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ADAPTIVE NEURAL NETWORK UNKNOWN TRAJECTORY 

TRACKING CONTROL FOR MARINE SURFACE VESSEL 

WITH CONSTRAINTS 

Qiwei ZHANG1, Xiyun JIANG2*, Kexin ZHANG3, Ziliao YUAN4 

Most marine surface vessel (MSV) trajectory tracking problems ignore the 

output, state and input saturation constraints in the operation of the actual system. In 

addition, the desired/target trajectory for tracking is based on known conditions. To 

address these problems, this research introduced an adaptive tracking control scheme 

under the MSV system with constraints. The overall controller design is based on the 

backstepping control technology. Firstly, the parametric approach is adopted to 

estimate the desired trajectory. Secondly, an integral Barrier Lyapunov Function 

(iBLF) is used to directly handle system state constraints. Finally, using the mean-

value theorem to deal with input saturation. In addition, the adaptive ability of fully 

tuned radial basis function neural network (FTRBFNN) is used to make system better 

compensate for uncertainties, and further improve the adaptive ability of the 

backstepping approach to uncertainties. With the proposed approach, the constraints 

will never be violated during the entire system, and the MSV system state is bounded. 

At the end of the research simulations proves the effectiveness of the proposed 

approach. 

Keywords: Marine surface vessel; Unknown trajectory tracking; Backstepping; 

Constraints; Neural network 

1. Introduction 

The issue of the vessel trajectory tracking has received extensive attention 

from a large number of scholars in [1]. On one hand, notice that the desired 

trajectory or target trajectory information is accurately known in advance during 

the trajectory tracking of the vessel [2]. Considering the actual situation, the 

trajectory information of the vessel is unknown or unavailable in the process of 

trajectory tracking, so the corresponding control algorithm cannot be effectively 

implemented. On the other hand, it is a very challenging work to consider the output 
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constraints, state constraints and physical constraints in the design of the MSV 

trajectory tracking control [3]. Therefore, it is very necessary to solve the constraint 

problems in MSV trajectory tracking control. However, the vast majority of 

references are devoted to solving the tracking problem with known trajectories, and 

do not consider unknown trajectories. To deal with the case of unknown trajectory, 

reference [4] considered the application of model predictive control-MPC to predict 

the future state quantities of the trajectory according to the current state quantities 

of the trajectory inputs thus solving the trajectory unknown problem. reference [5] 

applied Extended Kalman Filtering algorithm-EKF on the basis of Kalman Filtering 

to estimate the coordinates of the current moving position by using the state transfer 

equation, calculate the covariance matrix, and realize the dynamic tracking of the 

unknown target position through the two phases of prediction and update. In 

addition, reference [6] adopted deep learning-DL method and uses it to model and 

predict the trajectory data to solve a class of tracking problems with unknown 

trajectories. 

For constraints existing in the actual system, some scholars have proposed 

using a BLF scheme [7]. Reference [8] combined BLF and neural network to solve 

the output feedback problem for a class of nonlinear systems. In view of the 

advantages of [8] , reference [9] combined BLF and neural network to solve the 

constrained problem in trajectory tracking of MSVs. To further improve the neural 

control scheme, reference[10] use BLF to ensure the full functionality of the Neural 

Networks-associated unit during the entire process of system operation. Reference 

[11] constructed an iBLF to directly deal with the output and state constraints of a 

class of perturbed uncertain nonlinear systems. In the same year, [20] proposed a 

control approach based on iBLF to handle the uncertain robot systems with joint 

space constraints. In addition, For input saturation, reference [12] mainly use anti-

saturation compensation to design controllers for dynamic positioning system, 

underactuated system and Multiple Input Multiple Output (MIMO). 

What’s more, a problem that cannot be ignored in the control design process 

of the MSV’s nonlinear system is the uncertainties in the system. To solve the 

uncertainties problems, intelligent control approaches such as neural 

networks/fuzzy systems are introduced into the control design to improve the 

robustness [9, 13].  

The contributions of this research mainly includes the following aspects: 

(1) The iBLF and trajectory reconstruction approach are introduced into 

control design of MSV trajectory tracking. 

(2) The mean-value theorem is combined with hyperbolic tangent and 

Nussbaum to deal with asymmetric input saturation of a certain kind of MSV 

system. The FTRBFNN with better approximation characteristics is used to 

estimate the uncertainties of the MSV system. 
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(3) All the closed-loop MSV system signals are bounded by Lyapunov 

stability analysis. 

2. Problem formulation 

Mathematical model of marine surface vessel is established as follows: 

 
Fig. 1. The MSV in the coordinate system [12]. 

The three DOF MSV mathematical model is established in the O-X0Y0Z0 

and A-XYZ as follows: 
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The meaning of each parameter in Eq. (1) can be referred to reference [14]. 

The control objective is to design controller for Eq. (1) with saturation 3τ  [15], 

such that: 1) the vessel position η tracks unknown desired trajectory
T

dddd yx ],,[ =η . 2) all signals are bounded and the output η and state υ remain in the 

set 1|| bNη  , 2|| bNυ  , 0t , respectively. 

Assumption: For all 0t , the estimates of dη̂ and dη , as well as the estimates 

of dη and dη
̂ are bounded and there exist positive constant vectors 1101101 ,,,, AAAANb , 

satisfying 01 1| |d b η A N , 0 1
ˆ| |d b η A N , 11| |d η A , 1

ˆ| |d η A . Assumption limits the 

range of the estimated desired trajectory, which is essential for designing a feasible 

tracking controller. 

3. Control design 

The control design based on backstepping approach includes desired/target 

trajectory parameterization, dynamic surface, constraints and neural network 

approximation. The detailed design steps and analysis are as follows: 

Step 1: Define the error vector as follows: 

121 ,ˆ αυzηηz −=−= d                                           (2) 
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where, 3

1α is the output of the first-order filter to be designed later, and 

didi
T
did cti ˆˆ)()(ˆ += ωfη is the estimate after trajectory reconstruction, here )(ˆ idη is the i-

th element of dη̂ , l

di f is a basis function vector; l

di ω and ( 1,2,3)l

dic i = are 

constant parameter vector and constant parameter; diω̂ and diĉ are estimated values, 

respectively. For other unknown trajectory estimation method, MPC can be used to 

deal with the unknown trajectory problem, the essence of MPC is the use of existing 

models and current values, predict the future value of the system, and constantly 

optimize the future control volume, and ultimately make the cost function presents 

the smallest value of the technical means [4]. EKF can also be used, the algorithm 

uses the estimated signal strength value when the target is moving, combines the 

received signal strength value to reconstruct the mapping relationship between the 

distance and the signal strength, uses the state transfer equation to estimate the 

coordinates of the current moving position, calculates the covariance matrix, and 

realizes the dynamic tracking of the target position through the two phases of 

prediction and updating [5]. With the development of intelligent control methods, 

some scholars have utilized NN for data acquisition and processing, then selection 

and construction of the model of NN, further model training, and finally trajectory 

prediction to estimate the unknown trajectory.The method of DL to deal with the 

unknown trajectory is similar to that of NN, which belongs to the neural network 

prediction essentially [6, 16]. 

In contrast, this manuscript adopted the regular trajectory reconstruction 

method, and the regular trajectories include sine and cosine. It is not applicable to 

irregular trajectories, but the methods of MPC, EKF, NN, DL, etc. can be used for 

trajectory prediction. This this manuscript will subsequently deal with the 

prediction of irregular unknown trajectories using these methods. 

In addition, we define dididi ωωω ˆ~ −= and dididi ccc ˆ~ −= . To apply the dynamic 

surface control technique, the boundary layer error is introduced as follows: 
−= 11 ααY                                                  (3) 

Where 3

1

α is both the virtual stabilization function to be designed and 

the first-order filter input. 

To handle the output constraints directly, consider an iBLF candidate as 
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1V  is positive definite and continuously differentiable in the set 1|| bNη  . 

Where 1bN are the constraints; )()( 11 ii zβ = ; )(1 iz , )(1 iβ and )(1 ibN )3,2,1( =i are the i-th 

element of vectors 1z , 1β and 1bN , respectively. 3 3T

i i

= Λ Λ is positive definite 

design matrix; 

By defining a bounded function: 
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and using partial integration and L’Hopital’s rule to the derivative of Eq. (3), and 

use the Yong’s Inequation for PRYz1 , we can obtain 
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Where, ],,diag[ 321 PPP=P ,
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Now, we propose virtual stabilization 
1α and adaptive law and as follows: 

( ) iidiidiiidiiidid
TT cc 2221111

1
1111

ˆˆ;ˆˆ;ˆ
2

1
 +−=+−=








+−−= −  φωΛωηγPzPzKRα   (6) 

Where, 0],,diag[ 1312111 = kkkK , i1 , i2 , i1 and i2 are all positive design 

parameters;  ii i 111 ||))((|| zφ ,  ii i 212 ||))((||  z are the arbitrary differentiable 

bounded function of )(1 iz . If diω̂ and diĉ are updated by Eq. (6), then diω̂ , diω̂ , diĉ and dic̂

are bounded. Omitting of proof, readers can prove it themselves. 

Through derivation, we further derive the following expression: 

1

3

1

22
3

1

1
211111

~

4

~~

42

1
DcV

i

di
i

i

di
T
di

iTTT +−−++− 
==


ωωYYPRzzPzKz                    (7) 

Where, 211 llD += , 0||||
1

2
1

2
13

1
2

2
13

11 += ==
i

ii
idi

i
il




ω , 0

2

2
2

2
23

1
2

2
23

12 += ==
i

ii
idi

i
i cl





and the coupling term 21 PRzz
T will be canceled in the subsequent step. 

Step 2: In this step, a first-order filter is introduced to make 
1α pass through 

the following first-order filter. 
(0)(0)   ==+ 11111 , ααααα                                        (8) 

Where, the design constant 0 . Since υ needs to be constrained, a Lyapunov 

functions candidate by augmenting 1V with an iBLF is chosen as follows: 
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2V is positive definite and continuously differentiable in the set 2|| bNυ  . 

Where 2bN are the constraints; )()( 22 ii zβ = ; )(2 iz , )(2 iβ and )(2 ibN are the i-th element 

of vectors 2z , 2β and 2bN , respectively. )(|)(| 21 ii bNα  )3,2,1( =i  is realized by 

selecting the appropriate parameter 1K .  

In the same way, by defining a bounded function 
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L’Hopital’s rule to the derivative of Eq. (8), we have 
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The τ in Eq. (10) can be expressed as )()()( ccc τκτgτsatτ +== . We use the 
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piece-wise hyperbolic tangent function to describe the saturation function, then the 

form of 3( )c g τ and 3( )c κ τ are the same as the representation in [17]. To deal 

with non-affine form of ( )cg τ , using the mean-value theorem, )( cτg satisfies 
)()()( cccc ττΘτgτg −+= . Choosing T

c ]0,0,0[=τ , we get 

cc Θττg =)(                                                    (11) 
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The uncertainty in Eq. (10) is expressed in terms of )(ZU , and then we 

approximate it with NN, and we get 

),,(),,(),,()()()( 1
 +=−+−−= σμZεσμZSWαMtυηdυυDυυCZU

T  (12) 

where ],,[ 321
 = WWWW is the ideal weight matrix; TTTT ],,[ 321

 = SSSS is the 

ideal basis function vector; TTTT ],,[ 11 ααυZ = is NN’s input vector; 
μ , 

σ are the ideal 

center and width of basis functions 
S , respectively. In addition, ),,( 
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 ||),,(|| σμZε . 

The time derivative of 2V is organized as 
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In inequation (13), Θ is time-varying, this makes the design and analysis 

difficult. To solve this problem and avoid the calculation of 1−
Θ , we introduce the 

Nussbaum function matrix )](),(),(diag[ 332211  NNN=N , and the control law for cτ

is design as 
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Where, 0 ; 0],,diag[ 2322212 = kkkK and 0],,diag[ 3332313 = kkkK are 

positive definite design matrices;Ŵ , Ŝ , μ̂and σ̂ are the estimates of 
W , 

S , 
μ and


σ , respectively. We define WWW

~ˆ −=  , μμμ ~ˆ −=  and σσσ ~ˆ −=  . In addition, 

]ˆ,ˆ,ˆ[ˆ
321 WWWW = is the weight matrix of the NNs; TTTT ]ˆ,ˆ,ˆ[ˆ

321 SSSS = are the estimated 

basis functions. 

Consider the following augmented Lyapunov functions candidate 
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Based on the properties of FTRBFNN, we have the following expression: 
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Take the derivative of Eq. (15), and then based on Eq. (16), we design the 
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following adaptive law: 

]ˆ|)(|)([ˆ
22 iiii ii

i
WzzHΓW W −=


                                (17) 

]ˆ|)(|)(ˆ[ˆ
222ˆ iii

T

i ii
ii

μzzWSμ μμ −=                               (18) 

]ˆ|)(|)(ˆ[ˆ
232ˆ iii

T

i ii
ii

σzzWSσ σσ −=                                (19) 

Where, 0i , 02 i and 03 i )3,2,1( =i are design constants. 

Substitute Eq. (17)-Eq. (19) into the derivative of 3V for sorting, and then 

apply Lemma 2 in Appendix A.1. Finally, we obtain 
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Where, 
+= cVb )0(30 . 

Theorem: Consider the MSV systems (1) with the input saturation, 

uncertainty, and full-state constraints, under Assumptions 1. If the initial conditions 

satisfy 1|)0(| bNη  , 2|)0(| bNυ  , under the virtual stabilization function 
1α , the first-

order filter Eq. (8), the control laws Eq. (14), and the adaptive laws Eq. (17)-Eq. 

(19), diω̂ and diĉ . If the design parameters are chosen appropriately, the system has 

the following properties: 

1) The system full-state constraints are never violated, i.e., 1|| bNη  , 

2|| bNυ  , 0t . 

2) All signals of the closed-loop system are bounded. 

Proof: 1) Noting the definition of 3V in Eq. (20), and letting 1b be the upper 

bound of term ( )
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According to the BLF, →)(3 tV , when )(|)(| 1 ii bNη → , )(|)(| 2 ii bNυ → )3,2,1( =i . 

Due to the boundedness of )(3 tV , we know that )(|)(| 1 ii bNη  , )(|)(| 2 ii bNυ  , i.e., 
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)(|)(| 1 ii bNη  , )(|)(| 2 ii bNυ  , 0t . 

Proof: 2) It is easy to obtain that each term of Eq. (23) is positive, and we 

have inequations: 
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The final convergence set of errors are as follows: 
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Based on inequation (5), the virtual stabilization function 
1α is a function 

about T
R , 1z , T

P , 1−
P , 1γ , dη

̂ . Combining the form of 
1α and the first-order filter, 

we have 21 || bNα  , while using )( 111 ααα −=  , 0 , we can know that 1α is also 

bounded. From inequation (22) and Lemma 1 in Appendix A.1, it can be 

conveniently shown that i is bounded. Because N is bounded, i in Eq. (14) is 

bounded, and we can know that cτ is bounded. In addition, according to inequation 

(22) and ii W |||| W , ii  |||| μ , ii  |||| σ , then iW
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, iŴ , iμ
~

, iμ̂ , iσ
~

and iσ̂ are also 

bounded. From Eq. (17)-Eq. (19), it is readily know that
iW
̂ , iμ

̂ , iσ
̂ are all bounded. 

Finally, the estimated trajectory is bounded within the desired trajectory. 

Consequently, all signals are bounded. 

4. Simulations 

In this section, to demonstrate the effectiveness of the proposed approach, 

the detailed model parameters are shown in [18]. We choose a general desired 

trajectory form similar to [19]. The output constraints and state constraints are 

chosen as T

1 [5.3m,4.3m,1.05rad]b =N and T

2 [0.5m/s,0.5m/s,0.5rad/s]b =N , respectively. 

The constraint range of the control forces and moment are given as 1 [ 20N,20N]  − ,

2 [ 15N,15N]  − , 3 [ 5Nm,5Nm]  − .  

The Part 1: The initial conditions and the control designed as:
T(0) [0.2m,0.2m,0rad]=η , T(0) [0m/s,0m/s,0rad/s]=υ . To approach the true disturbance, 

the disturbance is specified as follows, reference to [18]: The basis functions are
T)]1.0(cos,),1.0([cos11 tt ld =f , T

2 3 1[sin (0.1 ), ,sin (0.1 )]d d lt t= =f f , The bounded function 

are chosen as T
li iii ))]((cos,)),(([cos))(( 1111 zzηφ = and ))(sin(1.0))(( 12 iii zη = , )3,2,1( =i , 

where dxx −=)1(1z , dyy −=)2(1z and d −=)3(1z . The trajectory estimation design 

parameters are set as follows: lli = IΛ 5.0 , 1.0131211 ===  , 05.0232221 ===  ,
5.0,5.0,1.0 121211 ===      0)0(ˆ

, =jdiω and ˆ (0) 1dic = , ),1,2,   ;3,2,1( lji == . The 

controller parameters are set as follows: 

1 2 3diag(0.1.0.1,0.1),   diag(1,2,2),   diag(5,10,10)= = =K K K . The filter time constant is set 

as 52.0= , 54.00   . The neural network parameters are set as 
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0)0(ˆ)0(ˆ)0(ˆ
,,, === jijiji σμW , lli = IΓW , llii == IΓΓ σμ 5.0 , 5

32 105.2 −=== iii  , 40=l ,

5.510−= . Compared to the standard approach, we use the same design parameters 

and the virtual stabilization function is designed as ]ˆ)([ 1211 d

T T

ηzKRα P ++−= . The the 

control law is designed as 23)ˆ,ˆ,(ˆˆ zKσμZSWτ −−= T
c . The simulation time is set to 100 

seconds. Fig. 2-Fig. 12. Shows the results. 

 

 
Fig. 2. Trajectory tracking curves in xy plane 

(Part 1). 

 
Fig. 3. The vessel position status tracking 

curves 11x , 12x , 13x . 

 
Fig. 4. The position tracking errors 11z , 12z , 

13z . 

 
Fig. 5. The vessel velocity status tracking 

curves 21x , 22x , 23x . 
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Fig. 6. The velocity tracking error 21z , 22z , 

23z . 

 
Fig. 7. Surge control force 1 , sway control 

force 2 , and yaw control moment 3 . 

 
Fig. 8. Desired trajectory and desired 

trajectory 

 

Fig. 9. Desired trajectory estimation and 

desired trajectory error xe , ye . 
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Fig. 10. The 2-norm curves of estimate trajectory parameters 1

ˆ|| ||dω , 2
ˆ|| ||dω , 3

ˆ|| ||dω . 
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Fig. 11. The response curves of estimate trajectory parameters 1ĉ , 2ĉ , 3ĉ . 
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Fig. 12. System uncertainties approximation comparison.   Fig. 13. Nussbaum parameters. 

 

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

ˆ|| ||W

ˆ|| ||μ

ˆ|| ||σ

t(s)  
Fig. 14. The 2-norm curves of neural network estimation weight ˆ|| ||W , Gaussian function center 

estimation value ˆ|| ||μ and width estimation value ˆ|| ||σ . 

Fig. 2 shows that the proposed approach has a better tracking effect. In Fig. 

3 at about 65-70 seconds, the proposed approach can make the surge position 11x

within the constraints. The standard approach does not work. At about 30-40 

seconds, the proposed approach can make the heading angle position 13x within the 

constraints, while the heading angle position 13x violates the constraints under the 

standard approach. Fig. 4 shows the steady-state tracking errors are closer to zero 

under the proposed approach. Figure 5 shows the velocity 21x , 22x , and 23x of 

Cybership II under two approaches. Fig. 6 shows the steady-state tracking errors 

are closer to zero under the proposed approach. Combining Fig. 3 and Fig. 4, the 

proposed approach ensures that both the system state variables 1xη and 2xυ

operate safely within constraints. Although the system velocity state does not 

violate the constraints under the standard approach, it cannot satisfy the constraint 

requirements in the perspective of control approach theory. Fig. 7 shows that the 

proposed approach effectively restrains the control force and torque, and ensures 

that the control force does not exceed the actual limit. 

Fig. 8 and Fig. 9 show that the trajectory parameter linearization approach 

is used to estimate the desired trajectory very well. The estimation error fluctuates 

with a small amplitude around zero. Fig. 10 and Fig. 11 correspond to the change 

curves of the trajectory estimation parameters 1
ˆ

dω , 2
ˆ

dω , 3
ˆ

dω , 1ĉ , 2ĉ and 3ĉ , 

respectively. It can be seen that the change range of these parameters are bounded. 

Fig. 12 shows the comparison results of the system uncertainties 

approximation under the two neural network approaches. It can be further seen from 
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Fig. 12 that FTRBFNNs has stronger online learning abilities and adaptive abilities. 

Fig. 13 corresponds to the changes in Nussbaum parameters. Fig. 14 corresponds 

to the estimated weightsŴ , base function center estimation μ̂ and width estimation

σ̂ two-norm changes. It can be seen that the range of changes are bounded.  

This Part 2 is the comparison of tracking conditions under different control 

parameters. The trajectory estimation design parameters are set as follows: 

lli = IΛ , 25.0131211 ===  , 2.0232221 ===  , 1,1,5.0 121211 ===      , 0)0(ˆ
, =jdiω and

ˆ (0) 1dic = , ),1,2,   ;3,2,1( lji == , 52.0= , 54.00   . lli = IΓW 5.1  

1 2 3diag(1,1,1),   diag(15,25,25),   diag(50,50,100)= = =K K K , 0)0(ˆ
, =jiμ , llii == IΓΓ σμ

0)0(ˆ
, =jiσ 0)0(ˆ)0(ˆ)0(ˆ

,,, === jijiji σμW 4

32 10−=== iii  . The other parameters do not 

change, and the simulations time is still 100 seconds. Fig. 15-Fig. 20 shows the 

results. 
 

 
 

 

 

 
    

 

 

Fig. 15. Trajectory tracking curves in xy

plane (Part 2). 

 

Fig. 16. The vessel position status 

tracking curves 11x , 12x , 13x . 

 

Fig. 17. The position tracking errors 11z ,

12z , 13z . 

Fig. 18. The vessel velocity status 

tracking curves 21x , 22x , 23x . 
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Fig. 23. The 2-norm curves of estimate trajectory parameters 1
ˆ|| ||dω , 2

ˆ|| ||dω , 3
ˆ|| ||dω . 
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Fig. 24. The response curves of estimate trajectory parameters 1ĉ , 2ĉ , 3ĉ . 

Fig. 19. The velocity tracking error 21z ,

22z , 23z . 

Fig. 20. Surge control force 1 , sway control 

force 2 , and yaw control moment 3 . 

Fig. 21. Desired trajectory and desired 

trajectory estimation. 

 

Fig. 22. Desired trajectory estimation 

and desired trajectory error xe , ye . 
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Fig. 15 shows that both approaches can track the trajectory in the xy plane, 

further from Fig. 16 and Fig. 18 shows both approaches can make the system actual 

position and speed safely operate within the constraints. Fig. 17 and Fig. 19 shows 

that the error 11z , 12z , 21z and 22z transient and steady-state changes are slightly better 

than the proposed approach under the standard approach, and under the proposed 

approach error 13z transient state and steady state are better than standard approach, 

and 23z steady state is better than standard approach, and transient state is worse than 

the standard approach. This is due to the fact that a satisfactory tracking effect is 

obtained under various constraints. The standard approach can take a large control 

parameters to achieve a satisfactory tracking effect, but the control approach cannot 

satisfy the constraint requirements. This corresponding to Fig. 5 and Fig. 6. 

Furthermore, the control force will increase sharply under very large control 

parameters, which cannot satisfy the actual situation. This corresponds to Fig. 20. 

Fig. 21 shows the desired trajectory and the estimation curve of the desired 

trajectory. It can be seen that the proposed approach can better estimate the desired 

trajectory under the action of the control parameters in Part 2. Fig. 22 corresponds 

to the error between estimation and desired in Fig. 21. Fig. 23 and Fig. 24 show the 

adaptive estimation parameters, and the estimation parameters are still bounded. 

Fig. 25 also shows the FTRBFNNs proposed can better approximate system 

uncertainties. Fig. 26 shows the two norm variation curves of the FTRBFNNs. In 

summary of the simulation verification and the above, it can be seen that the 

proposed approach is effective and satisfies the control objective. 

5. Conclusions 

The backstepping combined with iBLF was constructed to directly handle 

the full-state constraints of the MSV system. The trajectory reconstruction approach 

was used to estimate the desired trajectory. Dynamic surface was applied to 

simplify derivation of virtual control law. Mean-value theorem combine with 

Fig. 25. System uncertainties 

approximation comparison.  

Fig. 26. The 2-norm curves of neural 

network estimation weight ˆ|| ||W , 

Gaussian function center estimation 

value ˆ|| ||μ and width estimation value

ˆ|| ||σ . 
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hyperbolic tangent function were applied to approximate the saturation function. 

FTRBFNNs is more effective than RBFNNs in approximating the total 

uncertainties of the system.  

With the proposed approach, we proved that all signals of the MSV closed-

loop system are ultimately bounded. Simulations verified the effectiveness of the 

proposed approach. In the future work, the finite time/fixed time algorithm will be 

integrated into the unknown trajectory tracking control of dynamic positioning ship 

(DPS). 
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APPENDIX A 

A.1: Preliminary 

Definition 1: The BLF )(xV defined in [20]. 

Definition 2: For any𝑥 ∈ ℝ, 𝑡𝑎𝑛ℎ( 𝑥):ℝ → ℝis defined as 
xxxx eeeex −− +−=)tanh(

 

Definition 3 : The Nussbaum-type function )(sN define in [21]. 

Lemma 1 : The properties of function )(sN can be found in reference [21]. 

Lemma 2 [13]: The functional 1,
( 1, , )

jxV i n= , described as 

 +−
=

i

ii

z

dix
idic

ic

qk

dk
tqtzV

0 ))(( 22

2

))(),((
,1 


, satisfies 2

,1
2

22

,1
iic

iic

xk

zk

ixV
−

 , where 0
ick is constant; 

idii qxz −= ,1 ; variable )(tzi = ; ix ,1 satisfies ici kx || ,1 . 

Lemma 3 [22]: For adaptive law of form ]ˆ|)(|)([ˆ
22 iiiii ii WzzSΓW −=

 , there 

exists a compact set }ˆ|ˆ{:0 iiii s = WW , where ii s|||| S , 0)0(ˆ iW , 0t . 

NN Approximation: The FTRBFNNs are define in [23]. 原价注册 
 


