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ITERATIVE APPROXIMATION OF FIXED POINT PROBLEMS AND
VARIATIONAL INEQUALITY PROBLEMS ON HADAMARD
MANIFOLDS

Huimin He', Jigen Peng*?, Haiyang Li*3

In this paper, we propose a new iterative algorithm for finding the common solu-
tion of the fixed points of nonexpansive mapping and the solution of the pseudomonotone
variational inequality on Hadamard manifolds, and we proved the strong convergence
theorem of the generated algorithm, which mainly extended and improved some recent
related results.
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1. Introduction
The fixed point problem of a nonlinear mapping 7' is to find x such that
r="Tx.

Many practical problems can be converted into the fixed point problem, such as optimization
problems, variational inequality problems, equilibrium problems and split feasibility prob-
lems and so on. Fixed point problems and related problems have been extensively studied
by many researchers, see, e.g., [1, 3, 4, 5, 7, 9, 11, 12, 14, 20, 21, 23, 27] and [30]-[57].

Let K be a nonempty closed convex subset of real Hilbert space H, and T : K — H
be a mapping. The variational inequality problem (VIP) is to find a point z* € K such that

(Tz*,y—z*) > 0,Vy € K. (1)

The variational inequality problem of nonlinear mapping was firstly introduced by
Stampacchia [25], this theory has extensive and significant applications in so many fields,
such as optimization problems, equilibrium problems, split feasibility problems and so on.
The variational inequality problem has been widely studied and numerous iterative algo-
rithms for solving VIP have been proposed and analyzed, such as projection algorithm [10],
extragradient algorithm [17], subgradient extragradient algorithm [6] and so on. However,
the post researches have been mainly concentrated on the linear space, see [13, 10, 15, 33, 34].

In 2004, Xu [37] presented a viscosity algorithm and obtained the strong theorems in
Hilbert spaces and Banach spaces.
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Let M be an Hadamard manifold, TM the tangent bundle of M, K a nonempty
closed geodesic convex subset of M. the exp is a exponential mapping. In 2003, Nemeth [22]
introduced the variational inequality problem on Hadamard manifold, which is as follows:

find z* € K such that (Tz* exp,ly) >0, Vy € K, (2)

where T : K — TM is a vector field, that is Ta* € T, M for each z € K, and exp~ ' is the
inverse of exponential mapping.

It is easily seen that variational inequality problem(2) on Hadamard manifold is an
extension of variational inequality problem (1). If M = R"™, the variational inequality
problem (2) will be ascribed to the variational inequality problem (1).

Limited by the nonlinearity of manifolds, the research progress of VIP (2) is slow.
However, some algorithms were proposed and analyzed. In 2009, Li [18] studied VIP (2)
on Riemannian manifold. Recently, Tang [27, 28, 29] introduced the Korpelevich algorithm,
proximal point algorithm and projection algorithm and studied the VIP (2) on Hadamard
manifold. Very recently, Chen [8] proposed two modified extragradient algorithm with pseu-
domonotone vector field for solving the VIP (2) on Hadamard manifold. Konrawut [16]
introduced the new Tseng’s extragradient methods with pseudomonotone vector field for
solving the VIP (2) on Hadamard manifold.

Recently, Li [19] studied the fixed point problem for Halpern iterative algorithm (3)
and obtain the strong convergence on Hadamard manifolds, this results extended the results
of (3) from the classical linear spaces to the setting of manifolds,

Tpy1 = exp, (1 — ay)exp, ' Tz,, n>0, (3)

where u,zg € K and the sequence {a,} C (0,1).
The Halpern algorithm (3) is equivalent to

Tn4+1 = ’Yn(l - an)v n Z 07 (4)
where 7, : [0,1] — M is the geodesic joining u to T, (i.e. ¥(0) =u and v(1) = T(x,) ).

Motivated by the above works of Li [19], Xu [37] and Konrawut [16], in this paper,
we consider the problem of finding

z* € Fiz(S)NVIP(T, K) (5)

in the setting of Hadamard manifold, where S is nonexpansive mapping, 7" is pseudomono-
tone vector field, Fiz(S) denotes the set of fixed point of the nonexpansive mapping S,
VIP(T, K) denotes the set of solutions of the VIP (2). Especially, The solution set of the
problem (5) is denoted by S £ Fiz(S) N VIP(T,K). we present a new iterative algorithm
and prove that the sequence generated by the algorithm converges strongly to a common
element of problem (5) on Hadamard manifolds.

2. Preliminaries

Let M be a connected m—dimensional manifold and p € M. T}, M denotes the tangent
space of M at p. To become Riemannian manifold, we always assume M can be endowed
with the Riemannian metric (,) and the corresponding norm || - ||.

Given a piecewise smooth curve c: [a,b] — M joining p to ¢, we define the length of
¢ by

b
L(e) = / I (@)l

Then, the Riemannian distance d(p, ¢) is the minimal length over all such curves joining p
to q.
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Let V be a Levi-Civita connection associated with the Riemannian manifold M. If
¢ is a smooth curve, a smooth vector field F' along ¢ is called parallel if Vo F = 0. If ¢’ is
parallel, then ¢ is a geodesic, and ||¢’|| is a constant. Based on the definition of Riemannian
distance d(p, q), it is easily seen that a geodesic joining p to ¢ in M is called a minimizing
geodesic if its length equals to d(p, q).

A Riemannian manifold is complete if for any = € M all geodesics emanating from
x are defined for any t € R, Hopf-Rinow theorem asserts that if M is complete then any
pair of points in M can be joined by a minimizing geodesic. A complete simply connected
Riemannian manifold of non-positive sectional curvature is named a Hadamard manifold.
Throughout this paper, we assume that M is a Hadamard manifold, the following results
are well known and will be useful.

Let v(t) : [a,b] — R, the parallel transport P y(4) @) @ Ty@)M — Ty M on the
tangent bundle TM on the ~(t) is defined by

Py vy (V) = F(()),Va, b € R, v € Ty ) M,

where F is a unique vector field such that F'(y(a)) = v and V.., F = 0,Vt € [a, b].
If (t) : [a,b] = R is a minimizing geodesic joining a to b, Py, is denoted by P, 4
and Pb_)a1 = P, generally. Recall that, for a,b € R, for all u,v € T, (4)M, we have
(Pr(b)y(@) % Pry5) 2(a)0) = {0, 0)-
Definition 2.1. The vector field T : K — TM s called monotone, if
(Tx, exp, ty) + (Ty, exp;1x> <0,Vz,y € K.
Definition 2.2. The vector field T : K — TM is called pseudomonotone, if
(Tx,exp, ty) > 0 implies that (Ty, exp?;v) <0,Vz,y € K.

Definition 2.3. The vector field T : K — TM is called T'-Lipschitz continuous, if there
exists I' > 0 such that

| Py yTy — Tz|| <Td(z,y),Vz,y € K.
Definition 2.4. The mapping T : K — K is called nonexpansive, if the following inequality
holds
d(Tz, Ty) < d(z,y).

Definition 2.5. The mapping T : K — K is said to be contractive, if there exists a constant
a € (0,1) and the following inequality holds

d(Tz, Ty) < ad(z,y).
Lemma 2.1 ([37]). Assume that {a,} is a sequence of nonnegative real number such that
an+1 < (1 =7n)an + 0p,Yn >0,

where {v,} is a sequence in (0,1) and &, is a sequence in R such that
(1) Yoo Y = 00;

(i4) 30" |0n] < 00 or limsup % <0
n—oo "
Then lim a, = 0.

n—oo
Lemma 2.2 ([2]). Let A(p,q,r) be a geodesic triangle in a Hadamard manifold M, then
there exists p',q',r' € R? such that

d(p,q) = |lp" = ¢ll,d(q, ) = ll¢" = 7|, d(r,p) = || = p'I|.
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Remark 2.1. The triangle A(p', ¢, ") is said to be the comparison triangle of the geodesic
triangle A(p, q, 1), which is unique up to isometry of M.

Lemma 2.3 ([19]). Let A(p,q,r) be a geodesic triangle in a Hadamard manifold M, and
A, q',r") is its comparison triangle.

(i) Let o, B,y (', B',7") be the angles of N(p, q,7) (AP, ¢’ ,7")) at the vertices p, q,r (0", ¢ ,7").
Then the following inequalities hold:

a<d, BB, y<A.

(ii) Let z be a point in the geodesic joining p to q, and 2z’ is its comparison point in
the interval [p',q']. Suppose that d(z,p) = ||z’ — p'|| and d(z,q) = ||z — ¢'||. Then the the
following inequality holds:

d(z,r) < ]z =

Lemma 2.4 ([24]). Let d : M x M — R be the distance function. Then d is a convex
function with respect to the product Riemannian metric, i.e., given any pair of geodesics
7 :[0,1] = M and s : [0,1] = M, the following inequality holds for all t € [0,1]:

d(11(t),72()) < (1 = 1)d(71(0),72(0)) + td(71(1),72(1))

Let Pk denotes the projection onto K, and for a point p € M, Pk (p) is defined by

Px(p) = {po € Kl|d(p,po) < d(p,q), Yq € K}.

Lemma 2.5 ([36]). For any point p € M, Pk (p) is a singleton and the following inequality
holds

<exp1_311((p) D, exp;j((p) q) <0, Vge K.

Lemma 2.6 ([18]). Let * € M and {z,} C M with x,, — 2* as n — oco. Then the
following conclusions hold:

(i) For any y € M, then exp;n1 Yy — exp;*1 y and exp;1 Ty — exp;1 x* as n — oo.

(ii) If v, € T, M and v, — v* as n — oo, then v* € T« M.

(11i) Let iy, v € Ty, M and ny,v* € Ty« M if 9, — 0* and v, — v* as n — oo, then
My Vn) = (*,v*) as n — oo.

Lemma 2.7 ([18)). If z,y € M and w € TyM, then
(w,— exp;1 z) = (w, Py, exp, ly) = (Py zw, exp;1 x).
Lemma 2.8 ([8]). If z,y,2 € M and w € T, M, then
(w,expy ' y) < (w,expy ' 2) + (w, Pooexp; ' y)

Lemma 2.9 ([24]). Let A(z1,x2,x3) be a geodesic triangle in M. Then
(i) d*(x1,22) + d* (22, 23) — 2(expy,! @1, expy,) x3) < d*(w3,21),
(i) d*(x1, x2) < (exp,! 3, exp, ! x2) + (expy,) x3,exp,,)} x1).
(1ii) If v is the angle at x1, then we have

(expg;l1 T, exp;l1 x3) = d(xq,21)d(x1, x3) Cos7y.
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3. Main results

Let 29 € M, {an} C (0,1), f: M — M a contraction with coefficient o and S : K —
K a nonexpansive mapping with Fiz(S) # (0. Let the vector field T' be pseudomonotone
and I'-Lipschitz continuous. Now, we define the following iteration scheme. For an initial
point zg € K, {z,} is a sequence generated by the form

Tnt1 = €XPy(q, )(1 —ap) expf Sym (6)

Yn = €Xp,,, pn (P, oz, T, — Tzn), (7)
1

(PpenTxn — —exp_ Lan,expty) >0,Vy € K, (8)
L n

where the iterative equality (6) is equivalent to the following equality:
Tn4+1 = ’Yn(l - an)7 n Z 07 (9)

where v, : [0,1] — M is the geodesic joining f () to sy, (i.e. v(0) = f(z,) and v(1) = Sy,
) and {a,} C (0,1) and {u, } satisfies

1) lim a, = 0;
n—}oo

(H

(H2) X922 g, = 005

(H3) elther ¥ olapt+1 — an| < 00 or hm i =1
(H4) 0 < ot/ < puyp, < i’ ,I'>0.

Proposition 3.1. Let K be a nonempty closed geodesic convex subset of M, S : K — K
a nonezxpansive mapping with Fix(S) # 0, and f : K — K a contraction with coefficient
«. Let the vector field T be pseudomonotone and I'-Lipschitz continuous. Let the sequence
{zn} be generated by the equations (6)-(8). Let {a,} C (0,1) and {u,} be two sequences
satisfying the conditions (H1)-(H4), then

d*(Yn, ) < d* (2, T) — (1 = T2p2)d* (20, 20), V7 € 8.

Proof. The proof is similar with the proof of Lemma 5 in [16]. We only need to do the
following operation:
Replacing @41 in Lemma 5 in [16] by y,.
Replacing y,, in Lemma 5 in [16] by z,.
Replacing z in Lemma 5 in [16] by Z.
The required conclusion is completed.
O

Theorem 3.1. Let K be a nonempty closed geodesic convex subset of M, S : K — K a
nonexpansive mapping with Fix(S) # 0, and f : K — K a contraction with coefficient
a. Let the vector field T be pseudomonotone and I'-Lipschitz continuous. Let the sequence
{zn} be generated by the equations (6)-(8). Let {an} C (0,1) and {un} be two sequences
satisfying the conditions (H1)-(H4), Then the sequence {x,} converges to &, where & is the
unique solution of the variation inequality

(exp; ' f(7),exp; ' @) <0,Vz € S. (10)

Proof. The proof is divided into five steps.
Step 1. We show {x,} is bounded.
Take = € S and fix n, by the Proposition 3.1, we have

d2(yn, r) < d’ (Tp,2) — (1 - ,u")dz(xn,zn) Vz € 8S.
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By the condition (H4), we know 1 — I'?u2 > 0, then
d*(yn,x) < d*(zp, ), forn > 0.

By the convexity of the Riemannian distance in Lemma 2.4 and the nonexpansive of S, we
have that

d(Tnt1,2) = d(yn(l — an), z)
< and(1n(0),2) + (1 — an)d(va(1), )
= and(f(zn), ®) + (1 = an)d(Syn, z)
< and(f(an), [(#)) + and(f(2),2) + (1 — an)d(yn, z)
< apad(Tn, ) + and(f(x),2) + (1 — ap)d(zy, )
=[1-(1—-a)ay)d@n, )+ a,d(f(x),x)

1
7md(f(x)a$)}-

< max{d(zn,x)
By induction
Ao, 7) < max{d(zo, ), ——d(f(x), )}, ¥n > 0
-
Then {x,} is bounded, so are {f(zn)}, {yn} and {Sy,}.
Step 2. We show li_>m d(Yn, zn) = 0.

First, we show that lim d(x,,z2,) = 0. From Proposition 3.1, we know easily
n—oo

dQ(l‘n,Zn) < mcﬁ(xml‘)
1 2
S Wd (xmx)

= (0)*d*(zq, ),
o
d(2n, 2n) < Td(xp, )
<T{[1 - (1 - &)ap—1]d(@p-1,2) + an_1d(f(z),2)}
L[(1 = ap-1)d(@n-1,2) + an_1d(f(z),2)].
Let m < n, by induction, we have
d(n, 2n) < TIGZ) (1= @) d(zm, x) + T2 {a I (1 — ag) Yd(f(2), @)
< TGS, (1 - ay) + TS5 oy I (1 - ag)}d(f (2), 2)

where II7_ a(j) =1 as m > n.
By taking n — oo, we have

where T = then

IN

d(@n, 22) STCUTZ, (1 - a5) + TE52, {ayT2 544 (1 = &) Hd(f(2), @)
From condition (H1) and (H2), we get
mlgnooﬂjoom(l—dj) =0 (11)
and
Jim 352, {0y I (1 - 6))) = 0. (12)
Now, adding the above equalities (11) and (12) and taking m — oo, we get
lim d(zp,2,) = hm d(xp, zn) = 0. (13)

m—0o0
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Secondly, we show that li_>m d(yn, zn) = 0.

From the algorithm (7), and T is I-Lipschitz continuous, we get

d(yna Zn) = H expz_nl ynH
= pn|Pzyy zn TTn — T2y

< pLd(zy,, zn)
< d(xn, 2n)-

By the squeeze theorem, we obtain

lim d(yy,z,) = 0.

n—oo

Step 3. Since {z,} is bounded, we can assume that there exists some subsequence
{xn,} of {z,}, and klim X, = &. In this step, we show that & € S.
— 00

First, we show that & € Fixz(S).
d(xn+1, Syn) == d('yn(]- - an)a Syn)

< and(1n(0), Syn) + (1 — o )d(1n (1), Syn)

< and(f(zn), Syn) + (1 — an)d(Syn, Syn)

< and(f(zn), Syn),
by the boundedness of f(z,) and Sy,, and the condition (H1), we get

ILm d(xp41,Syn) = 0. (15)
Then,
d(Sy’ﬂk ) j) g d(Sy’nk ) xnk+1) + d(mnk+17 j")?
by the squeeze theorem, we obtain
nll_}IIOIO Syn, = 2.
And
d(ynk bl j) S d(ynk I an) + d(znk 9 xnk) + d(xnk 9 SAC)’

by the squeeze theorem,(14) and (13), we obtain

lerrgoynk = . (16)

Then, we have
d(&,5%) < d(&, xp,41) + d(Tng41, SYny ) + d(SYn,, SF)
< d(@, Tny41) + d(@ny 41, SYny) + d(Yn,,, )

by the squeeze theorem,(15) and (16), we obtain
d(#,8%) = lim d(z,S2) =0,
k—o0
that is to say & € Fliz(95).

Secondly, we show that & € VIP(T, K).
By the algorithm (8), we get

(unsz%’mnk Txy, — exp;:k xnk,exp;nlk y) >0,Vy € K,
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by Lemma 2.8, we have
0> <expz_n1k Ty = oy Prryy 2, Ty expz_nlk Y)
= (exp2! @, exp2 y) = png (Pe, o, Ty exp2) )
= (expZ! @ny,expZ) Y) = fing (Peyy o Ty, X2 Ty
— Hny, <Pznk, Txnwpznk Ty, eXP;nlk Y)
<expz xnk,expzn Y) — finy, <PZ"k"I"k Tmnk,expz xnk)
Ty 032 1),

It follows from the above inequality and Lemma 2.7 that

_ 1
<T$nk7eprn1k y) > P —(ex pzn xnmeszn y) — <Pznk>1nk Txnkvesz I”lk:>
ny
1 _
Z ,LL <€sz xnk ’ GXpZ y> + <T$nk ) ej’q:)a{:nl,C znk>7
ny

by taking £ — oo and Lemma 2.6, we get
(Tﬁ:,expg{1 y) >0,Vy € K.

That is to say & € VIP(T, K).
Thus, z € S.
Step 4. We show that
limsup(exp; ' f(Z), exp; " Syn) <0,
n—oo

where Z satisfies the variational inequality (10).
Since {y,} is bounded by stepl, lim sup(expg;1 f(ic),exp;1 Sy,) exists, and by the
n—oo
definition of the upper limit, we can find a subsequence {y,, } of {y,} such that
lim sup(expgl f(:E),exp:;1 Tz,) = lim (expi_1 f(:i),expg1 Txy,)
n—o00 k—o00
Without loss of generality, since {y,} is bounded, we can assume that y,, — Z € M as
k — oo.
By step 3, we can easily get £ € S.
Hence, by Lemma 2.6, we obtain
limsup<exp£1 f(:f:),exp;1 Syn) = hm (expgl f(:f:),exp;1 SYn, )

n—oo k—o00
= (exp; ' f(&),exp; ' &)
<O0.

This proof is completed.
Step 5. We Show hm T, = T.

By Lemma 2.1, it sufﬁces to verify that
d2(£n+17‘%) é (1 - dn) S d (xnv‘%) + Ozngnavn Z 0.

To this aim, we fix n > 0 and set u = f(x,), p = Syn, ¢ = . Consider the geodesic
triangle A(u,p,q) and its comparison triangle A(u', p’, ¢'), then

d(f(xn), ) = d(u,q) = [[u' =[],
and
d(Syn, %) = d(p,q) = |lp' — ¢'||.
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Then the iterative algorithm (6) can be written as
Tpal = epr(M)(l — ay) eXp;(lmn) SYn
= exp, (1 —az)exp,'p, 1 >0,
The comparison point of x,1 is denoted by 7, as follows:
Ty = opt' + (1 —ap)p’, n>0.

Let 8 and ' denote the angles at ¢ and ¢’, respectively. And we know 8 < 8’ by Lemma
2.3, so cos 3 < cos f3.
Then, from Lemma 2.3, we get

d*(2pi1,7) < |l2) 0 — 4|7
= lan(u' —¢') + (1 = an) (0 — d)|?
apllu’ —q'[I* + (1 —an)?[lp" — 'l
+ 20, (1 — an)|v” = ¢[[[Ip" — ¢[| cos B
2d*(f(zn),Z) + (1 — an)?d?*(Syn, 7)
+ 20, (1 — ap)d(f(zn), Z)d(Syn, T) cos B
< (1= an)?d (@0, @) + o d®(f(wn), T)
+ 200 (1 — an)[d(f (zn), f(2)) + d(f(Z), 2)|d(SYn, T) cos B
< (1= 0n)?d* (20, 7) + 20, (1 — ) vd? (2, 7)
+a2d?(f(wn), ) + 20 (1 — ay, ) {exp; f(7), exp; ' Syy)
< (1 =20y, + a2 + 200, (1 — ay))d* (2, )
+ anlond®(f(2n),7) +2(1 — an){expz ' f(Z), expz " Syn)]
= (1 — dp)d*(x, %) + @y - Bn,

IN

where
&y = 20, — ai — 200, (1 — ay),

and
5 and®(f(20),@) +2(1 — an){expz " f(7), exp; ' Syn)
Bn =
" 2 —a, —20(l — ay) '
It is easily seen that lim &, =0 and >~ d, = co. And limsup B, < 0 by the condition
n—oo n—oo

(H1), step 1 and step 4. By Lemma 2.1, we get lim z, = Z. O
n—oo

4. Conclusion

In this paper, an iterative algorithm for approximating a common element of the set
of fixed points of a nonexpansive mapping and the solutions of variational inequality on
Hadamard manifolds has been proposed, and we have proved the sequence generated by
the suggested algorithm strongly converges to the common solution of problem (5). The
results present in this paper not only extended some recent results, and but also solved
the common element of the fixed point of a nonexpansive mapping and the solutions of
variational inequality on Hadamard manifolds.
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