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ITERATIVE APPROXIMATION OF FIXED POINT PROBLEMS AND

VARIATIONAL INEQUALITY PROBLEMS ON HADAMARD

MANIFOLDS
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In this paper, we propose a new iterative algorithm for finding the common solu-

tion of the fixed points of nonexpansive mapping and the solution of the pseudomonotone

variational inequality on Hadamard manifolds, and we proved the strong convergence

theorem of the generated algorithm, which mainly extended and improved some recent

related results.
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1. Introduction

The fixed point problem of a nonlinear mapping T is to find x such that

x = Tx.

Many practical problems can be converted into the fixed point problem, such as optimization

problems, variational inequality problems, equilibrium problems and split feasibility prob-

lems and so on. Fixed point problems and related problems have been extensively studied

by many researchers, see, e.g., [1, 3, 4, 5, 7, 9, 11, 12, 14, 20, 21, 23, 27] and [30]-[57].

Let K be a nonempty closed convex subset of real Hilbert space H, and T : K → H

be a mapping. The variational inequality problem (VIP) is to find a point x∗ ∈ K such that

〈Tx∗, y − x∗〉 ≥ 0,∀y ∈ K. (1)

The variational inequality problem of nonlinear mapping was firstly introduced by

Stampacchia [25], this theory has extensive and significant applications in so many fields,

such as optimization problems, equilibrium problems, split feasibility problems and so on.

The variational inequality problem has been widely studied and numerous iterative algo-

rithms for solving VIP have been proposed and analyzed, such as projection algorithm [10],

extragradient algorithm [17], subgradient extragradient algorithm [6] and so on. However,

the post researches have been mainly concentrated on the linear space, see [13, 10, 15, 33, 34].

In 2004, Xu [37] presented a viscosity algorithm and obtained the strong theorems in

Hilbert spaces and Banach spaces.
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Let M be an Hadamard manifold, TM the tangent bundle of M , K a nonempty

closed geodesic convex subset of M . the exp is a exponential mapping. In 2003, Nemeth [22]

introduced the variational inequality problem on Hadamard manifold, which is as follows:

find x∗ ∈ K such that 〈Tx∗, exp−1
x∗ y〉 ≥ 0, ∀y ∈ K, (2)

where T : K → TM is a vector field, that is Tx∗ ∈ TxM for each x ∈ K, and exp−1 is the

inverse of exponential mapping.

It is easily seen that variational inequality problem(2) on Hadamard manifold is an

extension of variational inequality problem (1). If M = Rn, the variational inequality

problem (2) will be ascribed to the variational inequality problem (1).

Limited by the nonlinearity of manifolds, the research progress of VIP (2) is slow.

However, some algorithms were proposed and analyzed. In 2009, Li [18] studied VIP (2)

on Riemannian manifold. Recently, Tang [27, 28, 29] introduced the Korpelevich algorithm,

proximal point algorithm and projection algorithm and studied the VIP (2) on Hadamard

manifold. Very recently, Chen [8] proposed two modified extragradient algorithm with pseu-

domonotone vector field for solving the VIP (2) on Hadamard manifold. Konrawut [16]

introduced the new Tseng’s extragradient methods with pseudomonotone vector field for

solving the VIP (2) on Hadamard manifold.

Recently, Li [19] studied the fixed point problem for Halpern iterative algorithm (3)

and obtain the strong convergence on Hadamard manifolds, this results extended the results

of (3) from the classical linear spaces to the setting of manifolds,

xn+1 = expu(1− αn) exp−1
u Txn, n ≥ 0, (3)

where u, x0 ∈ K and the sequence {αn} ⊂ (0, 1).

The Halpern algorithm (3) is equivalent to

xn+1 = γn(1− αn), n ≥ 0, (4)

where γn : [0, 1]→M is the geodesic joining u to Txn (i.e. γ(0) = u and γ(1) = T (xn) ).

Motivated by the above works of Li [19], Xu [37] and Konrawut [16], in this paper,

we consider the problem of finding

x∗ ∈ Fix(S) ∩ V IP (T,K) (5)

in the setting of Hadamard manifold, where S is nonexpansive mapping, T is pseudomono-

tone vector field, Fix(S) denotes the set of fixed point of the nonexpansive mapping S,

V IP (T,K) denotes the set of solutions of the VIP (2). Especially, The solution set of the

problem (5) is denoted by S , Fix(S) ∩ V IP (T,K). we present a new iterative algorithm

and prove that the sequence generated by the algorithm converges strongly to a common

element of problem (5) on Hadamard manifolds.

2. Preliminaries

Let M be a connected m−dimensional manifold and p ∈M . TpM denotes the tangent

space of M at p. To become Riemannian manifold, we always assume M can be endowed

with the Riemannian metric 〈, 〉 and the corresponding norm ‖ · ‖.
Given a piecewise smooth curve c : [a, b]→M joining p to q, we define the length of

c by

L(c) =

∫ b

a

‖c′(t)‖dt.

Then, the Riemannian distance d(p, q) is the minimal length over all such curves joining p

to q.
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Let ∇ be a Levi-Civita connection associated with the Riemannian manifold M . If

φ is a smooth curve, a smooth vector field F along φ is called parallel if ∇φ′F = 0. If φ′ is

parallel, then φ is a geodesic, and ‖φ′‖ is a constant. Based on the definition of Riemannian

distance d(p, q), it is easily seen that a geodesic joining p to q in M is called a minimizing

geodesic if its length equals to d(p, q).

A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from

x are defined for any t ∈ R, Hopf-Rinow theorem asserts that if M is complete then any

pair of points in M can be joined by a minimizing geodesic. A complete simply connected

Riemannian manifold of non-positive sectional curvature is named a Hadamard manifold.

Throughout this paper, we assume that M is a Hadamard manifold, the following results

are well known and will be useful.

Let γ(t) : [a, b] → R, the parallel transport Pγ,γ(a),γ(b) : Tγ(a)M → Tγ(b)M on the

tangent bundle TM on the γ(t) is defined by

Pγ,γ(b),γ(a)(ν) = F (γ(b)),∀a, b ∈ R, ν ∈ Tγ(a)M,

where F is a unique vector field such that F (γ(a)) = ν and ∇γ′(t)F = 0,∀t ∈ [a, b].

If γ(t) : [a, b] → R is a minimizing geodesic joining a to b, Pγ,b,a is denoted by Pb,a
and P−1

b,a = Pa,b generally. Recall that, for a, b ∈ R, for all u, v ∈ Tγ(a)M , we have

〈Pγ(b),γ(a)u, Pγ(b),γ(a)v〉 = 〈u, v〉.

Definition 2.1. The vector field T : K → TM is called monotone, if

〈Tx, exp−1
x y〉+ 〈Ty, exp−1

y x〉 ≤ 0,∀x, y ∈ K.

Definition 2.2. The vector field T : K → TM is called pseudomonotone, if

〈Tx, exp−1
x y〉 ≥ 0 implies that 〈Ty, exp−1

y x〉 ≤ 0,∀x, y ∈ K.

Definition 2.3. The vector field T : K → TM is called Γ-Lipschitz continuous, if there

exists Γ > 0 such that

‖Px,yTy − Tx‖ ≤ Γd(x, y),∀x, y ∈ K.

Definition 2.4. The mapping T : K → K is called nonexpansive, if the following inequality

holds

d(Tx, Ty) ≤ d(x, y).

Definition 2.5. The mapping T : K → K is said to be contractive, if there exists a constant

α ∈ (0, 1) and the following inequality holds

d(Tx, Ty) ≤ αd(x, y).

Lemma 2.1 ([37]). Assume that {an} is a sequence of nonnegative real number such that

an+1 ≤ (1− γn)an + δn,∀n ≥ 0,

where {γn} is a sequence in (0,1) and δn is a sequence in R such that

(i)
∑∞
n=0 γn =∞;

(ii)
∑∞
n=0 |δn| <∞ or lim sup

n→∞

δn+1

γn
≤ 0

Then lim
n→∞

an = 0.

Lemma 2.2 ([2]). Let 4(p, q, r) be a geodesic triangle in a Hadamard manifold M , then

there exists p′, q′, r′ ∈ R2 such that

d(p, q) = ‖p′ − q′‖, d(q, r) = ‖q′ − r′‖, d(r, p) = ‖r′ − p′‖.
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Remark 2.1. The triangle 4(p′, q′, r′) is said to be the comparison triangle of the geodesic

triangle 4(p, q, r), which is unique up to isometry of M .

Lemma 2.3 ([19]). Let 4(p, q, r) be a geodesic triangle in a Hadamard manifold M , and

4(p′, q′, r′) is its comparison triangle.

(i) Let α, β, γ(α′, β′, γ′) be the angles of4(p, q, r)(4(p′, q′, r′)) at the vertices p, q, r(p′, q′, r′).

Then the following inequalities hold:

α ≤ α′, β ≤ β′, γ ≤ γ′.

(ii) Let z be a point in the geodesic joining p to q, and z′ is its comparison point in

the interval [p′, q′]. Suppose that d(z, p) = ‖z′ − p′‖ and d(z, q) = ‖z′ − q′‖. Then the the

following inequality holds:

d(z, r) ≤ ‖z − r′‖

.

Lemma 2.4 ([24]). Let d : M ×M → R be the distance function. Then d is a convex

function with respect to the product Riemannian metric, i.e., given any pair of geodesics

γ1 : [0, 1]→M and γ2 : [0, 1]→M , the following inequality holds for all t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1))

.

Let PK denotes the projection onto K, and for a point p ∈M , PK(p) is defined by

PK(p) = {p0 ∈ K|d(p, p0) ≤ d(p, q), ∀q ∈ K}.

Lemma 2.5 ([36]). For any point p ∈M , PK(p) is a singleton and the following inequality

holds

〈exp−1
PK(p) p, exp−1

PK(p) q〉 ≤ 0, ∀q ∈ K.

Lemma 2.6 ([18]). Let x∗ ∈ M and {xn} ⊂ M with xn → x∗ as n → ∞. Then the

following conclusions hold:

(i) For any y ∈M , then exp−1
xn
y → exp−1

x∗ y and exp−1
y xn → exp−1

y x∗ as n→∞.

(ii) If vn ∈ TxnM and vn → v∗ as n→∞, then v∗ ∈ Tx∗M .

(iii) Let ηn, νn ∈ TxnM and η∗, ν
∗ ∈ Tx∗M if ηn → η∗ and νn → ν∗ as n→∞, then

〈ηn, νn〉 → 〈η∗, ν∗〉 as n→∞.

Lemma 2.7 ([18]). If x, y ∈M and w ∈ TyM , then

〈w,− exp−1
y x〉 = 〈w,Py,x exp−1

x y〉 = 〈Py,xw, exp−1
y x〉.

Lemma 2.8 ([8]). If x, y, z ∈M and w ∈ TxM , then

〈w, exp−1
x y〉 ≤ 〈w, exp−1

x z〉+ 〈w,Px,z exp−1
z y〉

Lemma 2.9 ([24]). Let 4(x1, x2, x3) be a geodesic triangle in M . Then

(i) d2(x1, x2) + d2(x2, x3)− 2〈exp−1
x2
x1, exp−1

x2
x3〉 ≤ d2(x3, x1),

(ii) d2(x1, x2) ≤ 〈exp−1
x1
x3, exp−1

x1
x2〉+ 〈exp−1

x2
x3, exp−1

x2
x1〉.

(iii) If γ is the angle at x1, then we have

〈exp−1
x1
x2, exp−1

x1
x3〉 = d(x2, x1)d(x1, x3) cos γ.
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3. Main results

Let x0 ∈M , {αn} ⊂ (0, 1), f : M →M a contraction with coefficient α and S : K →
K a nonexpansive mapping with Fix(S) 6= ∅. Let the vector field T be pseudomonotone

and Γ-Lipschitz continuous. Now, we define the following iteration scheme. For an initial

point x0 ∈ K, {xn} is a sequence generated by the form

xn+1 = expf(xn)(1− αn) exp−1
f(xn) Syn, (6)

yn = expzn µn(Pzn,xn
Txn − Tzn), (7)

〈Pzn,xnTxn −
1

µn
exp−1

zn xn, exp−1
zn y〉 ≥ 0,∀y ∈ K, (8)

where the iterative equality (6) is equivalent to the following equality:

xn+1 = γn(1− αn), n ≥ 0, (9)

where γn : [0, 1]→M is the geodesic joining f(xn) to syn (i.e. γ(0) = f(xn) and γ(1) = Syn
) and {αn} ⊂ (0, 1) and {µn} satisfies

(H1) lim
n→∞

αn = 0;

(H2) Σ∞n=0αn =∞;

(H3) either Σ∞n=0|αn+1 − αn| <∞ or lim
n→∞

αn+1

αn
= 1;

(H4) 0 < µ′ ≤ µn ≤ µ′′ < 1
Γ , Γ > 0.

Proposition 3.1. Let K be a nonempty closed geodesic convex subset of M , S : K → K

a nonexpansive mapping with Fix(S) 6= ∅, and f : K → K a contraction with coefficient

α. Let the vector field T be pseudomonotone and Γ-Lipschitz continuous. Let the sequence

{xn} be generated by the equations (6)-(8). Let {αn} ⊂ (0, 1) and {µn} be two sequences

satisfying the conditions (H1)-(H4), then

d2(yn, x̄) ≤ d2(xn, x̄)− (1− Γ2µ2
n)d2(xn, zn),∀x̄ ∈ S.

Proof. The proof is similar with the proof of Lemma 5 in [16]. We only need to do the

following operation:

Replacing xn+1 in Lemma 5 in [16] by yn.

Replacing yn in Lemma 5 in [16] by zn.

Replacing x in Lemma 5 in [16] by x̄.

The required conclusion is completed.

�

Theorem 3.1. Let K be a nonempty closed geodesic convex subset of M , S : K → K a

nonexpansive mapping with Fix(S) 6= ∅, and f : K → K a contraction with coefficient

α. Let the vector field T be pseudomonotone and Γ-Lipschitz continuous. Let the sequence

{xn} be generated by the equations (6)-(8). Let {αn} ⊂ (0, 1) and {µn} be two sequences

satisfying the conditions (H1)-(H4), Then the sequence {xn} converges to x̃, where x̃ is the

unique solution of the variation inequality

〈exp−1
x̃ f(x̃), exp−1

x̃ x〉 ≤ 0,∀x ∈ S. (10)

Proof. The proof is divided into five steps.

Step 1. We show {xn} is bounded.

Take x ∈ S and fix n, by the Proposition 3.1, we have

d2(yn, x) ≤ d2(xn, x)− (1− Γ2µ2
n)d2(xn, zn),∀x ∈ S.
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By the condition (H4), we know 1− Γ2µ2
n > 0, then

d2(yn, x) ≤ d2(xn, x), forn ≥ 0.

By the convexity of the Riemannian distance in Lemma 2.4 and the nonexpansive of S, we

have that

d(xn+1, x) = d(γn(1− αn), x)

≤ αnd(γn(0), x) + (1− αn)d(γn(1), x)

= αnd(f(xn), x) + (1− αn)d(Syn, x)

≤ αnd(f(xn), f(x)) + αnd(f(x), x) + (1− αn)d(yn, x)

≤ αnαd(xn, x) + αnd(f(x), x) + (1− αn)d(xn, x)

= [1− (1− α)αn]d(xn, x) + αnd(f(x), x)

≤ max{d(xn, x),
1

1− α
d(f(x), x)}.

By induction

d(xn, x) ≤ max{d(x0, x),
1

1− α
d(f(x), x)},∀n ≥ 0.

Then {xn} is bounded, so are {f(xn)}, {yn} and {Syn}.
Step 2. We show lim

n→∞
d(yn, zn) = 0.

First, we show that lim
n→∞

d(xn, zn) = 0. From Proposition 3.1, we know easily

d2(xn, zn) ≤ 1

1− Γ2µ2
n

d2(xn, x)

≤ 1

1− Γ2µ′′2
d2(xn, x)

= (Γ̄)2d2(xn, x),

where Γ̄ = 1√
1−Γ2µ′′2

, then

d(xn, zn) ≤ Γ̄d(xn, x)

≤ Γ̄{[1− (1− α)αn−1]d(xn−1, x) + αn−1d(f(x), x)}
≤ Γ̄[(1− ᾱn−1)d(xn−1, x) + αn−1d(f(x), x)].

Let m ≤ n, by induction, we have

d(xn, zn) ≤ Γ̄Πn−1
j=m(1− ᾱj)d(xm, x) + Γ̄Σn−1

j=m{αjΠ
n−1
i=j+1(1− ᾱj)}d(f(x), x)

≤ Γ̄C1Πn−1
j=m(1− ᾱj) + Γ̄Σn−1

j=m{αjΠ
n−1
i=j+1(1− ᾱj)}d(f(x), x)

where Πn
j=mα(j) = 1 as m > n.

By taking n→∞, we have

d(xn, zn) ≤ Γ̄C1Π∞j=m(1− ᾱj) + Γ̄Σ∞j=m{αjΠ∞i=j+1(1− ᾱj)}d(f(x), x).

From condition (H1) and (H2), we get

lim
m→∞

Π∞j=m(1− ᾱj) = 0 (11)

and

lim
m→∞

Σ∞j=m{αjΠ∞i=j+1(1− ᾱj)} = 0. (12)

Now, adding the above equalities (11) and (12) and taking m→∞, we get

lim
m→∞

d(xn, zn) = lim
n→∞

d(xn, zn) = 0. (13)
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Secondly, we show that lim
n→∞

d(yn, zn) = 0.

From the algorithm (7), and T is Γ-Lipschitz continuous, we get

d(yn, zn) = ‖ exp−1
zn yn‖

= µn‖Pzn,xn
Txn − Tzn‖

≤ µn‖Txn − Tzn‖
≤ µnΓd(xn, zn)

≤ d(xn, zn).

(14)

By the squeeze theorem, we obtain

lim
n→∞

d(yn, zn) = 0.

Step 3. Since {xn} is bounded, we can assume that there exists some subsequence

{xnk
} of {xn}, and lim

k→∞
xnk

= x̂. In this step, we show that x̂ ∈ S.

First, we show that x̂ ∈ Fix(S).

d(xn+1, Syn) = d(γn(1− αn), Syn)

≤ αnd(γn(0), Syn) + (1− αn)d(γn(1), Syn)

≤ αnd(f(xn), Syn) + (1− αn)d(Syn, Syn)

≤ αnd(f(xn), Syn),

by the boundedness of f(xn) and Syn, and the condition (H1), we get

lim
n→∞

d(xn+1, Syn) = 0. (15)

Then,

d(Synk
, x̂) ≤ d(Synk

, xnk+1) + d(xnk+1, x̂),

by the squeeze theorem, we obtain

lim
n→∞

Synk
= x̂.

And

d(ynk
, x̂) ≤ d(ynk

, znk
) + d(znk

, xnk
) + d(xnk

, x̂),

by the squeeze theorem,(14) and (13), we obtain

lim
k→∞

ynk
= x̂. (16)

Then, we have

d(x̂, Sx̂) ≤ d(x̂, xnk+1) + d(xnk+1, Synk
) + d(Synk

, Sx̂)

≤ d(x̂, xnk+1) + d(xnk+1, Synk
) + d(ynk

, x̂)

by the squeeze theorem,(15) and (16), we obtain

d(x̂, Sx̂) = lim
k→∞

d(x̂, Sx̂) = 0,

that is to say x̂ ∈ Fix(S).

Secondly, we show that x̂ ∈ V IP (T,K).

By the algorithm (8), we get

〈µnk
Pznk

,xnk
Txnk

− exp−1
znk

xnk
, exp−1

znk
y〉 ≥ 0,∀y ∈ K,
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by Lemma 2.8, we have

0 ≥ 〈exp−1
znk

xnk
− µnk

Pznk
,xnk

Txnk
, exp−1

znk
y〉

= 〈exp−1
znk

xnk
, exp−1

znk
y〉 − µnk

〈Pznk
,xnk

Txnk
, exp−1

znk
y〉

= 〈exp−1
znk

xnk
, exp−1

znk
y〉 − µnk

〈Pznk
,xnk

Txnk
, exp−1

znk
xnk
〉

− µnk
〈Pznk

,xnk
Txnk

, Pznk
,xnk

exp−1
xnk

y〉

= 〈exp−1
znk

xnk
, exp−1

znk
y〉 − µnk

〈Pznk
,xnk

Txnk
, exp−1

znk
xnk
〉

− µnk
〈Txnk

, exp−1
xnk

y〉.

It follows from the above inequality and Lemma 2.7 that

〈Txnk
, exp−1

xnk
y〉 ≥ 1

µnk

〈exp−1
znk

xnk
, exp−1

znk
y〉 − 〈Pznk

,xnk
Txnk

, exp−1
znk

xnk
〉

≥ 1

µnk

〈exp−1
znk

xnk
, exp−1

znk
y〉+ 〈Txnk

, exp−1
xnk

znk
〉,

by taking k →∞ and Lemma 2.6, we get

〈T x̂, exp−1
x̂ y〉 ≥ 0,∀y ∈ K.

That is to say x̂ ∈ V IP (T,K).

Thus, x̂ ∈ S.

Step 4. We show that

lim sup
n→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Syn〉 ≤ 0,

where x̃ satisfies the variational inequality (10).

Since {yn} is bounded by step1, lim sup
n→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Syn〉 exists, and by the

definition of the upper limit, we can find a subsequence {ynk
} of {yn} such that

lim sup
n→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Txn〉 = lim
k→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Txnk
〉

Without loss of generality, since {yn} is bounded, we can assume that ynk
→ x̄ ∈ M as

k →∞.

By step 3, we can easily get x̂ ∈ S.

Hence, by Lemma 2.6, we obtain

lim sup
n→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Syn〉 = lim
k→∞

〈exp−1
x̃ f(x̃), exp−1

x̃ Synk
〉

= 〈exp−1
x̃ f(x̃), exp−1

x̃ x̂〉
≤ 0.

This proof is completed.

Step 5. We Show lim
n→∞

xn = x̃.

By Lemma 2.1, it suffices to verify that

d2(xn+1, x̃) ≤ (1− α̃n) ≤ d2(xn, x̃) + α̃nβ̃n,∀n ≥ 0.

To this aim, we fix n ≥ 0 and set u = f(xn), p = Syn, q = x̃. Consider the geodesic

triangle 4(u, p, q) and its comparison triangle 4(u′, p′, q′), then

d(f(xn), x̃) = d(u, q) = ‖u′ − q′‖,
and

d(Syn, x̃) = d(p, q) = ‖p′ − q′‖.
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Then the iterative algorithm (6) can be written as

xn+1 = expf(xn)(1− αn) exp−1
f(xn) Syn

= expu(1− αn) exp−1
u p, n ≥ 0,

The comparison point of xn+1 is denoted by x′n+1 as follows:

x′n+1 = αnu
′ + (1− αn)p′, n ≥ 0.

Let β and β′ denote the angles at q and q′, respectively. And we know β < β′ by Lemma

2.3, so cosβ′ ≤ cosβ.

Then, from Lemma 2.3, we get

d2(xn+1, x̃) ≤ ‖x′n+1 − q′‖2

= ‖αn(u′ − q′) + (1− αn)(p′ − q′)‖2

= α2
n‖u′ − q′‖2 + (1− αn)2‖p′ − q′‖2

+ 2αn(1− αn)‖u′ − q′‖‖p′ − q′‖ cosβ′

≤ α2
nd

2(f(xn), x̃) + (1− αn)2d2(Syn, x̃)

+ 2αn(1− αn)d(f(xn), x̃)d(Syn, x̃) cosβ

≤ (1− αn)2d2(xn, x̃) + α2
nd

2(f(xn), x̃)

+ 2αn(1− αn)[d(f(xn), f(x̃)) + d(f(x̃), x̃)]d(Syn, x̃) cosβ

≤ (1− αn)2d2(xn, x̃) + 2αn(1− αn)αd2(xn, x̃)

+ α2
nd

2(f(xn), x̃) + 2αn(1− αn)〈exp−1
x̃ f(x̃), exp−1

x̃ Syn〉
≤ (1− 2αn + α2

n + 2ααn(1− αn))d2(xn, x̃)

+ αn[αnd
2(f(xn), x̃) + 2(1− αn)〈exp−1

x̃ f(x̃), exp−1
x̃ Syn〉]

= (1− α̃n)d2(xn, x̃) + α̃n · β̃n,
where

α̃n = 2αn − α2
n − 2ααn(1− αn),

and

β̃n =
αnd

2(f(xn), x̃) + 2(1− αn)〈exp−1
x̃ f(x̃), exp−1

x̃ Syn〉
2− αn − 2α(1− αn)

.

It is easily seen that lim
n→∞

α̃n = 0 and
∑∞
n=0 α̃n =∞. And lim sup

n→∞
β̃n ≤ 0 by the condition

(H1), step 1 and step 4. By Lemma 2.1, we get lim
n→∞

xn = x̃. �

4. Conclusion

In this paper, an iterative algorithm for approximating a common element of the set

of fixed points of a nonexpansive mapping and the solutions of variational inequality on

Hadamard manifolds has been proposed, and we have proved the sequence generated by

the suggested algorithm strongly converges to the common solution of problem (5). The

results present in this paper not only extended some recent results, and but also solved

the common element of the fixed point of a nonexpansive mapping and the solutions of

variational inequality on Hadamard manifolds.
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