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ADAPTIVE NEURAL NETWORK UNKNOWN TRAJECTORY
TRACKING CONTROL FOR MARINE SURFACE VESSEL
WITH CONSTRAINTS

Qiwei ZHANG?, Xiyun JIANG?", Kexin ZHANG?, Ziliao YUAN*

Most marine surface vessel (MSV) trajectory tracking problems ignore the
output, state and input saturation constraints in the operation of the actual system. In
addition, the desired/target trajectory for tracking is based on known conditions. To
address these problems, this research introduced an adaptive tracking control scheme
under the MSV system with constraints. The overall controller design is based on the
backstepping control technology. Firstly, the parametric approach is adopted to
estimate the desired trajectory. Secondly, an integral Barrier Lyapunov Function
(iBLF) is used to directly handle system state constraints. Finally, using the mean-
value theorem to deal with input saturation. In addition, the adaptive ability of fully
tuned radial basis function neural network (FTRBFNN) is used to make system better
compensate for uncertainties, and further improve the adaptive ability of the
backstepping approach to uncertainties. With the proposed approach, the constraints
will never be violated during the entire system, and the MSV system state is bounded.
At the end of the research simulations proves the effectiveness of the proposed
approach.

Keywords: Marine surface vessel; Unknown trajectory tracking; Backstepping;
Constraints; Neural network

1. Introduction

The issue of the vessel trajectory tracking has received extensive attention
from a large number of scholars in [1]. On one hand, notice that the desired
trajectory or target trajectory information is accurately known in advance during
the trajectory tracking of the vessel [2]. Considering the actual situation, the
trajectory information of the vessel is unknown or unavailable in the process of
trajectory tracking, so the corresponding control algorithm cannot be effectively
implemented. On the other hand, it is a very challenging work to consider the output
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constraints, state constraints and physical constraints in the design of the MSV
trajectory tracking control [3]. Therefore, it is very necessary to solve the constraint
problems in MSV trajectory tracking control. However, the vast majority of
references are devoted to solving the tracking problem with known trajectories, and
do not consider unknown trajectories. To deal with the case of unknown trajectory,
reference [4] considered the application of model predictive control-MPC to predict
the future state quantities of the trajectory according to the current state quantities
of the trajectory inputs thus solving the trajectory unknown problem. reference [5]
applied Extended Kalman Filtering algorithm-EKF on the basis of Kalman Filtering
to estimate the coordinates of the current moving position by using the state transfer
equation, calculate the covariance matrix, and realize the dynamic tracking of the
unknown target position through the two phases of prediction and update. In
addition, reference [6] adopted deep learning-DL method and uses it to model and
predict the trajectory data to solve a class of tracking problems with unknown
trajectories.

For constraints existing in the actual system, some scholars have proposed
using a BLF scheme [7]. Reference [8] combined BLF and neural network to solve
the output feedback problem for a class of nonlinear systems. In view of the
advantages of [8] , reference [9] combined BLF and neural network to solve the
constrained problem in trajectory tracking of MSVs. To further improve the neural
control scheme, reference[10] use BLF to ensure the full functionality of the Neural
Networks-associated unit during the entire process of system operation. Reference
[11] constructed an iBLF to directly deal with the output and state constraints of a
class of perturbed uncertain nonlinear systems. In the same year, [20] proposed a
control approach based on iBLF to handle the uncertain robot systems with joint
space constraints. In addition, For input saturation, reference [12] mainly use anti-
saturation compensation to design controllers for dynamic positioning system,
underactuated system and Multiple Input Multiple Output (MIMO).

What’s more, a problem that cannot be ignored in the control design process
of the MSV’s nonlinear system is the uncertainties in the system. To solve the
uncertainties problems, intelligent control approaches such as neural
networks/fuzzy systems are introduced into the control design to improve the
robustness [9, 13].

The contributions of this research mainly includes the following aspects:

(1) The iBLF and trajectory reconstruction approach are introduced into
control design of MSV trajectory tracking.

(2) The mean-value theorem is combined with hyperbolic tangent and
Nussbaum to deal with asymmetric input saturation of a certain kind of MSV
system. The FTRBFNN with better approximation characteristics is used to
estimate the uncertainties of the MSV system.
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(3) All the closed-loop MSV system signals are bounded by Lyapunov
stability analysis.

2. Problem formulation

Mathematical model of marine surface vessel is established as follows:

Body - fixed

(0] frame

V4

0
Earth-fixed
frame

Fig. 1. The MSV in the coordinate system [12].

The three DOF MSV mathematical model is established in the O-XoYo0Zo
and A-XYZ as follows:
=Ry 1)
Mo +C(v)o+ D@ =1+d(,0,1)
The meaning of each parameter in Eq. (1) can be referred to reference [14].
The control objective is to design controller for Eq. (1) with saturationz e * [15],
such that: 1) the wvessel positionftracks unknown desired trajectory
na =[x4.va.wa1" . 2) all signals are bounded and the output’ and state » remain in the
set |nl< Ny, [vl< Np,, Vt>0, respectively.
Assumption: For allt >0, the estimates of 7, and #4 , as well as the estimates

of 74 and f,d are bounded and there exist positive constant vectors Nui, Ao, A, Agrs Auy,

satisfying|#s I< Ay < Ny, 175 IS A <Ny, a1g IS AL, (5, 1< AL Assumption limits the
range of the estimated desired trajectory, which is essential for designing a feasible
tracking controller.

3. Control design

The control design based on backstepping approach includes desired/target
trajectory parameterization, dynamic surface, constraints and neural network
approximation. The detailed design steps and analysis are as follows:

Step 1: Define the error vector as follows:
=0-14,2, =v-a (2
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where, ¢, (1% is the output of the first-order filter to be designed later, and
714 (i) = fq; (Déy; +E4 1S the estimate after trajectory reconstruction, here g (i) is the i-
th element of 74, f,; <0'is a basis function vector; e, €0'andc, €0'(i=12,3) are
constant parameter vector and constant parameter; @4 and ¢qiare estimated values,
respectively. For other unknown trajectory estimation method, MPC can be used to
deal with the unknown trajectory problem, the essence of MPC is the use of existing
models and current values, predict the future value of the system, and constantly
optimize the future control volume, and ultimately make the cost function presents
the smallest value of the technical means [4]. EKF can also be used, the algorithm
uses the estimated signal strength value when the target is moving, combines the
received signal strength value to reconstruct the mapping relationship between the
distance and the signal strength, uses the state transfer equation to estimate the
coordinates of the current moving position, calculates the covariance matrix, and
realizes the dynamic tracking of the target position through the two phases of
prediction and updating [5]. With the development of intelligent control methods,
some scholars have utilized NN for data acquisition and processing, then selection
and construction of the model of NN, further model training, and finally trajectory
prediction to estimate the unknown trajectory.The method of DL to deal with the
unknown trajectory is similar to that of NN, which belongs to the neural network
prediction essentially [6, 16].

In contrast, this manuscript adopted the regular trajectory reconstruction
method, and the regular trajectories include sine and cosine. It is not applicable to
irregular trajectories, but the methods of MPC, EKF, NN, DL, etc. can be used for
trajectory prediction. This this manuscript will subsequently deal with the
prediction of irregular unknown trajectories using these methods.

In addition, we define @gi = @4 —@q and Cai = Cqi —Cqi. To apply the dynamic
surface control technique, the boundary layer error is introduced as follows:

Y =a; —af (3)

Where o <01°is both the virtual stabilization function to be designed and
the first-order filter input.

To handle the output constraints directly, consider an iBLF candidate as

S I AOLORC VY0) S S PP B S
R B A PO L A DI
V1 is positive definite and continuously differentiable in the set|#l< Ny,.
Where Ny, are the constraints; A.(i) = pz,(i) ; z,(i) , (i) and Ny (i) (i =1,2,3) are the i-th
element of vectors z:, f1and Ny, respectively. 4 =4 0 *?is positive definite
design matrix;
By defining a bounded function:

0= BONZOALOYINGG 18,0+, O],
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and using partial integration and L’Hopital’s rule to the derivative of Eq. (3), and
use the Yong’s Inequation for z,PRY | we can obtain

3 3
7 1 1 * A ~ 1A ~ A
Vl < Z;Lr PR22 +EZ]T PT le +EYTY + ZI PRal _ZlTylnd —Z(I)LAI lwdi —chlcdl (5)
i=1 i=1

Where, P =diag[P,,P,,P], P =72 (i =1,2.3) 7, = diagh; (1.7:(2). n Q)]

Now, we propose virtual stabilization «; and adaptive law and as follows:
N 1 1A A N A A
a; =R’ [— Kizy 5 P2+ Py :l;wdi =4 (— O1i@g; +21i’pli);cdi ==85iCqi + L2 (6)

Where, K;=diag[kis,kio,ki31>0, 65,05, iand Az are all positive design
parameters; ll s (. (D) 1< ¢y <o, || 92i (2, (D)) I< é <o are the arbitrary differentiable

bounded function of z:(i) . Ifegand ¢4 are updated by Eq. (6), then oy, ,é)di , Caiand édi

are bounded. Omitting of proof, readers can prove it themselves.

Through derivation, we further derive the following expression:
j 1ot Si 1~ N0 w2
V, <-2 K,Pz, +2, PRz, +2YY - Z Oy — ;Tcdiml 7)

Where, Di=k+l, 1, =53 2% |y 12 +22, ‘1”’1'
d

A
and the coupling term z; PRz, will be canceled in the subsequent step.

Step 2: In this step, a first-order filter is introduced to make g, pass through
the following first-order filter.

_v3 9 3 2|¢2|
2,120(1, leg >0

goy +ay =ay, oy(0)=a1(0) 8)
Where, the design constant$ >0, Since» needs to be constrained, a Lyapunov
functions candidate by augmenting V1 with an iBLF is chosen as follows:

20 B ONSOABO] 1 1

KO R s PN AR AP ®)

V2 is positive definite and continuously differentiable in the setlv|< Ny,

Where Ny are the constraints; £.(i) = pz,(i) ; 2,(i), B.(i) and Ny (i) are the i-th element

of vectorsz,,B,and Ny2, respectively. [e(i)I< Ny, (i) (i=123) is realized by
selecting the appropriate parameter K.

In the same way, by defining a bounded function

h, (i) = joz B, ()N )ALB,0)/INS ) -[8,()+ o, ()] and using partial integration and

L’Hopital’s rule to the derivative of Eq. (8), we have
Vp =V, +25 Q0237961 + 23 [-C(0)o-D(0)o+ 7 +d(,0,t) - Mag [+Y Y (10)
Where, Q =diag[Q;,Q,,Qs], Q = Ngz”g?;fj;(i) andy, =diagly,(1).7,(2).7,(3)] .
Therin Eq. (10) can be expressed ast =sat(z.) = 9(z.) +#(z.) . We use the




144 Qiwei Zhang, Xiyun Jiang, Kexin Zhang, Ziliao Yuan

piece-wise hyperbolic tangent function to describe the saturation function, then the
form of g(z,) e *and x(z.) 0 ° are the same as the representation in [17]. To deal
with non-affine form ofg(z.), using the mean-value theorem, 9(z.) satisfies
9(zc) = 9(z¢) +O(z. —7¢) . Choosing z; =[0,0,0]" , we get

g(Tc) = @Tc (ll)

. og; (7 (i a . -
Where, ©=diag[6,,6,,6s], 6 = géx%(;» e r=ren® » 7o) = a7 (i) + (L-a)7. (i)
(0<ag <1,

The uncertainty in Eq. (10) is expressed in terms ofU(Z), and then we

approximate it with NN, and we get
U(Z) =-C(v)o-D()o+d(y,0,t)-May =W S*(Z, 4" ,6") +&(Z, " ,6*) (12)

wherew " =w;", Wy ,W;Tis the ideal weight matrix; s* =[s;".s57.S5"1" is the
ideal basis function vector; z =[»" .« .4 1" is NN’s input vector; »*, ¢* are the ideal
center and width of basis functions s*, respectively. In addition, (z,«".¢") satisfy
le(Z, " 6")<E.

The time derivative ofV, is organized as

. 1< i -~
T T T Al
V, <-17; K{Pz; +7; PRz, - 4.21:/%)( 044 0y Zl§2|CdI+D1+ZZQl) zzyzoz1

: : (13)
+1; B/\/*Ts*(Z,,u*,o'*)+s(Z,,u*,0'*)+(9‘rc +x(rc)]+[%—§+w_z}(w +IZ
l
In inequation (13), @ is time-varying, this makes the design and analysis
difficult. To solve this problem and avoid the calculation of @*, we introduce the
Nussbaum function matrix N =diag[N;(c;), N2 (s2). N3(s3)], and the control law for z.
is design as

Ni(6i) =g cosgi, ¢ = 2.7 ()2, (1)
T, = N‘FC, 7. =—Qo+7y,a,—R"PTz, —K,Qz, — K3z, -W T S(Z, 1,6)
Where, >0 K, =diag [k21, Kz2,K23] > 0and K; = diag[ksy, kaz, k3] > Oare
posmve definite de3|gn matrlces W , $ ,#andgare the estimates ofw*,s*, »"and
o*, respectively. We definew =w*-w, a=u"-zandé=6¢"-5. In addition,

W =[W,, W, W,] is the weight matrix of the NNs; §=[S],S],S1]" are the estimated

basis functions.

Consider the following augmented Lyapunov functions candidate
3

V=V, += ZwTr W, + = Zﬁfrl;lﬁ, Za, r,'s, (15)
i=1
Based on the properties of FTRBFNN, we have the following expression:
WTS* W78 =W (§- 85— Sy TS, 4TS5 +W TS +W T S56° +W TO(Z, 7,5) (16)
Take the derivative of Eq. (15), and then based on Eq. (16), we design the

(14)
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following adaptive law:

W, =y, [Hi2, () vy 12, G) [W;] (17)
g, =T, [SIW,2,(0) - v | 2,() | ] (18)
6, =T, [SIWiz, (i) ~vy 1 2,()) 6] (19)

Where, vi >0, v, >0andvs >0 (i =123)are design constants.
Substitute Eq. (17)-Eqg. (19) into the derivative of Vs for sorting, and then
apply Lemma 2 in Appendix A.1. Finally, we obtain

3
VSS_AVS"'ZLZ(QiNi(gi)_l)g.i"'C (20)

S i=l
Here we can sort OUtA
2[ﬂ'min(K3)_2] ,5*,min|: 1 — :|
Arex (M) 2 (A7)

. . . (21)
m|n % mln Viz ||WI ”2 mln V22i ””I ”2 mln V3,2| || O'i ”2
) =] y " s —
2 )| 24y (1) or; or,

& zé_l_zlij,c:zis:lsi (i=123). To ensureA>0,&* >0, the design matrix

Ksis chosen to satisfy 4min (K3)—2> 0. Multiplying both sides of inequation (20) by
e and integrating inequation (20) over[0.t], inequation (20) further becomes

¢ ¢l u oM 3 . oA 3 L
V3(t)$X+[V3(O)—ﬂe "‘Z_J.OZ(eiNi(Gi)‘l)gie TdTSbO+Z_JOZ(9iNi(§i)‘l)§ie "dr (22)

S i=1 5 i=1

Where, by =V3(0)+5 .

Theorem: Consider the MSV systems (1) with the input saturation,
uncertainty, and full-state constraints, under Assumptions 1. If the initial conditions
satisfy [#(0) |< Ny, lo(0)I< Ny, , under the virtual stabilization function «;, the first-
order filter Eq. (8), the control laws Eq. (14), and the adaptive laws Eq. (17)-Eq.
(19),@5and Cqi. If the design parameters are chosen appropriately, the system has
the following properties:

1) The system full-state constraints are never violated, i.e., [#l<Npy,
o< Ny, V>0,

2) All signals of the closed-loop system are bounded.

Proof: 1) Noting the definition of Vs in Eg. (20), and letting b: be the upper

ﬂ’min (Kl)’ ﬂ’min (Kz)y
A =min

t

—At t .
bound of term %Lz?ﬂ(ﬁi N;(¢;) -1)ce *"dz and F =b +b; , we can obtain

V3(t) <F (23)
According to the BLF,V5(t) > when|#(i) [> Np. (i) , [ 0(i) [> N, (i) (i=12,3),
Due to the boundedness ofVs(t), we know that|#(i) = Ny (i), [o@) = Np,@), ie.,
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[n(i) [< Ny (1), [0(i) |< N, (i), vVt 20,
Proof: 2) It is easy to obtain that each term of Eq. (23) is positive, and we
have inequations:

21(') <V4(t) <F, 2(') <V4(t) <F, %Zz'\"zz Vi(t) <F (24)

The final convergence set of errors are as follows:

. 2 . 2 . 2c+2b0,A .
)< |+ 2 12,0015+ 20 22(')”%/4;:(—&)& =123 (25)

Based on inequation (5), the virtual stabilization functione; is a function
aboutr”, z1, pT, P~t, 71, 4, . Combining the form of «; and the first-order filter,

we havele; < Ny, while using e, = (e —a;)/&, $>0, we can know thateé is also
bounded. From inequation (22) and Lemma 1 in Appendix A.l, it can be
conveniently shown that<; is bounded. Because N is bounded, <iin Eq. (14) is
bounded, and we can know that = is bounded. In addition, according to inequation
(22) andiIw;" I<W; Il i <z, llof <&, thenw;,W;, i, &, o andé;are also
bounded. From Eq. (17)-Eq. (19), it is readily know thatwy., z; , ; are all bounded.

Finally, the estimated trajectory is bounded within the desired trajectory.
Consequently, all signals are bounded.

4. Simulations

In this section, to demonstrate the effectiveness of the proposed approach,
the detailed model parameters are shown in [18]. We choose a general desired
trajectory form similar to [19]. The output constraints and state constraints are
chosen asN,; =[5.3m,4.3m,1.05rad]" and N, =[0.5m/s,0.5m/s,0.5rad/s]", respectively.
The constraint range of the control forces and moment are given as 7, €[-20N,20N],
7, €[-15N,15N] 7, €[-5Nm,5Nm],

The Part 1: The initial conditions and the control designed as:
7(0) =[0.2m,0.2m,0rad]", »(0) =[OmVs,0mVs,Orad/s]" . To approach the true disturbance,
the disturbance is specified as follows, reference to [18]: The basis functions are
f,, =[cos, (0.1t),---,cos, (0.1)]", f,, = f,, =[sin, (0.1t),---,sin, (0.1t)]", The bounded function
are chosen as oy (7(i)) =[cos, (z, (i), -, cos, (z, ()] and @i (n(i)) = 0.1sin(z (i), (i =1,2,3)
where z;(D)=x-x4, z1(2)=y-ysand(3)=v-y4. The trajectory estimation design
parameters are set as follows: A4 =051y, A4y =4, =24;5=01 4, =2, =1, =0.05,
0, =01, 6, =05, 5, =05 @4 j(0)=0and¢,; (0)=1, (i =123, j=12--1). The
controller parameters are set as follows:
K, =diag(0.1.0.1,0.1), K, =diag(1,2,2), K, =diag(5,10,10). The filter time constant is set
as¢=052 0<&* <054, The neural network parameters are set as
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W, 50)= i (0) =6, 5(0) =0, £ = s, P = 1 =08 vy —viy = vy = 25%10°%,1 =40

X = 107>, Compared to the standard approach, we use the same design parameters

and the virtual stabilization function is designed asa; = R'[-(K, +%)z1 +f;d] . The the

control law is designed asz, =-W " S(Z, 4,6)— Kz, . The simulation time is set to 100

seconds. Fig. 2-Fig. 12. Shows the results.
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Fig. 12. System uncertainties approximation comparison. Fig. 13. Nussbaum parameters.
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Fig. 2 shows that the proposed approach has a better tracking effect. In Fig.
3 at about 65-70 seconds, the proposed approach can make the surge position X,
within the constraints. The standard approach does not work. At about 30-40
seconds, the proposed approach can make the heading angle position x,; within the
constraints, while the heading angle position x; violates the constraints under the
standard approach. Fig. 4 shows the steady-state tracking errors are closer to zero
under the proposed approach. Figure 5 shows the velocity X, X;, andX,sof
Cybership Il under two approaches. Fig. 6 shows the steady-state tracking errors
are closer to zero under the proposed approach. Combining Fig. 3 and Fig. 4, the
proposed approach ensures that both the system state variables #» < X;andv < X,
operate safely within constraints. Although the system velocity state does not
violate the constraints under the standard approach, it cannot satisfy the constraint
requirements in the perspective of control approach theory. Fig. 7 shows that the
proposed approach effectively restrains the control force and torque, and ensures
that the control force does not exceed the actual limit.

Fig. 8 and Fig. 9 show that the trajectory parameter linearization approach
is used to estimate the desired trajectory very well. The estimation error fluctuates
with a small amplitude around zero. Fig. 10 and Fig. 11 correspond to the change
curves of the trajectory estimation parameters @y ,®y,,d;, €1, ¢ andCs
respectively. It can be seen that the change range of these parameters are bounded.

Fig. 12 shows the comparison results of the system uncertainties
approximation under the two neural network approaches. It can be further seen from
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Fig. 12 that FTRBFNNSs has stronger online learning abilities and adaptive abilities.
Fig. 13 corresponds to the changes in Nussbaum parameters. Fig. 14 corresponds
to the estimated weightsw , base function center estimation #and width estimation
¢ two-norm changes. It can be seen that the range of changes are bounded.

This Part 2 is the comparison of tracking conditions under different control
parameters. The trajectory estimation design parameters are set as follows:
A =1y Ay =2, =243 =025 Ay =4y, = 4,3 =026, =05, 6, =1, 5, =1, @q; ;(0) =0and
6 (0)=1,(i=123 j=12,--1), =052 0<¢&* <054, I, =151,
K, =diag(1,1,1), K, =diag(15,25,25), K, =diag(50,50,100) 4 ;(0)=0 I, =T, =1,

&i,j(0)=0\/\7i,,-(0)=ﬁi,j(0)=&i,j(0)=0 v, =v, =v, =10, The other parameters do not
change, and the simulations time is still 100 seconds. Fig. 15-Fig. 20 shows the
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Fig. 15 shows that both approaches can track the trajectory in the xy plane,
further from Fig. 16 and Fig. 18 shows both approaches can make the system actual
position and speed safely operate within the constraints. Fig. 17 and Fig. 19 shows
that the error z. , 2., Z and z.; transient and steady-state changes are slightly better
than the proposed approach under the standard approach, and under the proposed
approach error z;; transient state and steady state are better than standard approach,
and z,; steady state is better than standard approach, and transient state is worse than
the standard approach. This is due to the fact that a satisfactory tracking effect is
obtained under various constraints. The standard approach can take a large control
parameters to achieve a satisfactory tracking effect, but the control approach cannot
satisfy the constraint requirements. This corresponding to Fig. 5 and Fig. 6.
Furthermore, the control force will increase sharply under very large control
parameters, which cannot satisfy the actual situation. This corresponds to Fig. 20.

Fig. 21 shows the desired trajectory and the estimation curve of the desired
trajectory. It can be seen that the proposed approach can better estimate the desired
trajectory under the action of the control parameters in Part 2. Fig. 22 corresponds
to the error between estimation and desired in Fig. 21. Fig. 23 and Fig. 24 show the
adaptive estimation parameters, and the estimation parameters are still bounded.

Fig. 25 also shows the FTRBFNNSs proposed can better approximate system
uncertainties. Fig. 26 shows the two norm variation curves of the FTRBFNNSs. In
summary of the simulation verification and the above, it can be seen that the
proposed approach is effective and satisfies the control objective.

5. Conclusions

The backstepping combined with iIBLF was constructed to directly handle
the full-state constraints of the MSV system. The trajectory reconstruction approach
was used to estimate the desired trajectory. Dynamic surface was applied to
simplify derivation of virtual control law. Mean-value theorem combine with
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hyperbolic tangent function were applied to approximate the saturation function.
FTRBFNNs is more effective than RBFNNs in approximating the total
uncertainties of the system.

With the proposed approach, we proved that all signals of the MSV closed-
loop system are ultimately bounded. Simulations verified the effectiveness of the
proposed approach. In the future work, the finite time/fixed time algorithm will be
integrated into the unknown trajectory tracking control of dynamic positioning ship
(DPS).
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APPENDIX A

A.1l: Preliminary

Definition 1: The BLFV (x) defined in [20].

Definition 2: For anyx € R, tanh(x):R — Ris defined as
tanh(x) =e* —e % /eX +e %

Definition 3 : The Nussbaum-type function N(s) define in [21].

Lemma 1 : The properties of function N(s) can be found in reference [21].
Lemma 2 [13]: The functionalV., (i=1---,n) ~ described as

Z okZdo . |(C2izi2 .
Vxlvi(zi(t),qdi(t))=_[o(kcz__(a—+qd')2), satisfiesVy, <775, wherek, >0is constant;

k& —x¢;
Zi =%, —dq, ; variable o = &;(t) ; x, satisfies| x.i I<chi :

Lemma 3 [22]: For adaptive law of formv\*/i = I'[S;2,(i)-v: | 2, (i) [W.], there
exists a compact set Qq ={W, |"V\7i “ <s;/vi}, wherel SilI<s;, W;(0) e ,, Vt>0.

NN Approximation: The FTRBFNNs are define in [23]. R iEA



