))(x) =

∫ ∞

0

m(z)Fq(ks(., y))(z) cos(xz; q
2)dqµ(z)

=

∫ ∞

0

m(z)

|m(z)|2 + η(1 + z2)s
cos(yz; q2) cos(xz; q2)dqµ(z)

=

∫ ∞

0

m(z)

|m(z)|2 + η(1 + z2)s
Tq,x cos(yz; q

2)dqµ(z).

This clearly yields the result. �
As application, we give the following examples.

Example 5.5. Let s > 1/2, η > 0 and g ∈ L2(Rq,+).

(i) If m(z) := Wβ+ 1
2
(z/t; q2)χ[0,t]q (z), t > 0 and β > 0, then

f∗
η,g(y) =

∫ ∞

0

g(x)K(x, y; q2)dqµ(x), where

K(x, y; q2) =

∫ t

0

Wβ+ 1
2
(z/t; q2)Tq,x cos(yz; q

2)

W 2
β+ 1

2

(z/t; q2) + η(1 + z2)s
dqµ(z).

(ii) If m(z) := eq2
(
−tz2

)
, t > 0, then f∗

η,g(y) =

∫ ∞

0

g(x)K(x, y; q2)dqµ(x), where

K(x, y; q2) =

∫ ∞

0

eq2
(
−tz2

)
Tq,x cos(yz; q

2)

e2q2 (−tz2) + η(1 + z2)s
dqµq(z).

(iii) If m(z) := E
(1/2)
q (−tz), t > 0, then f∗

η,g(y) =

∫ ∞

0

g(x)K(x, y; q2)dqµ(x), where

K(x, y; q2) =

∫ ∞

0

E
(1/2)
q (−tz)Tq,x cos(yz; q

2)(
E
(1/2)
q (−tz)

)2

+ η(1 + z2)s
dqµq(z).

Corollary 5.6. Let s > 1/2, η > 0 and g ∈ L2(Rq,+). The extremal function f∗
η,g satisfies

(i) |f∗
η,g(y)| ≤

Dq(s)√
η

∥g∥L2(Rq,+),

(ii) ∥f∗
η,g∥L2(Rq,+) ≤

Dq(s)√
η

(∫ ∞

0

|g(x)|2Eq2

(
x2

q(1 + q)2

)
dqµ(x)

)1/2

,

where

Dq(s) =
1

2(q; q2)2∞

(∫ ∞

0

dqµ(z)

(1 + |z|2)s

)1/2

.

Proof. (i) From (2.6) and (5.5), we have

|f∗
η,g(y)| ≤ ∥g∥L2(Rq,+)∥Tm(ks(., y))∥L2(Rq,+)

≤ ∥g∥L2(Rq,+)∥mF(ks(., y))∥L2(Rq,+).

Then, by (5.3) we deduce

|f∗
η,g(y)| ≤

1

(q; q2)2∞
∥g∥L2(Rq,+)

(∫ ∞

0

|m(z)|2dqµ(z)
[|m(z)|2 + η(1 + z2)s]2

)1/2

.
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Using the fact that [
|m(z)|2 + η(1 + z2)s

]2
≥ 4η(1 + z2)s|m(z)|2, (5.6)

we obtain the result.
(ii) We write

f∗
η,g(y) =

∫ ∞

0

√
eq2

(
− x2

q(1 + q)2

)
Eq2

(
x2

q(1 + q)2

)
g(x)K(x, y; q2)dqµ(x),

where Eq2(x) is given by (2.2). Applying Hölder’s inequality, we obtain

|f∗
η,g(y)|2 ≤

∫ ∞

0

|g(x)|2Eq2

(
x2

q(1 + q)2

)
|K(x, y; q2)|2dqµ(x).

Thus and from Fubini-Tonnelli’s theorem, we get

∥f∗
η,g∥2L2(Rq,+) ≤

∫ ∞

0

|g(x)|2Eq2

(
x2

q(1 + q)2

)
∥K(x, .; q2)∥2L2(Rq,+)dqµ(x).

Let Ψx(z) =
m(z) cos(xz;q2)

|m(z)|2+η(1+z2)s . Since Ψx ∈ L1 ∩ L2(Rq,+), then

K(x, y; q2) = Fq(Ψx)(y),

and by (2.6) we deduce that Fq(K(x, .; q2))(z) =
m(z) cos(xz; q2)

|m(z)|2 + η(1 + z2)s
.

Thus,

∥K(x, .; q2)∥2L2(Rq,+) =

∫ ∞

0

|Fq(K(x, .; q2))(z)|2dqµ(z)

≤ 1

(q; q2)2∞

∫ ∞

0

|m(z)|2dqµ(z)
[|m(z)|2 + η(1 + z2)s]2

.

Then using the inequality (5.6), we obtain ∥K(x, .; q2)∥L2(Rq,+) ≤
Dq(s)√

η
.

From this inequality we deduce the result. �
Corollary 5.7. Let s > 1/2 and η > 0. For every g ∈ L2(Rq,+), we have

(i) f∗
η,g(y) =

∫ ∞

0

cos(yz; q2)
m(z)Fq(g)(z)

|m(z)|2 + η(1 + z2)s
dqµ(z).

(ii) Fq(f
∗
η,g)(z) =

m(z)Fq(g)(z)

|m(z)|2 + η(1 + z2)s
.

(iii) ∥f∗
η,g∥Hs

∗,q(Rq) ≤
1

2
√
η
∥g∥L2(Rq,+).

Proof. (i) follows from (5.5) by using (2.6) and (5.3).

(ii) The function z → m(z)Fq(g)(z)
|m(z)|2+η(1+z2)s belongs to L1 ∩ L2(Rq,+). Then by (2.5), we

have f∗
η,g(y) = Fq(

m(z)Fq(g)(z)

|m(z)|2 + η(1 + z2)s
)(y).

From (2.6), it follows that f∗
η,g belongs to L2(Rq,+), and Fq(f

∗
η,g)(z) =

m(z)Fq(g)(z)

|m(z)|2 + η(1 + z2)s
.

(iii) By relation (ii) we have

∥f∗
η,g∥2Hs

∗,q(Rq)
=

∫ ∞

0

(1+z2)s|Fq(f
∗
η,g)(z)|2dqµ(z) =

∫ ∞

0

(1 + z2)s|m(z)|2|Fq(g)(z)|2

[|m(z)|2 + η(1 + z2)s]2
dqµ(z).
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Using the inequality (5.6), we obtain

∥f∗
η,g∥2Hs

∗,q(Rq)
≤ 1

4η

∫ ∞

0

|Fq(g)(z)|2dqµ(z) =
1

4η
∥g∥2L2(Rq,+),

which ends the proof. �
Theorem 5.8. Let s > 1/2 and η > 0. For every g ∈ L2(Rq,+), we have

(i) Tmf∗
η,g(y) =

∫ ∞

0

cos(yz; q2)
|m(z)|2Fq(g)(z)

|m(z)|2 + η(1 + z2)s
dqµ(z).

(ii) Fq(Tmf∗
η,g)(z) =

|m(z)|2Fq(g)(z)

|m(z)|2 + η(1 + z2)s
.

(iii) Tmf∗
η,g(y) = f∗

η,Tmg(y).

(iv) lim
η→0+

∥Tmf∗
η,g − g∥L2(Rq,+) = 0.

Proof. From (3.1) and Corollary 4.7 (ii), we have Tmf∗
η,g(y) = Fq

( |m(z)|2Fq(g)(z)

|m(z)|2 + η(1 + z2)s

)
(y).

The function z → |m(z)|2Fq(g)(z)
|m(z)|2+η(1+z2)s belongs to L1 ∩ L2(Rq,+). Then by (2.5), we obtain (i),

and by (2.6) we obtain (ii).
(iii) follows from (i) and Corollary 4.7 (i).

(iv) From (ii) we have Fq(Tmf∗
η,g − g)(z) =

−η(1 + z2)s

|m(z)|2 + η(1 + z2)s
Fq(g)(z).

Thus, ∥Tmf∗
η,g − g∥2L2(Rq.+) =

∫ ∞

0

η2(1 + z2)2s|Fq(g)(z)|2

[|m(z)|2 + η(1 + z2)s]2
dqµ(z).

Using the dominated convergence theorem and
η2(1 + z2)2s|Fq(g)(z)|2

[|m(z)|2 + η(1 + z2)s]2
≤ |Fq(g)(z)|2, we

deduce that lim
η→0+

∥Tmf∗
η,g − g∥2L2(Rq,+) = 0,

which ends the proof. �
Theorem 5.9. Let s > 1/2 and η > 0. For every f ∈ Hs

∗,q(Rq) and g = Tmf , we have

(i) f∗
η,Tmf (y) =

∫ ∞

0

cos(yz; q2)
|m(z)|2Fq(f)(z)

|m(z)|2 + η(1 + z2)s
dqµ(z).

(ii) Fq(f
∗
η,Tmf )(z) =

|m(z)|2Fq(f)(z)

|m(z)|2 + η(1 + z2)s
.

(iii) lim
η→0+

∥f∗
η,Tmf − f∥L∞(Rq,+) = 0.

(iv) lim
η→0+

∥f∗
η,Tmf − f∥Hs

∗,q(Rq) = 0.

Proof. (i) and (ii) follow directly from Corollary 4.6 (i) and (ii).
(iii) From Remark 4.1, the function F(f) ∈ L1 ∩ L2(Rq,+). Then by (i) and (2.5),

f∗
η,Tmf (y)− f(y) =

∫ ∞

0

−η(1 + z2)sFq(f)(z)

|m(z)|2 + η(1 + z2)s
cos(yz; q2)dqµ(z).

So

∥f∗
η,Tmf − f∥L∞(Rq,+) ≤

1

(q; q2)2∞

∫ ∞

0

η(1 + z2)s|Fq(f)(z)|
|m(z)|2 + η(1 + z2)s

dqµ(z).

Again, by dominated convergence theorem and
η(1 + z2)s|Fq(f)(z)|
|m(z)|2 + η(1 + z2)s

≤ |Fq(f)(z)|,

we deduce that lim
η→0+

∥f∗
η,Tmf − f∥L∞(Rq,+) = 0.
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(iv) From (ii) we have Fq(f
∗
η,Tmf − f)(z) =

−η(1 + z2)s

|m(z)|2 + η(1 + z2)s
Fq(f)(z).

Consequently, ∥f∗
η,g − f∥2Hs

∗,q(Rq)
=

∫ ∞

0

η2(1 + z2)3s|Fq(f)(z)|2

[|m(z)|2 + η(1 + z2)s]2
dqµ(z).

Using the fact that
η2(1 + z2)3s|Fq(f)(z)|2

[|m(z)|2 + η(1 + z2)s]2
≤ (1 + z2)s|Fq(f)(z)|2,

we deduce that lim
η→0+

∥f∗
η,Tmf − f∥2Hs

∗,q(Rq)
= 0,

which ends the proof. �

6. Conclusions

In this paper, an unification proof of many inequalities and approximations for the
classical and discrete case by means of the q-theory. An extensions of the q-Donoho-Stark’s
uncertainty principle for the class of Fourier multiplier operators Tm. Finally, an exact
expression and some properties of the extremal functions of the so-called Tikhonov regular-
ization problem are obtained, using reproducing kernel methods.

REFERENCES

[1] N. M. Atakishiyev, On a one-parameter family of q-exponential functions, J. Phys. A: Math. Gen.,

29(1996), 223–227.

[2] J. J. Betancor and L. Rodriguez-Mesa, Lipschitz-Hankel spaces, partial Hankel integrals and Bochner-

Riesz means, Arch. Math., 71(1998), 115–122.

[3] J. J. Betancor and L. Rodriguez-Mesa, On Hankel transformation, convolution operators and multipliers

on Hardy type spaces, J. Math. Soc. Japan., 53(2001), 687–709.

[4] L. Dhaouadi, A. Fitouhi and J. El Kamel, Inequalities in q-Fourier analysis, J. Inequal. Pure Appl.

Math., 171(2006), 1–14.

[5] A. Fitouhi, M. Hamza and F. Bouzeffour, The q-jα Bessel function, J. Approx. Theory., 115(2002),

114–116.

[6] A. Fitouhi and L. Dhaouadi, Positivity of the generalized translation associated with the q-Hankel

transform, Constr. Approx., 34(2011), 453–472.

[7] G. Gasper and M. Rahman, Basic hypergeometric series, 2nd edn. Cambridge University Press, 2004.

[8] T. H. Koornwinder, q-Special functions, a tutorial arXiv:math/9403216v1.

[9] T. H. Koornwinder and R. F. Swarttouw, On q-Analogues of the Fourier and Hankel transforms, Trans.

Amer Math. Soc., 333(1992), 445–461.

[10] T. Matsuura, S. Saitoh and D.D. Trong, Inversion formulas in heat conduction multidimensional spaces,

J. Inv. Ill-posed Problems., 13(2005), 479–493.

[11] A. Nemri, On the connection between heat and wave problems in quantum calculus and applications,

Math. Mech. Solids., 18(2013), 849–860.

[12] A. Nemri and B. Selmi, Sobolev type spaces in quantum calculus, J. Math. Anal. Appl., 359(2009),

588–601.

[13] A. Nemri and F. Soltani, Analytical approximation formulas in quantum calculus., Math. Mech. Solids.,

22(2017), 2075–2090.

[14] S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal., 16(1983), 1–6.

[15] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal., 83(2004),

727–733.


